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Abstract: With the miniaturization of electronic devices, electronic packaging has become increasingly
precise and complex, which presents a significant challenge in terms of heat dissipation. Electrically
conductive adhesives (ECAs), particularly silver epoxy adhesives, have emerged as a new type
of electronic packaging material, thanks to their high conductivity and stable contact resistance.
However, while there has been extensive research on silver epoxy adhesives, little attention has been
paid to improving their thermal conductivity, which is a critical requirement in the ECA industry. In
this paper, we propose a straightforward method for treating silver epoxy adhesive with water vapor,
resulting in a remarkable improvement in thermal conductivity to 9.1 W/(m·K), three times higher
than the sample cured using traditional methods (2.7 W/(m·K)). Through research and analysis, the
study demonstrates that the introduction of H2O into the gaps and holes of the silver epoxy adhesive
increases the path of electron conduction, thereby improving thermal conductivity. Furthermore, this
method has the potential to significantly improve the performance of packaging materials and meet
the needs of high-performance ECAs.

Keywords: vapor; silver epoxy adhesive; thermal conductivity; electrical conductivity; silver particles

1. Introduction

With the miniaturization of electronic equipment, electronic packaging has become
increasingly complex and precise [1–4]. The use of electrically conductive adhesives (ECAs),
which are thermoset polymers filled with metal fillers, is rapidly expanding due to their
low cost and processing temperature [3,5]. ECAs are extensively used in the assembly and
packaging of electronic devices such as high-density multilayer interconnect substrates
and high-speed, high-frequency circuits [1,6–10]. Among all of the ECAs, silver epoxy
adhesives are most commonly used because of their high conductivity and stable contact
resistance [11–14].

In recent years, there has been a growing interest in the development of silver epoxy
adhesives with improved electrical conductivity [15–17]. The electrical conductivity of
these conductive compositions can be modified by selecting the proper size, shape, and
type of filler [18–20]. However, few studies have focused on the thermal conductivity of
these adhesives, which is a critical requirement for ECA industries, to address the heat
dissipation problems generated by highly integrated circuits. For instance, in the study
conducted by Cui [21], an 85 wt% silver powder content was used to prepare a silver
epoxy adhesive. However, the resulting thermal conductivity in the vertical direction was
found to be only 5 W/(m·K) which is insufficient for practical applications. Therefore, the
development of more thermal conduction pathways is expected to further improve the
thermal conductivity of silver epoxy adhesives.
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Taking into account the ability of vapor to penetrate gaps and establish channels for
the transfer of thermal and electrical energy, we devised a simple method for enhancing
the thermal and electrical conductivity of silver epoxy adhesive by treating it with water
vapor. Additionally, we analyzed the mechanism of vapor penetration, and improved the
thermal and electrical conductivity. Moreover, it is planned to extend this technique to
other electrically conductive adhesives (ECAs) to improve their thermal conductivity.

2. Experiment
2.1. Materials

In our research, the filler Ag powder (6 µm, thickness of 200–400 nm, flake) was
obtained from Xinshengfeng Inc., Al2O3 powder (1 µm, sphere) was obtained from Baitu
Inc., and epoxy resin (bisphenol A epoxy resin E-51) was supplied by Macklin Inc. An-
camine 1618, used as a curing agent, was purchased from Air Products and Chemicals
Inc., and 3-Aminopropyltriethoxysilane, the coupling agent, was obtained from Meryer
Chemical Technology Co., Ltd. In addition, the 2-Methylimidazole, obtained from Macklin
Inc., and Allyl glycidyl ether, obtained from Runxiang Inc., were used as catalyst and
diluent respectively.

