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Improvement Dynamics in Games with Strategic

Complementarities∗

Nikolai S. Kukushkin† Satoru Takahashi‡ Tetsuo Yamamori§

Abstract

In a finite game with strategic complementarities, every strategy profile is con-

nected to a Nash equilibrium with a finite individual improvement path. If, addi-

tionally, the strategies are scalar, then every strategy profile is connected to a Nash

equilibrium with a finite individual best response improvement path.
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namics, Game with strategic complementarities
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1 Introduction

Learning and adaptation in strategic games is an important and interesting topic, attract-

ing much attention (Milgrom and Roberts, 1990, 1991; Young, 1993; Kandori and Rob,

1995; Monderer and Shapley, 1996; Milchtaich, 1996; Fudenberg and Levine, 1998; Fried-

man and Mezzetti, 2001; Kukushkin, 2004). Quite often, the analysis of sophisticated

scenarios involving random moves crucially depends on simple properties of the game,

expressed in terms of improvement paths. It is essential, therefore, to understand when

we can expect which property to hold.

For instance, when Young (1993) found the importance of the condition that every

strategy profile should be connected to a Nash equilibrium with a best response path,

he was unable to point out a single natural class of games where the property had been

established. Since then, much work has been done; in particular, that property holds in

every finite potential game as defined by Monderer and Shapley (1996), who provide quite

a list of such games. Still, we cannot say that the subject is thoroughly investigated.

Convergence properties of improvement dynamics in games with strategic complemen-

tarities have been considered since the very beginning: Topkis (1979) and Vives (1990)

showed that every best response improvement path starting from a certain region in

the outcomes space eventually reaches a Nash equilibrium. Milgrom and Roberts (1990)

studied rather general adaptive scenarios without explicitly considering their convergence.

Kandori and Rob (1995) established the convergence to a Nash equilibrium of every best

response path in every finite, symmetric, and strictly supermodular game with scalar

strategies; Kukushkin (2004) established the same property of best response improve-

ment paths in games with additive aggregation. Friedman and Mezzetti (2001) showed

that every strategy profile in a finite game with strategic complementarities and one-

dimensional strategy sets can be connected to a Nash equilibrium with an improvement

path.

This paper strengthens the last result considerably: it turns out that Friedman and

Mezzetti’s statement holds in a multidimensional context as well, whereas their conditions

ensure the possibility to reach a Nash equilibrium with a best response improvement path.

Both extensions are more than purely technical hair-splitting. Although most games

with strategic complementarities in the literature have scalar strategies, multidimensional

models are also important: e.g., in the context of industrial organization, it is natural for

a firm to choose several parameters (Vives, 2003, Section 4.4). The difference between

better response and best response dynamics is crucial, e.g., for the scenario of Young

(1993) mentioned above.
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Strategic complementarities are interpreted in the broadest sense available in the litera-

ture: we assume single crossing (Milgrom and Shannon, 1994) and pseudosupermodularity

(Agliardi, 2000) conditions. The proofs use the technique of binary relations suggested in

Kukushkin (1999, 2004).

The attention here is restricted to finite games. Similar results can be obtained for

the infinite (topological) case too; however, the proofs need rather heavy tools such as

the notion of improvement paths parameterized with transfinite numbers, outlined in

Kukushkin (2000).

Section 2 contains basic formal definitions. Section 3 reproduces conditions usually

associated with the term “strategic complementarities.” Section 4 contains the main

theorems and examples showing the impossibility of easy generalizations. The proofs are

deferred to Section 5.

2 Basic Notions

A strategic game is defined by a finite set of players N , and strategy sets Xi and ordinal

utility functions ui on X =
∏

i∈N Xi for all i ∈ N . In this paper, we assume that each Xi

is a finite set.

For every player i ∈ N , the best response correspondence Ri(·) is defined in the usual

way:

Ri(x−i) = {yi ∈ Xi| ∀zi ∈ Xi [ui(yi, x−i) ≥ ui(zi, x−i)]},

where x−i ∈ X−i =
∏

j∈N\{i} Xj.

We introduce a number of binary relations on X (y, x ∈ X and i ∈ N):

y ⊲i x ⇐⇒ [y−i = x−i & ui(y) > ui(x)];

y ⊲ x ⇐⇒ ∃i ∈ N [y ⊲i x];

y ⊲∗i x ⇐⇒ [y−i = x−i & ui(y) > ui(x) & yi ∈ Ri(x−i)];

y ⊲∗ x ⇐⇒ ∃i ∈ N [y ⊲∗i x].

