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1. Introduction
One of the principal techniques for improving quality is to select those members

of a population that appear to be of high quality and to reject those that appear to
be of low quality. Usually the selection is based on a number of measurements
that have been made on the available candidates. In personnel selection the
measurements are sometimes obtained by competitive examination, the hope being
that persons who obtain high marks will have superior ability for performing the
subsequent tasks. In a program for improving hogs, the choice of a sire for breed-
ing may be made after a study of his own characteristics, for example, weight at
180 days, plus those of his first few offspring.
A common feature in most selection problems is that at the time of selection

we cannot measure directly the quantity which we wish to improve. Thus when a
promotion from one type of work to another is in question, for example from sales-
manship to an administrative task, success in the old occupation may not guaran-
tee success in the new one. Stated mathematically, the problem is to improve
some quantity y by means of indirect selection that is made from a group of tests
or measurements xl, X2, . . ., xp.

The mathematical foundation of most of the work that has been done thus far
is Karl Pearson's memoir [1] of 1902. His primary interest was in the effects of
natural selection on correlation and variability. On the assumption that y and the
x's follow a multivariate normal distribution, he gave some important theorems
about the means, variances and correlations of the variates after a selection based
on the values of certain of the x's. Various applications of these and other results
are dispersed in the literature on personnel selection and on plant and animal im-
provement [21, [3], [4].

The object of this paper is to present the principal mathematical results that
are useful for setting up a selection program. This part is mainly expository in char-
acter, though a few results are given in a more general form than hitherto. In addi-
tion, we shall discuss some of the problems that are encountered when we come to
apply the theory to selection in practice. Here there appears to be need for much
further research.

2. Statement of the problem
We shall assume that y is a continuous variate. This is not always the case in

practice, since the object of selection is sometimes to draw out those who possess
a specific attribute. The same general approach is valid whether y is continuous
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or discrete, though the details differ. Before selection, the variates y, x1, X2, .. . , xp
are assumed to follow a distribution whose frequency function is f(y, Xl, X2,
..., xp). The decision to accept or reject a candidate is to be made by an objec-
tive rule that can be unambiguously applied as soon as the values of the x's are
known for the candidate. That is, some region R in the sample space of the x's is
chosen as the region of selection.
When we compare different rules for selection, it is natural to make the com-

parison subject to the condition that all rules operate with the same intensity of
selection. In other words, if any rule is applied repeatedly to the parent population,
it should in the long run select a fraction a and reject a fraction (1- a) of the
candidates. The size of the region R is therefore a.

It will be supposed that the specific purpose of selection is to maximize the mean
value of y in the selected portion of the universe. This purpose has usually been
taken for granted in applications, and seems a reasonable one to adopt, though
cases can be imagined where a different objective would be more appropriate. For
example, we might wish to maximize the probability that y exceeds some value yo.
This would in general require a different mathematical treatment and lead to a
different rule of selection.
To simplify the notation, the symbol x will be used to denote the set of p vari-

ates xi, X2, ..., xp, and dx to denote the product of their differentials dxl, dx2, .. . X
dxp. Given the joint frequency function f(y, xl, X2, .-. ., xp) -f(y, x), the prob-
lem is to find a region R in the sample space of the x's, such that

(1) -w1jdyfyf (y, x) dx
a _Ro

is maximized subject to the restriction

(2) . flf(x) dx = a

wherefi(x) is the joint frequency function of the x's.

3. The optimum rule for selection
If the regression v(x) of y on the x's exists, the optimum rule is to select all

members for which
X (x) _ k

where the value of k is chosen so that the frequency of selection is a. The result
requires the assumption that the cumulative distribution function of 1(x) is con-
tinuous and strongly monotone, so that for any a, (O < a < 1), there is one and
only one k(a) for which

P { (x) > k} = a .

To prove the result, we write

f (y, x) = 4(yIx)fi (x),
where qb(y I x) is the conditional frequency function of y, given the x's. The mean
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value of y after selection is

f dyfy4(yIx)Jf(x)dxa co R

=a Iff(x)dx
c

yk(yIx)dy

(3) =- (x)fl(x) dx,

from the usual definition of a regression function. The problem is therefore to find
a region R which maximizes (3) subject to (2).

This problem is analogous to that of finding the best critical region R for a test
of significance of a null hypothesis Ho against a single specified alternative H1. In
the analogy,f1(x) corresponds to po, the frequency function of a sample point given
that Ho holds, while the product n(x)fi(x) corresponds to pi, the frequency function
of a sample point given that H1 holds. Neyman and Pearson [5] have shown that
the best critical region Ro is defined by

pi > kpo

where k is chosen so that the region is of size a. The corresponding region in our
problem is

(4) n(x)fi (x) > kfi (x), or 1(x) > k.

Although the argument seems to apply without change, it may be worth repeat-
ing the principal part of the proof. Let Ro be the region defined by (4) and let
R1 be any other region of size a in the sample space of the x's. If the two regions
have a common part, denote this by Rol.

Since both regions are of size a, it is clear that

(5) f f1(x)dx= f f1(x)dx.
(R-R,,) (RI-Ro )

Now

f (x)fi(x)dx fA (x)f1(x)dx+ f q.x)fi(x)dx
Ro RoI (Ro-Rol)

>fA (x)fl(x)dx+ f kfJ(x)dx
B01 (Ro-Rol)

1f (x)fi(x)dx+ f kfi(x) dx,
R01 (R,-R,,)

using (5). But in (R1- Rol), we have k > ri(x), so that

f (x)fl(x)dxf>A (x) f1(x) dx+ f X (x) f1 (x) dx
B, 0 1 (RI-Rol)

>f(x) f1(x) dx.
RB
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The equality will hold only if the region (R1- Rol) is empty, that is, if R1 and Ro
coincide.