2.2. Preparation of the Silver Epoxy Adhesive

To prepare the silver epoxy adhesive, a mixture of epoxy resin, curing agent, coupling
agent, catalyst, and diluent was created in the proportion of 100:100:4:2:20. Ag powder
(85 wt%) was added to the mixture and thoroughly mixed. The resulting adhesive was
further mixed using a homogenizer at a speed of 2000 r/min for 5 min. To enhance its
curing performance, the adhesive was cured in a vacuum drying oven at 80 ◦C for 40 min
and then at 120 ◦C for 20 min. This adhesive was labeled Ag-25, and had a diameter
of 50 mm and a thickness of 1 mm. To investigate the effect of vapor treatment on the
adhesive, Ag-25 was subjected to vapor in the atmosphere at a temperature of 85 ◦C for
24 h, and the resulting adhesive was named Ag-85-Vapor (see Figure 1). Ag-25 was also
treated at a temperature of 85 ◦C without vapor as a control group, and this adhesive was
labeled Ag-85.

Polymers 2023, 15, x FOR PEER REVIEW 2 of 8 
 

 

found to be only 5 W/(m·K) which is insufficient for practical applications. Therefore, the 

development of more thermal conduction pathways is expected to further improve the 

thermal conductivity of silver epoxy adhesives. 

Taking into account the ability of vapor to penetrate gaps and establish channels for 

the transfer of thermal and electrical energy, we devised a simple method for enhancing 

the thermal and electrical conductivity of silver epoxy adhesive by treating it with water 

vapor. Additionally, we analyzed the mechanism of vapor penetration, and improved the 

thermal and electrical conductivity. Moreover, it is planned to extend this technique to other 

electrically conductive adhesives (ECAs) to improve their thermal conductivity. 

2. Experiment 

2.1. Materials 

In our research, the filler Ag powder (6 μm, thickness of 200–400 nm，flake) was 

obtained from Xinshengfeng Inc., Al2O3 powder (1 μm, sphere) was obtained from Baitu 

Inc., and epoxy resin (bisphenol A epoxy resin E-51) was supplied by Macklin Inc. An-

camine 1618, used as a curing agent, was purchased from Air Products and Chemicals 

Inc., and 3-Aminopropyltriethoxysilane, the coupling agent, was obtained from Meryer 

Chemical Technology Co., Ltd. In addition, the 2-Methylimidazole, obtained from Mack-

lin Inc., and Allyl glycidyl ether, obtained from Runxiang Inc., were used as catalyst and 

diluent respectively. 

2.2. Preparation of the Silver Epoxy Adhesive 

To prepare the silver epoxy adhesive, a mixture of epoxy resin, curing agent, cou-

pling agent, catalyst, and diluent was created in the proportion of 100:100:4:2:20. Ag pow-

der (85 wt%) was added to the mixture and thoroughly mixed. The resulting adhesive was 

further mixed using a homogenizer at a speed of 2000 r/min for 5 min. To enhance its 

curing performance, the adhesive was cured in a vacuum drying oven at 80 °C for 40 min 

and then at 120 °C for 20 min. This adhesive was labeled Ag-25, and had a diameter of 50 

mm and a thickness of 1 mm. To investigate the effect of vapor treatment on the adhesive, 

Ag-25 was subjected to vapor in the atmosphere at a temperature of 85 °C for 24 h, and 

the resulting adhesive was named Ag-85-Vapor (see Figure 1). Ag-25 was also treated at a 

temperature of 85 °C without vapor as a control group, and this adhesive was labeled Ag-

85. 

 

Figure 1. The schematic of treating the silver epoxy adhesive with vapor. 

2.3. Characterization 

Figure 1. The schematic of treating the silver epoxy adhesive with vapor.