A strategy profile x ∈ X is a Nash equilibrium if and only if x is a maximizer for ⊲,

i.e., if y ⊲ x is impossible for any y ∈ X; equivalently, x ∈ X is a Nash equilibrium if and

only if x is a maximizer for ⊲∗.

An (individual) improvement path is a finite or infinite sequence {xk}k=0,1,..., such that

xk+1 ⊲ xk whenever k ≥ 0 and xk+1 is defined. A best response improvement path is a
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finite or infinite sequence {xk}k=0,1,..., such that xk+1 ⊲∗ xk whenever k ≥ 0 and xk+1 is

defined.

Putting together the terminology of Monderer and Shapley (1996), Milchtaich (1996),

and Friedman and Mezzetti (2001), we introduce the following definitions.

A game has the finite improvement path (FIP) property if there exists no infinite im-

provement path. A game has the finite best response improvement path (FBRP) property

if there exists no infinite best response improvement path. A game has the weak FIP

property if, for every x ∈ X, there exists a finite improvement path {x0, . . . , xm} such

that x0 = x and xm is a Nash equilibrium, i.e., if every strategy profile is connected to a

Nash equilibrium with a finite improvement path. A game has the weak FBRP property

if, for every x ∈ X, there exists a finite best response improvement path {x0, . . . , xm}

such that x0 = x and xm is a Nash equilibrium.

It is easy to see that the following chain of implications holds:

FIP ⇒ FBRP ⇒ weak FBRP ⇒ weak FIP.

Each of these properties characterizes the global convergence property in a correspond-

ing class of learning and adaptive dynamics. A stationary Markov process on X is said to

be a better-reply (respectively best-reply) dynamic if (1) for each strategy profile x that

is not a Nash equilibrium, there exists x′ such that x′ ⊲ x (respectively x′ ⊲∗ x) and the

one step transition probability from x to x′ is positive, and (2) every Nash equilibrium

is absorbing. It is easy to show that a game has the FIP (respectively FBRP) property

if and only if, under any better-reply (respectively best-reply) dynamic, the sequence of

strategy profiles from any initial strategy profile almost surely converges to a Nash equi-

librium. Alternatively, if we assume those dynamics to have full support, i.e., for any x′

such that x′ ⊲ x (respectively x′ ⊲∗ x), the one step transition probability from x to x′ is

positive, then we obtain the weak versions of the above statements. See Friedman and

Mezzetti (2001), Kandori and Rob (1995), and Milchtaich (1996) for examples of better-

and best-reply dynamics.

3 Games with Strategic Complementarities

For the term to be applicable to a game, the latter must satisfy several requirements,

which can be formalized in somewhat different ways.

First, we assume that each Xi is a lattice; therefore, X and every X−i are lattices too.
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Second, there must be a complementarity condition on strategies of different players.

The basic choice is between Topkis’s (1979) cardinal increasing differences condition:

[yi ≥ xi & y−i ≥ x−i] ⇒ [ui(y) − ui(xi, y−i) ≥ ui(yi, x−i) − ui(x)] (3.1)

and Milgrom and Shannon’s (1994) ordinal single crossing condition:

[yi ≥ xi & y−i ≥ x−i] ⇒ [sign(ui(y) − ui(xi, y−i)) ≥ sign(ui(yi, x−i) − ui(x))], (3.2)

where i ∈ N , xi, yi ∈ Xi, x−i, y−i ∈ X−i, and sign(t) is −1 if t < 0, 0 if t = 0, and 1 if

t > 0 (although subtraction is used in the second definition, the property itself is purely

ordinal).

Finally, if strategies of a given player i are multidimensional, there must be a com-

plementarity condition on different dimensions. Here we have even three versions: the

cardinal supermodularity condition

ui(xi ∨ yi, z−i) − ui(xi, z−i) ≥ ui(yi, z−i) − ui(xi ∧ yi, z−i); (3.3)

the ordinal quasisupermodularity condition (Milgrom and Shannon, 1994)

sign(ui(xi ∨ yi, z−i) − ui(xi, z−i)) ≥ sign(ui(yi, z−i) − ui(xi ∧ yi, z−i)); (3.4)

the, also ordinal, pseudosupermodularity condition (Agliardi, 2000)

sign(max{ui(xi ∨ yi, z−i) − ui(xi, z−i), ui(xi ∨ yi, z−i) − ui(yi, z−i)}) ≥

sign(max{ui(xi, z−i) − ui(xi ∧ yi, z−i), ui(yi, z−i) − ui(xi ∧ yi, z−i)}). (3.5)

Again, i ∈ N , xi, yi ∈ Xi, and z−i ∈ X−i; sign(t) has the same meaning as above.