This result might of course be anticipated by elementary considerations. By a
selection which operates entirely on the x's we cannot hope to influence the indi-
vidual variations of y in arrays in which the x's are fixed: the most that we can hope
to do is to choose arrays in which the mean value of y is relatively high. The result
is a convenient one, since it implies that selection can be based on a single index
by which the candidates are scored. The use of the regression as an index is well
known for the case where all variates follow the multivariate normal distribution,
but actually it does not require normality nor linearity of regression.

4. The gain in y due to selection
We may choose the scales so that in the original population all variates have

zero means. Since E(y) = E(X) in the unselected population, it follows that iq also
has zero mean. Hence the mean values of y and I after selection are the increases
or gains in these variates due to the selection.

From (3) we see that the gain in y, G(y), is the same as that in 7. This result
can be put in another form that is sometimes of interest. In measuring the gain in
a variate, we often express it as a fraction of the standard deviation of the variate
in the original population. This device converts the gain to a type of standard
scale which is invariant under any linear transformation of the units in which
measurements are recorded. In standard units,

G (y) (,f,)G(70

But in the original population,

cov(yn) =ffytif(y, x) dydx =fnf (x) dxfysb (y x) dy

f-=l f 1 (X) dx = u2.
Hence pm,t = an/a, and we have

(6) G-(y) G___

In standard units, the gain in y is a fraction p., of that in 7, where p,, is the
correlation coefficient between y and 71.

It would be interesting to have a simple expression which gives the gain due to
indirect selection in terms of that due to direct selection on y of the same intensity,
but I have been unable to discover one. It is of course easy to show that indirect
selection cannot be superior to direct selection. A very simple result which con-
nects the two gains is obtained if the variates follow the multivariate normal dis-
tribution, as discussed in the next section.

5. Results when all variates follow a multivariate normal distribution

In this case, which has been assumed in most applications, the results can be
made more specific. In particular, 77 is a linear function of the x's and is normally
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distributed in the original population. Hence

G (1) -1 co e-'2fd1 1z-e(k2/2e z(a)
at, aa /2wa X. ax7/27 a

17

where z(a) is the ordinate of the normal frequency function at the point k/lc7 at
which a fraction a of the total area lies above the ordinate. This gives

(7) G(y) Pz(a)
ay a

If we were able to select directly on y, the gain in y would be z(a)/a. Thus the gain
due to indirect selection is a fraction p,, of that due to direct selection with the
same intensity of selection. The correlation p,, is the multiple correlation coefficient
between y and the x's.

The following are the chief properties of the distribution of y after selection.
Frequency function: For yi = y1a,

(8) f (Y1= a/r eu /f e-u/2du

i p2

where t is the point on the abscissa of the normal curve above which a fraction a of
the area lies, and p denotes pv.-
Mean:

(9) G (y) =pa
a

Variance:

(10) V(y) a2 I p2---t

Correlation between y and j:

(1 1) = p a (a
1-p - t)

The frequency function is positively skewed to a marked degree if p is high and a
is small: otherwise skewness is only moderate and the general appearance is similar
to that of a normal curve. Both the variance and the correlation between y and x1
are reduced by the selection.

Table I gives numerical data on some properties of the distribution of y after
selection, for several values of p and a. Before selection, y is normally distributed
with mean zero and unit standard deviation.

The values shown after selection are the mean, standard deviation, and the
correlation with -. As the intensity of selection increases, the mean increases, the
s.d. decreases (rather slowly), and the correlation between y and 'q decreases. The
effects are in the same direction as p increases, except that p' increases with p.
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6. Selection in two stages

Sometimes the measurements that seem useful for selection, because they are
thought to be correlated with y, become available at different times. For example,
in the selection of a hog as a sire, his weight at 180 days is known before we have
records on the performance of his offspring, although the latter records seem more
relevant to the purpose at hand. With dairy cows that are being selected for milk
yield, each successive lactation provides new data. Consequently a selection pro-
gram may involve repeated selections as more measurements accumulate.

TABLE I

PROPERTIES OF THE DISTRIBUTION OF y AFTER
SELECTION IMPOSED ON X7

MEAN S.D. PI

PER CENT
SELECTED p p p

100 a __________ ________ ________

.5 .8 .95 .5 .8 .95 .5 .8 .95

50 .40 .64 .76 .92 .77 .65 .33 .63 .88
25 .64 1.02 1.21 .89 .72 .56 .27 .55 .83
10 .88 1.40 1.67 .89 .68 .50 .23 .48 .78
5 1.03 1.65 1.96 .89 .67 .47 .21 .44 .75
1 1.33 2.13 2.53 .88 .65 .43 .18 .38 .69

To consider selection in two stages, suppose that the variates xl, x2, ... , xq
(q < p) are known when the first selection is to be made, while the remaining
variates x.+, . .. , xp do not become known until the second selection is made.
If the frequencies of selection a,, a2 at the two stages have been decided in
advance, the optimum rule for selection is given by the previous theory. At the
first selection, we use as a selection index the regression 7l1(x1, X2, . . ., xj) of y on
Xl, X2, ... XXq. This regression is, by definition,

'01(X1, X2, * * *, Xq) =Jf .. fJyf (y, x) dydx,+, ... dxp,

where the integration for y and x,+l, . . . , xp extends over all the sample space.
We select whenever fll > ki, where k1 is chosen so that the frequency of selec-
tion is al.