2.3. Characterization

The fracture surface was analyzed using a scanning electron microscope (SEM, SU8230,
HITACHI, Ltd., Tokyo, Japan). The composition was determined through X-ray diffraction
(XRD; D8 Advance, Bruker, Germany). The content of H2O was measured using differential
scanning calorimetry (DSC, METTLER TOLEDO, Ltd., Bussigny, Switzerland) and thermal
gravimetric analysis (Discovery TGA 550, TA Instruments, Ltd., New Castle, DE, USA).
Contact angle tests were performed using the DSA25 instrument (KRUSS, Ltd., Hamburg,
Germany), and the porosity tests were conducted using the AutoPore V9620 instrument
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(McMuriartic, Ltd., Norcross, GA, USA). The thermal conductivity of the cured adhesive
was tested using the LW-9389 tester (LONG WIN SCIENCE & TECHNOLOGY Co., Ltd.,
Shandong, China) with two copper heating plates each measuring 1 inch square. The
electrical conductivity was tested using a Four-probe Tester (ST-2258C, Suzhou jingge
Electronics Co. Ltd., Suzhou, China). This technique is commonly used in industry for
measuring the volume resistivity of samples.

3. Results and Discussion

Figure 2 presents the results of thermal conductivity and electrical conductivity tests
conducted on silver epoxy adhesive after three different curing treatments. As shown
in Figure 2a, the thermal conductivity of Ag-25 and Ag-85 is similar. After treatment
with the water vapor, the Ag-85-Vapor exhibits excellent thermal conductivity, reach-
ing 9.1 W/(m·K), which is much higher than that of Ag-25 and Ag-85. This value is
higher than the thermal conductivity (3–7 W/(m·K)) reported in the literature for a similar
amount of silver powder [1,21,22]. Furthermore, the resistivity of Ag-85-Vapor is as low as
3.65 × 10−5 Ω·m, indicating significantly improved electrical conductivity. The improved
thermal conductivity of Ag-85-Vapor is also confirmed by infrared thermography, as shown
in Figure 2b.
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Figure 2. The property of silver epoxy adhesives (Epoxy matrix, Ag−25, Ag−85, and Ag−85-Vapor).
(a) The thermal conductivity and electrical conductivity of silver epoxy adhesives; (b) the infrared
images of the silver epoxy adhesive.

Comparing the XRD analysis of Ag-25, Ag-85, and Ag-85-Vapor, as depicted in Figure 3,
it is evident that all three samples exhibit the same phase composition, which is silver
powder, without any impurities. Despite undergoing vapor treatment, no new phase is
observed in Ag-85-Vapor, and the crystallinity of silver powder remains largely unchanged.
Therefore, it can be inferred that the remarkable improvement in thermal conductivity and
electrical conductivity of Ag-85-Vapor cannot be attributed to the formation of a new phase
or the increase in crystallinity of silver powder during high-temperature treatment.

Figure 4 illustrates the SEM morphology of Ag-25, Ag-85, and Ag-85-Vapor samples.
It is evident from Figure 4a,d that, in Ag-25, the silver powder sheets are not closely
overlapped and there are numerous pores between them, leading to relatively low thermal
conductivity and electrical conductivity, as shown in Figure 2. In contrast, after undergoing
high-temperature treatment, more sheets are overlapped in Ag-85 (Figure 4b,e) and Ag-
85-Vapor (Figure 4c,f), forming more heat conduction paths. The increase in the number
of paths facilitates the transmission of more electrons and phonons, resulting in a further
improvement in thermal and electrical conductivity. Additionally, some voids are still
present in Ag-85 and Ag-85-Vapor samples. Therefore, the filling of H2O between the voids
may be responsible for the noticeable difference in thermal conductivity and resistivity.
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Figure 4. The SEM morphology of the silver epoxy adhesives. (a,d) Ag-25; (b,e) Ag-85;
(c,f) Ag-85-Vapor.