The following implications are easy to check: (3.1) ⇒ (3.2); (3.3) ⇒ (3.4) ⇒ (3.5).

Lemma 3.1. If a utility function ui satisfies (3.2) and (3.5) for each xi, yi ∈ Xi and

x−i, y−i, z−i ∈ X−i, then

[y−i ≥ x−i & yi ∈ Ri(y−i) & xi ∈ Ri(x−i)] ⇒ [yi ∨ xi ∈ Ri(y−i) & yi ∧ xi ∈ Ri(x−i)].

The statement means that Ri(x−i) is a sublattice of Xi (pick y−i = x−i) and Ri(·) is

increasing w.r.t. the strong set order defined by Veinott (see Topkis, 1979).

Proof. Indeed, xi ∈ Ri(x−i) implies ui(x) ≥ ui(xi ∧ yi, x−i) and ui(x) ≥ ui(yi, x−i), hence,

by (3.5), ui(xi ∨ yi, x−i) ≥ ui(yi, x−i), hence, by (3.2), ui(xi ∨ yi, y−i) ≥ ui(y), hence

xi ∨ yi ∈ Ri(y−i). On the other hand, yi ∈ Ri(y−i) implies that ui(y) ≥ ui(xi ∨ yi, y−i),

hence, by (3.2), ui(yi, x−i) ≥ ui(xi∨yi, x−i), hence, by (3.5), ui(xi∧yi, x−i) ≥ ui(x), hence

xi ∧ yi ∈ Ri(x−i).
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Remark. The lemma is obviously inspired by Proposition 3 of Agliardi (2000), but is

formally independent of it.

All the above properties admit strict versions; we only use one of them. A utility

function ui is strictly pseudosupermodular if it satisfies (3.5) and, besides, whenever xi

and yi are incomparable and the right hand side of (3.5) is 0, the left hand side is 1 (when

xi and yi are comparable, (3.5) becomes an equality).

Remark. In a sense, a generic pseudosupermodular function on a finite set is strictly

pseudosupermodular.

Lemma 3.2. If a utility function ui is strictly pseudosupermodular and satisfies (3.2) for

each xi, yi ∈ Xi and x−i, y−i ∈ X−i, then

[y−i ≥ x−i & yi ∈ Ri(y−i) & xi ∈ Ri(x−i)] ⇒ [yi ≤ xi or yi ≥ xi]

(i.e., Ri(x−i) ∪ Ri(y−i) is a chain).

Proof. Suppose to the contrary that xi and yi are incomparable. Lemma 3.1 implies

xi ∧ yi ∈ Ri(x−i); therefore, the right hand side of (3.5) with z−i = x−i is 0, hence the left

hand side must be 1, i.e., ui(xi ∨ yi, x−i) > ui(yi, x−i). Now (3.2) implies ui(xi ∨ yi, y−i) >

ui(y), contradicting yi ∈ Ri(y−i).

4 Theorems and Examples

Theorem 1. If a game satisfies (3.2) and (3.5), then it has the weak FIP property.

If all strategies are scalar (i.e., each Xi is a chain), then (3.5) is satisfied automatically

and may be dropped. Otherwise, it is essential as the following example shows.

Example 1. Let us consider a two person game with X1 = X2 = {(0,0), (0,1), (1,0),

(1,1)} ⊆ IR2 (with the standard order) and utilities described by these “matrices” (where

player 1 chooses a 2×2 “block,” and player 2 a position in the block; the axes are directed

upwards and to the right):
[

(9, 8) (6, 6)

(6, 6) (8, 9)

] [

(6, 6) (7, 7)

(2, 2) (6, 6)

]

[

(6, 6) (2, 2)

(7, 7) (6, 6)

] [

(8, 9) (6, 6)

(6, 6) (9, 8)

]
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Although the statement of Lemma 3.1 (as well as the condition (3.1)) holds for the

game, the condition (3.5) does not. There exist two Nash equilibria: 〈(0, 0), (0, 0)〉 and

〈(1, 1), (1, 1)〉. However, no strategy profile from {(0, 1), (1, 0)} × {(0, 1), (1, 0)} can be

connected to an equilibrium with an improvement path.