At the second stage, the optimum index is the regression iq2(x) of y on all the
variables, in that fraction al of the sample space which remains after the first
selection. Since, however, the first selection operates purely on the x's and does not
alter the frequency distribution of y in arrays in which all x's are fixed, 72(x) is
exactly the same function as x7(x), the regression in the original population. We se-
lect whenever fl2 > k2, where k2 satisfies the equation

*a2=- f f(x)dx.
alr1kl

7k2
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If all variates have zero means in the original population, the gain in y due to
the two stage selection may be written formally as

G(y) = Jyf(y, x)dydx.
a1a2 al k,

,v 2 k2

The extension to three or more stages of selection is easily made.
This statement of the problem is not very realistic for most applications. It is

more likely that only the product ala2, that is, the desired frequency of survivors
of both selections, would be decided in advance. For given aia2, the question as to
the optimum values of a, and a2 is often asked in practice. In any specific case,
this question can be answered from the equations above by trial and error, insert-
ing various values of a, and a2 to see which give the greatest gain in y. There does
not seem to be a useful general solution in functional terms.

Even this form of the problem may not be what is wanted. For a given value
of the product aia2, the cost of a selection program may vary according to the
values of a, and a2. If we decide to retain a group of hogs until information on their
progeny is obtained rather than to sell them, we have to feed them in the inter-
vening period with perhaps no compensating increase in their saleable value. The
desirability of reserving judgment on a dairy cow for several lactations will depend
on the amount of profit which her milk yields. Thus two stage selection problems
usually have to be considered in the light of a specific cost situation, with the object
of maximizing the gain in y for a given outlay.

As before, results become more definite if the variates follow a multivariate
normal distribution. In this event, y, 7ji and '72 are all normally distributed and
jointly follow a trivariate normal. If the original multivariate normal distribution
is given, the covariance matrix of this trivariate normal can be found. Since the
gain in y is determined solely by the parameters of the trivariate distribution, there
is no loss of generality in confining discussion to the trivariate distribution. In the
original population, we may assume that all variates have zero means and unit
variances. The parameters pi, P2 and p will denote the simple correlations between
y and qi, y and -q2, and ll and '72, respectively.

The points of truncation ki, k2 satisfy the equations

(12) al=G1e-?12d,i;

(13.) aia_ di
co

e-1V1(1-,')1 )d2r1 Jkk k

They can be found from the tables of the univariate and bivariate normal [6],
respectively.
We now find the gain in y due to selection on q,, followed by selection on 72-

Write
y = 1i'l + 02'72 + e,

where (I1-,l + j32112) is the multiple regression of y on the 7'S in the original popula-
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tion. If E' denotes a mean value in the selected part of the universe, we have

E' (y) = ,13E' (r71) + j32E' (q2) + E' (e) .

But the distribution of e is independent of that of the -7's, so that E'(e) = 0. Hence
(14) G (y) = ,13G (771) + 132G (772),

so that we need only find G(ql) and G(772). It is simpler to find G(171 - p772) as
follows.

a1a2G (77l -P772)
=1 Oc

2 v'1 - p2 2kOk (771 - P772) e-l'/2(1 P')] (Itl_-2p2,1,+'?V dq1

-V - p2 -e[/(-p2)] (02,-2pk~,X2,, n= V'lp ~~~/' e1/2(l~) (12P1'iz')d772
2,7r k

/1_ p2 y^e_1 7_k P)2/2(j_ p2)]-k1, /2dO2
2r k2

( ) ( t/2_2)

VI-_p2

(1-p2) z (ki) I ( k2-Pk) ( -p2) Z112, say,

where z and I denote the ordinate and the incomplete area of the normal curve,
respectively. A corresponding equation holds for G(772 - pl). Solving the two
equations, we find
(14.1) a1a2G(71 ) = zlI2+ pz2Il ala2G(772) = pZII2+ z211
Hence, from (14)

ala.G (y) = 13iaia2G (771) + (32aia2G (n2)
= (11 + p(2) Z1J2 + (P01 + 12) z2I1 .

But
P1 = cov {y7l1 = covy ({1371 + 12772) nil = 1 + P12

and similarly for P2- This gives for the final result

(15) G(y) PlzllI2+ P2z2I1
ala2

where it is to be noted that Pi, P2 and p are simple correlation coefficients in the
original population, and

I, = I ( /1 - pk2) I2= I ( k2] _Pk,
If y does not have unit standard deviation, the only change needed is to multi-

ply the right side of (15) by a,.
In this proof no use has been made of the fact that q0 is the population regression

of y on the x's. The result therefore holds for two stage selection on any pair of
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variates qi and f2, provided that 1, 2 and y follow a trivariate normal. In practice
the second selection is sometimes based only on those variates that were not avail-
able in time for the first selection, presumably because it is considered that there
will be little further gain in bringing into the second index variates that have
already been used.

If 712 is the population regression of y on the x's, the proof can be shortened a
little. From equation (6) of section (4)

G (y) G (772) G((72)
=- Pvn,0"2 =

72

This equation holds for any kind of selection based on the x's, so that it applies
to two stage selection. But from (14.1)

ala2 -- = PZ1I2 + z21-

Hence
(15.1) GG(y) P2(PZlJ2+ Z2I1)

av ala2

This result is equivalent to (15). For if '12 is the population regression, the partial
regression of y on ql, holding 172 constant, is zero. Hence P1 = P2P, which makes (15)
reduce to (15.1).

For specific applications, (15) can be computed from tables of the univariate
normal distribution. In the case of three stage selection G(y) can be expressed in
terms of functions of the univariate and bivariate normals: the area of the trivari-
ate distribution is however needed for reading k3. The results (15) have been given
in another form by Perotti [7].

7. An application to plant selection
As mentioned previously, the formulae in the preceding section are most likely

to be useful in connection with specific applications. An example may help to clarify
the procedure. In a program for finding superior varieties of a crop, it is quite com-
mon to start with a large number of varieties. A replicated field trial is conducted
each year for several years, and at the end of each year some varieties are dis-
carded. Suppose that we have a two year program, and at the end of two years we
wish to retain only 1/24 of the original number of varieties, so that ala2 = 1/24.
The same number of plots is available for experimentation each year. It follows
that if al = 1/a, the varieties that survive to the second year can be tested in a
times as many replications as the varieties in the first year. The problem is to find
the best value of a, or a.
We will assume that we are trying to improve only a single characteristic of the

crop, such as yield per acre, and are oblivious to all others, though this is somewhat
of an oversimplification. Let y denote the true yielding ability of a variety. From
the first year's experiment, we obtain an estimate xi = y + el, where xi is the
observed mean yield of the variety and el is the experimental error of xl. At the end
of the first year, a selection is made by means of xl. For any variety which sur-
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vives this, we obtain a second estimate X2 = y + e2 at the end of the second year.
If experimental errors per plot are the same in the two years, we will have
d-.= a/Ja
The variates y, el and e2 are assumed to be normally and independently dis-

tributed, with zero means. Consequently, y, xi and X2 follow a trivariate normal.
It is easy to verify that, apart from a constant factor, the multiple regression of y
on the x's is (xi + ax2)/(a + 1). This can be interpreted as the unweighted mean
of all available observations on the yield, the apparent weight a arising because X2
is based on a times as many replicates as xi. From the general rule, selection at the
end of the second year should be based on (xi + ax2)/(a + 1). Thus we may take

?II= X= + l;(X1l+ aX2)
=Y

el+ ae2
ni1=xi=y+ei; fl2=-a+ a+l

Tf u = ol/a4, it is found that

Pi = Pyva, ;~ p2= Py% =\a 1 u
| ~ ~ aI+l+u

p 12 (a+l)(1+u) -

The symbol u measures the ratio of the error variance to the true genetic variance
of a varietal mean in the first year. Calculations were made for u = 1, 3, 15 and 63.
These values make the correlations P1, between y and fli, 0.707, 0.5, 0.25 and 0.125
respectively. The values of a were 1, 2, 3, 4, 6, 8, 12 and 24. The method of compu-
tation is first to find k, and k2 from equations (12) and (13) of the previous section.
The gain in y is then computed from equation (15). Results appear in table II.

TABLE II
GAIN IN y FOR VARIOUS METHODS OF Two STAGE SELECTION

u=1 u=3 u=15 u= 63
a12 pl= .707 pi= .5 pi= .25 pl= .125

1 a 1.745 1.352 0.733 0.375
}TtZ 1.867 1.507 0.858 0.452

T i 1.902 1.592 0.948 0.501
-X 1.936 1.637 0.996 0.532
X X 1.947 1.649 1.035 0.564

- X 1.935 1.630 1.032 0.572
fl2 4 1.867 1.529 0.970 0.547
21W 1 1.511 1.069 0.534 0.267

The best selection intensity for the first year appears to be fairly independent
of the relative amounts of genetic and experimental error variation, the optimum
being in the neighborhood of a, = 1/6 in all cases. Since the maxima are mod-
erately flat, the use of equal selection rates of approximately 1/5 in both years
would be a good simple rule.

The comparison of the optimum with the last line of the table is of interest. With
al = 1/24, all the selection is made in the first year, there being no need for a trial
in the second year. When genetic variance is relatively low (u = 15 and u = 63),
the optimum gain is about double that when ai = 1/24. This suggests that the
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return per unit of work is about the same in the two years. As genetic variance
increases, there is a diminishing return from the second year's work. In the limiting
case u = 0 where there is no environmental variance (not shown in table II) there
would be no return from a second year's work, since the maximum attainable gain
z(a)/a, in this case 2.138, would be reached by a selection in the first year.

Comparison of the optimum with the top line of table II is also of interest. When
ai = 1, all the selection is made at the end of the second year. The comparison is
therefore one of a single versus a two stage selection, for the same total number of
plots. The increase due to two stage selection is worthwhile though not spectacular.
Since the gains for ai = 1 could have been obtained in the first year by growing
double the number of plots, it might be questioned whether the increase from two
stage selection compensates for a year's delay. On this issue the mathematical
assumptions are too simple for application to plant breeding practice, where the
true yielding ability of a variety would be expected to vary to some extent from
year to year. Intuitively, this suggests that the advantage of a two year trial
would be greater than that revealed by the comparison above.'

8. The construction of selection indices
The preceding theory assumes a knowledge of the exact form of the joint fre-

quency distribution of y and the x's. In practice, such knowledge is rarely avail-
able. Instead, the general functional form of the joint distribution is assumed,
with certain parameters introduced into the expression in order to give some de-
gree of flexibility to the assumptions. The values of these parameters are estimated
from some initial data. In practically all applications with which I am familiar, the
functional form assumed has been the multivariate normal distribution. In this
section the construction of selection indices for this distribution will be described:
comment is reserved for later sections.

In some applications it is possible to obtain an initial sample in which the
values of y and the x's are measured. For instance, if a group of tests is to be used
to select personnel for some type of work, we might have available, from past data,
records which show the performance of a sample of people both in the tests and in
the subsequent work. In this event the procedure is the familiar one of calculating
the least squares regression of y on the x's from this jample. The sample regression
function Y = E bixi is taken as the selection index, and used to score new candi-
dates.

In plant and animal selection, on the other hand, the value of y cannot be ob-
served directly, and a more ingenious approach is needed. The situation is that y is
a linear functionI ajit of the important genetic characteristics (i of the candidate,
where the ai are known weights. In the example cited by Fairfield Smith [8], to
whom this approach is due, the ai were determined by the relative economic values
of improvements in the several characteristics. Alternatively, if we are interested
only in a single characteristic, we take all a's zero except one. The variates (i are
presumed to follow a multivariate normal distribution. From experiments, we can

I An interesting discussion of the problem of single stage selection for sugar beets has been
given by Y. Tang [131.
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observe estimates xi of the ti, where
Xi = i+ ei,

ei being the experimental error. The variates ei are also assumed to follow a multi-
variate normal distribution, and the joint distributions of the t, and ei are taken
as independent of one another. These assumptions are sufficient to ensure that
y and the x's follow a multivariate normal. Consequently, from our previous the-
ory, the best selection index for y that can be constructed from the x's is the popu-
lation regression of y on the x's.