Theorem 2. If each strategy set Xi is a chain, except one, say X1, which is a lattice,

(3.2) holds for all i ∈ N , and (3.5) for i = 1, then the game has the weak FBRP property.

Example 2. Let us consider a two person game with the same strategy sets as in Exam-

ple 1, but with different utilities (depicted under the same conventions):

[

(4, 0) (3, 3)

(2, 2) (0, 4)

] [

(3, 2) (6, 6)

(0, 0) (2, 3)

]

[

(2, 3) (0, 0)

(6, 6) (3, 2)

] [

(0, 4) (2, 2)

(3, 3) (4, 0)

]

The game satisfies both conditions of Theorem 1; actually, even strict versions of (3.1) and

(3.3). However, no strategy profile from {(0, 1), (1, 0)} × {(0, 1), (1, 0)} can be connected

to an equilibrium with a best response improvement path. (The best responses of both

players are underlined in the “matrix.”)

Theorem 3. If, in a two person game, X1 is a lattice, X2 is a chain, (3.2) holds for

both i, and u1 is strictly pseudosupermodular, then the game has the FBRP property.

Remark. If both Xi are chains, the FBRP property immediately follows from Theorem 1

of Kukushkin (2004): condition (2) there is even weaker than our (3.2).

Example 3. Let us consider a two person game with X1 = {(0,0), (0,1), (1,0), (1,1)} ⊆

IR2, X2 = {0, 1} ⊆ IR (with the standard order) and utilities described by these “matrices”

(where player 1 chooses a block enclosed by brackets and player 2 a position in the block;

the axes are directed upwards and to the right):

[

(2, 3) (3, 2)
] [

(2, 2) (3, 3)
]

[

(3, 3) (2, 2)
] [

(3, 2) (2, 3)
]

The condition (3.1) holds for both players; u1 is supermodular, but not strictly pseudo-

supermodular. There is a best response improvement cycle:

〈(1, 0), 1〉 →1 〈(0, 1), 1〉 →2 〈(0, 1), 0〉 →1 〈(1, 0), 0〉 →2 〈(1, 0), 1〉.
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Example 4. Let us consider a three person game with Xi = {0, 1} for all i and utilities

ui(x) = −
∣

∣xi − xϕ(i)

∣

∣, where ϕ(1) = 2, ϕ(2) = 3, ϕ(3) = 1. The condition (3.1) obviously

holds; all strategy sets are chains. However, there is a best response improvement cycle:

〈1, 0, 1〉 →1 〈0, 0, 1〉 →2 〈0, 1, 1〉 →3 〈0, 1, 0〉 →1 〈1, 1, 0〉 →2 〈1, 0, 0〉 →3 〈1, 0, 1〉.

Finally, the example from Section 7.6 of Kukushkin (2004) shows that we cannot

expect the FIP property even in a two person game with scalar strategies and strictly

increasing differences.

5 Proofs

5.1 Proof of Theorem 1

To produce an improvement path from an arbitrary strategy profile to an equilibrium, we

impose the following rules: (1) If, at a current profile, there exist profitable deviations

upwards (i.e., with yi > xi), one of them must be chosen. (2) Otherwise, one of the most

profitable (for the deviating player) deviations downwards (with yi < xi) must be chosen.

(3) If neither (1) nor (2) can be applied, stop. It turns out that a path abiding by these

rules cannot cycle and only stops at a Nash equilibrium.

Let us introduce some notation:

X+ = {x ∈ X| ∃y ∈ X[y > x & y ⊲ x]}; X− = X \ X+;

R−
i (x) = {yi ∈ Xi| yi ≤ xi & ∀zi ∈ Xi [zi ≤ xi ⇒ ui(yi, x−i) ≥ ui(zi, x−i)]};

y ⊲⊲i x ⇐⇒
[

y ⊲i x &
(

yi > xi or [x ∈ X− & yi ∈ R−
i (x)]

)]

;

y ⊲⊲ x ⇐⇒ ∃i ∈ N [y ⊲⊲i x];

y ≻ x ⇐⇒ [(y ∈ X− & x ∈ X+) or (x, y ∈ X+ & y > x) or (x, y ∈ X− & y < x)].

It is easy to check that ≻ is irreflexive and transitive. By definition, y ⊲⊲ x ⇒ y ⊲ x; an

improvement path abides by the rules if and only if xk+1 ⊲⊲ xk for all relevant k and the

path either is infinite or ends at a maximizer for ⊲⊲.