Let Tij, yiy, and eiq be the population covariances of xixj, titj, and eiej respec-
tively, so that

(16) Tij = Yij+ eiq .

Then if i= z ,Bxi is the population regression of y on the x's, the ,Si satisfy the
equations
(17) Oi7Tij= cov(xjy) = akYjk.

t ck

The theory above requires a knowledge of the parameters Tij, yjk. Estimates of
these are obtained from an initial experiment. In this, we take a random sample
of n members of the population, for example, n varieties of a crop, and conduct a
replicated experiment in which all p measurements xi are made on every plot. The
design of the experiment may take various forms, but we will suppose that it is
arranged in randomized blocks, with the following analysis of covariance between
xi and xj.

Mean Unbiased
d.f. square estimate of

Between members (varieties) (n - 1) tij Tij= ij + ei,
Experimental error (n - 1)(m -1) ei ei

This analysis is in terms of a varietal mean over the m replications. For sim-
plicity, we have supposed that the selection is to be made from these means, so
that the experimental error of a mean is the quantity ei which enters into the
theoretical argument. From the analysis we can substitute unbiased estimates
of rij and 'Yjk into (17). Foi the coefficients bi in the estimated selection index

bixi, this gives
(18) biti ak (tjk- elk) , for j = 1, 2, . . , p.

i k

Equations (18) are linear in the weights bi, and their arithmetic solution pro-
ceeds by exactly the same methods as for a set of normal equations in least squares.
As Bartlett [91 has pointed out, the sampling distribution of the bi appears to be
much more complicated than in least squares, because the right hand side of (18)
consists of a linear function of covariances. This means that in any discussion of
the sampling errors of a selection index that is computed from an initial sample,
the situation in which y cannot be measured will require a separate investigation
from that in which y can be measured.
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The equations are slightly more elaborate if the means xi from which the
selection is to be made are based on m' replicates, whereas the means in the ini-
tial experiment by which the index was constructed are based on m replicates,
(m #1 m'). The extension to this case has been given by Nanda [10]. In other ap-
plications, particularly in animal selection, a more complex analysis of covariance
may be necessary to estimate the unknown covariances: on the other hand, the
exact values of some of the correlation coefficients can be predicted from Mendelian
theory, so that less remains to be estimated from the initial sample. The general
structure of the equations of estimation is similar to that in equations (18), though
the differences mentioned above become important in any investigation of sam-
pling error theory.

9. The problem of constructing a best index from an initial sample
The procedure of substituting sample values for the unknown population param-

eters seems natural enough that it might be taken for granted as the obvious prac-
tical method for constructing a selection index. It does, however, raise the ques-
tion: in what sense is a selection index Y = bixi, constructed from a sample, the
"best" index? This is, of course, a more complex problem than the construction of
a selection index when the values of the i are given. I have not been able to find
any rule for constructing a "best" sample index, and I am doubtful whether one
exists, unless a very specialized meaning of the word "best" is adopted.

In particular, in the case where the bi are obtained from a least squares regres-
sion, the indexE bixi does not have any obvious optimum properties, though this
does not mean that an alternative which is superior can be found. In this connec-
tion, it may be noted that in practice we tend to act as if we distrust the least
squares formula to some extent. It is a common procedure, starting with, say,
7 x-variables, to include in the index only those whose observed partial correlations
with y in the initial sample are "large" enough, in some sense of this term. Some
investigators retain only those x's whose partial correlations with y are statistically
significant: others prefer a more flexible rule. Although such procedures are some-
times justified on the grounds that we want to keep the index simple, it is also
thought, I believe, that the inclusion of the rejected x's would actually weaken the
index, because the deleterious effect of sampling errors in the weights bi would more
than offset any gain that there might be in the correlation with y. When the ,i are
known, on the other hand, the optimum rule shows that it pays to include any x
whose partial correlation with y in the population differs from zero.
An introduction to the problem of finding a "best" sample index will be given

for the case in which the initial sample is random, of size n, and provides data on y
and the x's. An underlying multivariate normal distribution for y and the x's is
assumed. Without loss of generality, we may suppose that in the population the
only variable that is correlated with y is xi, and that all x's are independently
distributed with unit variance. Thus
(CI9) y lineaxr+elx (I °> 0) wher twx; Pa kPnvowrln

Consider any linear index I =Ewixi, where the wi are known numbers. This
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index is used repeatedly to select or reject new candidates, the w's remaining un-
changed throughout. For these new candidates, the variates y and the x's are pre-
sumed to follow the same multivariate normal from which the initial sample was
drawn. Hence for the new candidates the joint distribution of y and I is a bivariate
normal in which

(20) cov(yI) =w1#3: I= w: PyI=
i= 1 V

since the x's are independently distributed with unit variance. Thus the average
increase in y due to selection on I is

(21) G(y) = PVI (a) ¢ = wi# z(a)
a 2 ~~~~a

-\E wi

where the population over which the correlation is taken consists of an infinite
number of selections made by the same index I.

If we are seeking the values of the wi which give the best index, we might be
inclined to choose them so as to maximize G(y) in (21). This approach is fruitless.
From the extreme right side of (21), we see that the maximizing values are w1i = 0,
i > 2, while w1 can take any positive value. This solution confirms the general
theorem that Xi, or any positive multiple of it, is the best index. But like the gen-
eral theorem it requires knowledge of the f3i, since it could not be used unless we
knew that Bi = 0, i > 2.

Evidently we cannot get to the heart of the problem by considering the repeated
use of a fixed index calculated from a single initial sample. It seems necessary to
consider a two stage population in which (i) initial samples are repeatedly drawn,
(ii) from each sample an index I is calculated by some rule and (iii) each index is
then used repeatedly for selection. In such a population, the correlation py, will
follow some frequency distribution. A rule for constructing w's which maximize
the average p of PvI might reasonably be considered the "best" rule, since it would
also maximize the average G(y) in equation (21). If we are willing to confine our
attention to rules for which the wi are linear functions of the y's in the initial
sample, the frequency distribution of Pyv, though complex, does not look unmanage-
able, but I have not been able to express it in any form in which the consequences
of different rules can be studied.

10. The loss due to the use of a least squares index
Some insight into the nature of the distribution of pyI in the two stage popula-

tion can be obtained if I is the least squares index Y = E bixi. Consider the condi-
tional distribution of p,y in initial samples for which the values of the x's are fixed.
For any fixed set of these x's, bi is normally distributed. The mean value of bi is 1

and the mean value of any other bi is zero. Since, from the right side of (20),

(2 2) b11i
yy

b2
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it follows that P,yo11 is distributed as the ratio of a normal variate to the square
root of a noncentral quadratic form in normal variables.

From standard regression theory, the covariance matrix of the bi in the condi-
tional distribution is 42Si, where Sii is the inverse of the matrix Sii =E xixi,
taken over the initial sample. Thus in the conditional distribution the bi have
somewhat different variances, and are correlated to some extent.

Consider now an averaging of these conditional distributions over all possible
initial samples. In this population all bi have the same variance a/(n - p-1).
For by a familiar transformation the quantity Sii may be written /Si.jk.- - -.
where Si.jk. .. is the sum of squares of deviations of xi from its linear regres-
sion on the (p - 1) other x-variables. Since the x's are normally and independently
distributed, Si.jk ... is distributed as x2 with (n - p + 1) degrees of freedom.
But if x2 has v degrees of freedom, the average value of I/X2 is known to be
1/(v- 2), from which the result follows. Further, in the unconditional distribu-
tion bi and bjmay easily be shown to have zero covariance. The b's are not normally
distributed, the distribution of (bi- #i) being similar to Student's t-distribution.
An approximation to the distribution of PyY may be obtained by regard-

ing the bi as normally and independently distributed with the same variance
/(n- p - 1), where

(23) PV Y

Write zi = bi/b, so that the zi have unit variance. The mean value of z1 is
#%Vfn - p - I/ae. But

(24) 31 = pa,, from (19); a2 = a((I _p2),
where p is the population multiple correlation coefficient between y and the x's.
Hence E(zi) = p n-p - i/V - p2.

Under these assumptions, the quantity
Z1 -

Z2

follows the noncentral t-distribution, with (p - 1) degrees of freedom, and param-
eter r = p -/n-: i/Vtp- p2. Thus from (23),

(2 5) PvY = (#I) Z1 - (p1
Vr V\t2+ (p~

zi

The form of the result (25) is of some interest. It shows that the correlation be-
tween y and Y equals the correlation between y and j, multiplied by a fraction
which cannot exceed unity. The average value of this fraction therefore represents
that fraction of the possible gain in y (possible if the j3's were known) which will
actually be attained. The quantities n and p enter into the result only in the form
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p/n -p- i/Vt - p2. For a given number p of x-variates it follows that the
initial sample size n must be much larger when p is small than when p is large if
the same fractional loss in G(y) is to be sustained.
We now give some calculations from which the size of the fractional loss in G(y)

can be estimated in specific cases. For (p - 1) degrees of freedom, the frequency
distribution of the noncentral t may be written

( 2r/2 (P+ r -2)
(26) f (t1) dt, (tli7) Idt11

r( r=0 r! (1 + t') (p+r)/2

where t1 = t/V717I, r = pVn - p - llVl - p2, (p - 1) > 0.
The variate in which we are interested is z = ti/Vj1 + t'. A routine transfor-

mation gives

./ 2 '/2 pt+ r )-2
(27) k(z)dz =_ (p ~(TZ)r(- z2) (p3/2z

From term by term integration, the mean value of z is found to be

(2 8) E ( Z) =-=_ e T/2 ) 1+(P+ )(T2

+ (p +1) (P +3) 1 KT2)1++(p+2) (p+4) 2! (2 *** T

In table III the values of E(z) are given for p = 2, 3, 4 and 5, and a series of val-
ues of the parameter r2/2. This seems the most useful form for a succinct presen-
tation, since by interpolation the reader can compute p/p for any case in which
he is interested.

Example 1. Suppose that a regression on 4 x-variates is computed from an initial
sample of size 10. If p = 0.6, what is the expected correlation between y and Y? In
this case

12= 1 0.36
2 T =2 -6.64 (10 -4 - 1) = 1.4.

By interpolation in the column p = 4, we find p = 0.64p. Hence, on the average,
the correlation between y and Y is (0.64)(0.6) = 0.38.

Example 2. In a selection index based on 5 x-variates, it is confidently expected
that the true multiple correlation coefficient will be at least 0.7. An initial random
sample for constructing the index is to be drawn. It is desired to take this large
enough so that the fraction of the potential gain in y that is lost through errors in
the b's will not exceed 5 percent. How large must n be?
We want p/lp to be at least 0.95. From table III it is clear that a larger sample is

needed for p = 0.7 than for any higher p. Hence we make the estimate for p = 0.7.
Since the entry 0.95 lies outside the limits of the table, we use the approximation
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in the footnote. We want
I

> (.95)2= 0.9025.
=+

This leads to
2 (.49) (n- 6) > 4

.51 - 1 =3

.902 5
and hence to n = 45.