Lemma 5.1.1. If y ⊲⊲ x, then y ≻ x.

Proof. The only point worth discussing is the incompatibility of x ∈ X− and y ⊲⊲j x with

y ∈ X+. Suppose the contrary: there are i ∈ N and zi > yi such that

ui(zi, y−i) > ui(y). (5.1)
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Since x ∈ X−, yj < xj. If i 6= j, then yi = xi and y−i < x−i. Now (5.1) and (3.2) imply

ui(zi, x−i) > ui(x), contradicting x ∈ X−.

Thus, we are led to i = j, hence y−i = x−i. Now yi ∈ R−
i (x) implies ui(y) ≥

ui(zi ∧xi, x−i), hence, by (5.1) and (3.5), ui(zi ∨xi, x−i) > ui(x), hence zi ∨xi > xi, again

contradicting x ∈ X−.

Lemma 5.1.2. If x ∈ X is a maximizer for ⊲⊲, then x is a Nash equilibrium (i.e., a

maximizer for ⊲).

Proof. Suppose the contrary: x ∈ X is a maximizer for ⊲⊲ (i.e., there is no profitable

deviation either upwards or downwards), but not a Nash equilibrium, i.e., there exist

i ∈ N and yi ∈ Xi such that ui(yi, x−i) > ui(x) (then yi must be incomparable with xi).

We have xi ∧ yi < xi, hence ui(xi ∧ yi, x−i) ≤ ui(x) < ui(yi, x−i); similarly, xi ∨ yi > xi,

hence ui(xi ∨ yi, x−i) ≤ ui(x) < ui(yi, x−i). Now we have a contradiction with (3.5).

Lemma 5.1.1 implies that every improvement path abiding by the rules ends at a max-

imizer for ⊲⊲. Lemma 5.1.2 implies that the maximizer is a Nash equilibrium. Theorem 1

is proven.

5.2 Proof of Theorem 2

We will reason similarly to the proof of Theorem 1, considering best response improvement

paths abiding by the following rules: (1) If, at a current profile, x1 /∈ R1(x−1), then a

best response improvement by player 1 must be implemented, upwards (with y1 > x1)

if possible; otherwise, we choose any best response improvement by player 1 if there is

a player i 6= 1 with a possible best response improvement upwards (yi > xi), but try to

find a best response improvement y1 < x1 first if there is no such i. (2) If x1 ∈ R1(x−1)

and there exist best response improvements upwards (with yi > xi), one of them must be

chosen. (3) Otherwise, one of the best response improvements downwards (with yi < xi)

must be chosen. (4) If none of (1), (2), (3) can be applied, stop. Again, a path abiding

by the rules cannot cycle and only stops at a Nash equilibrium.

Let us introduce some notation:

X1 = {x ∈ X| ∃y > x[y ⊲∗1 x] or
(

x1 ∈ R1(x−1) & ∃y > x[y ⊲∗ x]
)

};

X2 = {x ∈ X| 6 ∃y > x[y ⊲∗ x] &
(

x1 ∈ R1(x−1) or ∃y < x[y ⊲∗1 x]
)

};

X0 = X \ (X1 ∪ X2);
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y ⊲⊲i x ⇐⇒ [y ⊲∗i x & (x1 /∈ R1(x−1) ⇒ i = 1) &

(x ∈ X1 ⇒ yi > xi) & (x ∈ X2 ⇒ yi < xi)];

y ⊲⊲ x ⇐⇒ ∃i ∈ N [y ⊲⊲i x];

y ≻ x ⇐⇒ [(y ∈ Xk & x ∈ Xh & k > h) or

(x, y ∈ X1 & y > x) or (x, y ∈ X2 & y < x)].

It is easy to check that ≻ is irreflexive and transitive. By definition, y ⊲⊲ x ⇒ y ⊲∗ x;

a best response improvement path abides by the rules if and only if xk+1 ⊲⊲ xk for all

relevant k and the path either is infinite or ends at a maximizer for ⊲⊲.

The next lemma describes, in a compact way, the following properties of our paths.

From x ∈ X0, we pass to X1 ∪ X2 and never return back. From x ∈ X1, we always go

upwards. From x ∈ X2, we always go downwards and never come to X0 ∪ X1.

Lemma 5.2.1. If y ⊲⊲j x (j ∈ N), then y ≻ x.