To give more concrete results, the values of p/p are shown in table IV for initial
samples of sizes 10 and 30, and for p = 0.9, 0.7, 0.5 and 0.3.

TABLE IH*
VALUES OF p/p

p=NumBER OF X-VARIATES

p'(n-p-1)
2(1-p5) z 3 4 5

0.2 .377 .324 .288 .262
0.4 .510 .441 .394 .360
0.6 .597 .521 .469 .430
0.8 .661 .581 .526 .484
1.0 .710 .629 .572 .528
1.5 .793 .714 .656 .611
2.0 .844 .770 .714 .670
3.0 .900 .838 .788 .747
4.0 .928 .876 .833 .796
5.0 .944 .900 .863 .830

* For values of J72 outside these limits, use the following approximations:

( T2>5): 1

(72< 0. 2) P ( 2 ) T

The results illustrate the fact that when an index Y is computed by multiple
regression from a small sample, the correlation between y and Y is likely to be
substantially less than the multiple correlation coefficient between y and q. The
gain in y following selection on Y is reduced in the same ratio. The loss in correla-
tion increases with the addition of each independent variate, and when measured
as a fraction of p, as in table IV, it increases rapidly as p becomes small. Since the
results are derived from an approximation to the distribution of p,ry not too
much reliance can be placed on individual figures. But there seems little doubt
that in small samples the addition of an extra x-variable to the index will not in-
crease the gain due to selection unless it produces at least a moderate increase in p.

The results also suggest, as would be expected, that the decrease in the improve-
ment in y can be avoided by the choice of an initial sample which is large enough.
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When p is as high as 0.9, the initial sample may be quite small, at least if the index
contains no more than 5 x-variables. Tables III and IV enable rough estimates to
be made of the size of sample needed in specific cases. It should be noted that these
tables apply to a random sample of size n. It is not uncommon to choose an initial
sample in which the variation among the x's is substantially larger than that in a
random sample of the same size. The purpose of this device is to decrease the sam-
pling errors of the b's, and its effect is to make the appropriate size of sample for
reading tables III and IV larger than the actual size.

TABLE IV

VALUES OF p/p FOR INITIAL SAMPLES OF SIZE 10, 30

n= 10 n= 30
p=No. OF X-VARIATES p=No. OF X-VARIATES

2 3 4 5 2 3 4 5

0.9 .98 .96 .93 .90 1.00 .99 .99 .98
0.7 .91 .83 .74 .66 .98 .96 .94 .92
0.5 .74 .63 .54 .45 .94 .88 .84 .80
0.3 .67 .38 .31 .26 .77 .67 .61 .56

11. The effect of discarding variates from the index

As has been mentioned, the practice of discarding from the index those x-vari-
ates which appear to have little partial correlation with y may be regarded as an
attempt to avoid some of the decrease in correlation which results from errors in
the weights bi. The practice seems obviously sound if we can be sure that the initial
samiple informs us correctly which variates to discard. In a small initial sample,
however, the sample partial correlations may not be close to the corresponding
population correlations, and the process of discarding is itself subject to errors.
Precise information about the effects of such errors on p,y would be worth having.
In particular, it is relevant to discover whether the reduction in G(y) through errors
in discarding is as great as the reduction incurred if we do not discard. Such an in-
vestigation encounters intricate mathematics. Some results will be given for a
simple case in which the analysis is not difficult.
We adopt the same mathematical framework as in the previous section. That is,

in the two stage population the bi are assumed as an approximation to be normally
and independently distributed with variances a/(n - p - 1). Only xi is corre-
lated with y, so that all #'s except f,i are zero. The index Y is to contain only one x.
From any initial sample we select that xi for which the corresponding bi is greatest.

This method of discarding differs from methods that are common in practice
in three respects: (i) we retain only one xi, whereas all x's which have significant
partial correlations with y are usually retained; (ii) in any specific initial sample, the
conditional variances of the bi will not all be the same, and it would be more cus-
tomary to retain that xi for which bi gives the highest value of Student's I; (iii) in
our problem we either retain an index xi which is actually the optimum index, or
one which is of no value at all for selection, whereas in practice the choice would
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probably lie among a number of variates each of which was of some value, although
none was optimum. These deviations from practice were accepted in order to sim-
plify the analysis. It does not seem that they distort the essentials of the problem
unduly.

The frequency distribution of p,y has only two values, p if xi is chosen and
O otherwise. Hence we need consider only the probability that xi is chosen, that
is, the probability that bi is the greatest (algebraically) of the b's. As before,
write zi = bi\n -p- l/11e, so that the zi have unit variances. The mean value
of zi is T = l31Vn-p -1/a, or pvTT Z /Vt- p2. All other z's have zero
means.

The method of calculating the probability P that z1 is the greatest, which was
suggested by J. W. Tukey, was to use the formula
P=I_1 p )pi (p 1)(p 2) pi_ (p-l)(p-2)(p-3)

.2! 3!
where p is the number of x-variates from which the winner is chosen, and Pijk, for
example, is the probability that any three specified variables x., u _ 2, will exceed
xi. By symmetry, this probability is the same for any choice of the three. Pi is read
from tables of the univariate normal distribution. Pij is obtained by noting that

TABLE V
MEAN VALUES OF p/p FOR Two METHODS OF CONSTRUCTING AN INDEX

ONLY THE "BEST" VARIABLE RETAINED ALL X-VARIABLES RETAINED

p n'=8 n'=32 n'= 8 n'=32
p p p p

2 3 4 2 3 4 2 3 4 2 3 4

0.9 1.00 1.00 1.00 1.00 1.00 1.00 .98 .97 .96 1.00 1.00 .99
0.7 .98 .95 .94 1.00 1.00 1.00 .92 .87 .83 .98 .97 .95
0.5 .88 .80 .72 .99 .98 .97 .77 .69 .63 .95 .91 .87
0.3 .74 .60 .49 .89 .82 .76 .51 .44 .3.9 .80 .72 .67

(Z2 -z1) and (z3- z1) follow a bivariate normal with means --T variances 2, and
correlation + 2. The probability that both variates exceed zero is read from tables
of the bivariate normal distribution. The higher P's necessitate numerical inte-
gration.

The probability P is shown on the left side of table V for p = 2, 3, 4; p = 0.9,
0.7, 0.5 and 0.3; and n' = (n - p - 1) = 8, 32. Since Pvy takes only the two
values p and 0, the quantity P is also the mean value of p/p, the same quantity
as tabulated in tables III and IV. Fixed values of n' rather than n were used for
convenience in calculation.

For the higher values of p, there is relatively little chance of failing to pick the
best variate even with n' = 8, that is, with sample sizes of the order of 12. For p =
0.5 there is an appreciable loss in correlation with the smaller sample, but practical-
ly none with the larger sample. For p = 0.3 there is some loss even with the larger
sample, which has about 36 observations.
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The right side of table V shows the average value of p/p when all x-variates
are retained, as calculated by the approximate method given in the previous sec-
tion. So far as it goes, the comparison supports the practice of attempting to dis-
card the x-variates that do not seem to contribute to the correlation, since in all
cases in which there is any appreciable loss, it is greater on the right side of the
table.

12. Further problems
There is evidently much to be learned about the properties of a least squares in-

dex computed from an initial sample, as it affects the gain in y that may be ex-
pected from the use of the index for selection. The analysis should also be under-
taken for indices that are computed by the use of estimated components of vari-
ance. The work of Bartlett [9] and Nanda [101 on this problem indicates its com-
plexity and shows that the effective size of the initial sample is determined mainly
by the number of varieties, rather than by the amount of replication for each
variety. In this section a few additional problems are mentioned.

One concerns selection from nonnormal populations. The general theorem on
optimum selection does not require normality. The two principal results which it
provides are (i) q(x) is the best selection index and (ii) the gain in y is equal to that
in -q. Consequently, in setting up a selection program in a population that is non-
normal, we should attempt to find out the shape of the regression t7(x) of y on the
x's, and to study the frequency distribution of x7(x) in the unselected population.
Although the formula z(a)ao,/a for the gain in 7i due to selection holds only if 7X
is normally distributed, the correct formula is easily found if the frequency dis-
tribution of 71 is known.

In view of the widespread assumption of normality in applications, an investi-
gation of the consequences of this assumption in nonnormal populations would also
be worthwhile. In general, a linear index will not be the best index, and predictions
of the expected gain in y, based on normal theory, are likely to be in error. Un-
fortunately it cannot be taken for granted that a moderate departure from nor-
mality will have little effect. This may be so if selection is not intense and y has
only a small correlation with the x's, so that progress is slow. But in intense selec-
tion the gains depend primarily on the shapes of the tails of frequency distribu-
tions. As is well known, a frequency curve which looks quite similar to the normal
curve may differ greatly in its tail. A combination of theoretical investigations with
sampling experiments on natural populations is suggested.

Secondly, how accurately can the gain due to selection be estimated from given
initial data? This question is important for policy making in plant and animal im-
provement, particularly at the present time, when the prospects of a steady in-
crease in the world production of food are the subject of much study. Often, a pro-
gram of selection is only one of a number of feasible means for improving quality
or quantity, and its expected gains must be compared with similar estimates for
other approaches. For a multivariate normal population, the expected gain in y
is p,,o,,z(a)/a. The standard error of the estimate of this quantity from an initial
sample has been given by Nanda [10], following earlier work by Bartlett [9], for
the type of estimation that arises in plant selection. For practical purposes this
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standard error must be regarded as a lower limit to the effective error, since dis-
turbances due to nonnormality and to time changes in the population undergoing
selection will presumably be present. Moreover, the estimated gain itself is the
gain that would be attained if the true regression were known, and some reduction
in this estimate to take account of sampling errors in the index may be required,
A third problem of a more specialized type arises because it is not always prac-

ticable to use a selection index in the best way. The optimum rule is to select all
candidates for which q > k. When selection is made from small samples to fulfill
some specific purpose, the number of candidates for which q > k will vary from
sample to sample. In some cases, however, each sample must provide a known
quota of successful candidates. Consequently, we impose the restriction that the
number selected from the i-th sample is to be ri. This restriction decreases the ex-
pected gain in y and changes the mathematical aspects of the problem. The changes
are easily made if there is only a single stage of selection. For the multivariate nor-
mal case, with ri constant, the result is to replace the factor z(a)/a by the factor
a(r, n), which is the average value of the largest r out of a standardized normal
sample of size n. The extension to two stage sampling presents difficulties.

In this paper we have considered that the purpose of selection is to maximize
the mean value of y while retaining a specified fraction a of the members of the
original population. Birnbaum [11] and Birnbaum and Chapman [12] investigate
the related problem of maximizing the fraction of the population that is retained,
subject to the condition that the mean value of y in the selected universe has some
preassigned value. For a multivariate normal population, they show that trunca-
tion by means of the linear regression of y on the x's is optimum for this prob-
lem also.

In conclusion, these problems may leave the impression, not incorrectly, that
more issues have been raised than solved in this paper. The topic of selection ap-
pears to be one where the applications have run somewhat ahead of their theoreti-
cal basis, and it may be anticipated that any new advances in theory will quickly
be utilized.
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