Proof. (A) Let x ∈ X2, then y < x, so y ≻ x provided y ∈ X2. Suppose, to the contrary,

that there are i ∈ N and zi > yi such that

yi /∈ Ri(y−i) ∋ zi. (5.2)

If i = j (hence y−i = x−i), then yi ∈ Ri(y−i) and (5.2) is impossible. Thus, i 6= j, hence

yi = xi < zi and y−i < x−i. Supposing yi ∈ Ri(x−i), we would have yi = yi ∧ zi ∈ Ri(y−i)

by Lemma 3.1, contradicting (5.2); therefore, yi = xi /∈ Ri(x−i). Let x′
i ∈ Ri(x−i); by

Lemma 3.1 and (5.2), y′
i = x′

i ∨ zi ∈ Ri(x−i). Since y′
i ≥ zi > yi and (y′

i, x−i) ⊲∗ x, we have

x /∈ X2, contradicting our assumption. So the first condition in the definition of X2 is

fulfilled.

If y1 ∈ R1(y−1), then y ∈ X2; otherwise, j 6= 1, hence y1 = x1 ∈ R1(x−1) and

y−1 < x−1. Picking y′
1 ∈ R1(y−1), we denote z1 = y′

1 ∧ y1; now z1 < y1 and z1 ∈ R1(y−1)

by Lemma 3.1. Therefore, (z1, y−1) ⊲∗1 y, hence y ∈ X2.

(B) It is easy to check that x ∈ X0 implies x1 /∈ R1(x−1) (otherwise, either there is

y ⊲∗ x with y > x or not). Therefore, x ∈ X0 implies j = 1, hence y1 ∈ R1(x−1) = R1(y−1),

hence y /∈ X0, hence y ≻ x.

(C) Finally, let x ∈ X1; then y > x, so y ≻ x unless y ∈ X0. If y1 ∈ R1(y−1), then

y /∈ X0 and we are home; otherwise, j 6= 1, hence y1 = x1 ∈ R1(x−1) and y−1 > x−1.

Picking y′
1 ∈ R1(y−1), we denote z1 = y′

1∨y1; now z1 > y1 and z1 ∈ R1(y−1) by Lemma 3.1.

Therefore, (z1, y−1) ⊲∗1 y, hence y ∈ X1.
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Lemma 5.2.2. If x ∈ X is a maximizer for ⊲⊲, then x is a Nash equilibrium (i.e., a

maximizer for ⊲∗).

Proof. Let x1 /∈ R1(x−1); picking y1 ∈ R1(x−1) appropriately, we obtain (y1, x−1) ⊲⊲1 x,

contradicting our assumption. If x1 ∈ R1(x−1) and there are i ∈ N and yi > xi such

that (yi, x−i) ⊲∗i x, then x ∈ X1 and (yi, x−i) ⊲⊲i x. If x1 ∈ R1(x−1) and there is no best

response improvement upwards, then x ∈ X2; if x is not a Nash equilibrium, there must

be a best response improvement downwards (since all Xi, i 6= 1, are chains): y ⊲∗ x, y < x,

but then y ⊲⊲ x.

The end of the proof is exactly the same as in Theorem 1.

Remark. The proof remains valid without (3.2) and (3.5) provided the statement of

Lemma 3.1 holds for every i ∈ N . Unlike Theorem 1 (see Example 1), Theorem 2 only

hinges on the monotonicity of the best responses. To the best of our knowledge, however,

there is no way to derive the monotonicity without (3.2) and (3.5).

5.3 Proof of Theorem 3

Let {x0, x1, . . . , xm = x0} be a best response improvement cycle. All xk
2 (k = 0, 1, . . . , m)

are linearly ordered, hence, by Lemma 3.2, all xk
1 are linearly ordered too. Without

restricting generality, we may assume that x1 ⊲∗1 x0 and x2 ⊲∗2 x1, hence R2(x
0
1) ∋ x0

2 =

x1
2 /∈ R2(x

1
1), x2

2 ∈ R2(x
1
1), R1(x

1
2) ∋ x1

1 = x2
1 /∈ R1(x

2
2), and x3

1 ∈ R1(x
2
2), and that x1

1 = x2
1

is maximal among all xk
1. Applying Lemma 3.1 with i = 2 and x−i = x0

1 ≤ x1
1 = y−i, we

obtain x0
2 < x2

2; now applying the same lemma with i = 1 and x−i = x0
2 < x2

2 = y−i, we

obtain x1
1 < x3

1, which contradicts our maximality assumption.
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