To confirm the presence of H2O after the vapor treatment, the study utilized TG-
DSC and infrared spectroscopy for analysis. The TG-DSC results (Figure 5a) showed
that free water would evaporate before 110 ◦C and that more H2O volatilized in Ag-
85-Vapor. Comparing the results showed that under high-temperature vapor treatment,
approximately 1 wt% of H2O entered the silver adhesive pores. According to the literature,
the characteristic peaks of H2O in infrared absorption would be around 3300 cm−1 and
1600 cm−1 (Figure 5b) [23,24]. The infrared spectral analysis of Figure 5b indicated that Ag-
85-Vapor had a stronger characteristic peak of free water, signifying the existence of more
free water. The weight changes of Ag-85 and Ag-85-Vapor collected during the treatment
indicated that 1–2 wt% H2O entered the silver adhesive pores during the treatment, which
was consistent with the TG analysis results. The wettability test showed that the prepared
epoxy silver adhesive had better hydrophilicity, with Ag-85-Vapor exhibiting a smaller
wetting angle than Ag-85, indicating better hydrophilicity and easier access of H2O into
the silver adhesive pores. Additionally, Figure 5e reveals that there were nano-micropores
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present in the Ag-85, and that H2O could enter these micropores through gross capillary
action and remain there for a significant amount of time.
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(b) infrared spectrum; (c) weight variation with the treating time; (d) wettability test; (e) porosity test
of Ag−85.

Figure 5 shows that during the vapor treatment process, H2O can penetrate into the
gaps between silver sheets and significantly enhance the thermal and electrical conductivity
of silver glue. To confirm this, several control groups were tested and their results are
summarized in Table 1. The results of groups 1, 2, and 3 indicate that the coupling agent has
no direct influence on the change in thermal conductivity before and after vapor treatment.
On the other hand, group 4 shows that vapor treatment can effectively improve the thermal
conductivity of silver epoxy adhesive, while the thermal conductivity of composite adhesive
filled with Al2O3 is minimally affected. The superior thermal and electrical conductivity of
silver epoxy adhesive at low filler concentration can be attributed to the excellent electron
conductivity of Ag. The H2O existing between the sheets and voids allows electrons to pass
through, thus improving the conductivity of the composite material. In contrast, Al2O3 is a
covalent compound that is not conducive to electron transmission, which means that the
vapor in the gap cannot act as a bridge for electronic conduction, resulting in insignificant
improvement in thermal conductivity of its composite material [25]. These findings further
confirm that H2O plays a crucial role in improving the thermal and electrical conductivity
of silver epoxy adhesive, acting as a bridge for electronic conduction.
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Table 1. The thermal conductivity of epoxy adhesive containing different fillers and coupling agents,
treated with air and vapor at 85 ◦C, respectively.

NO Filler Coupling
Agent (wt%)

Filling Content
(wt%)

Filling Content
(vol%)

Thermal
Conductivity

(85 ◦C)
(W/(m·K))

Thermal
Conductivity
(85 ◦C-Vapor)

(W/(m·K))

1 Ag 0 85.7 40.67 3.32 ± 0.05 7.19 ± 0.04
2 Ag 1 86.4 42.09 3.32 ± 0.03 7.84 ± 0.03
3 Ag 3 86.8 42.93 3.19 ± 0.09 9.1 ± 0.08
4 Al2O3 0 86.7 69.09 1.55 ± 0.04 1.64 ± 0.06
5 Al2O3 1 87.2 70.02 1.56 ± 0.05 1.64 ± 0.07
6 Al2O3 3 87.5 70.59 1.55 ± 0.07 1.78 ± 0.05

Based on previous research and analysis, we inferred the mechanism behind the
improvement in thermal conductivity in silver epoxy adhesive due to vapor treatment,
as depicted in Figure 6. Traditional curing methods result in the formation of pores in
the adhesive, which obstruct the conduction of phonons and electrons. Consequently, the
thermal and electrical conductivity of Ag-25 is low. However, vapor treatment at 85°C
causes the sheets of silver epoxy adhesive to overlap more closely due to high-temperature
curing, thereby constructing more paths for heat conduction and promoting an increase in
thermal conductivity.
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tivity of the silver epoxy adhesive.

Moreover, the silver adhesive has good hydrophilicity, and under vapor treatment,
H2O vapor can enter the pores and lamella of the silver adhesive. As free water is an
excellent conductor of electrons, electrons can travel through the traces of free water in the
silver adhesive. Therefore, additional electron conduction pathways are constructed inside
the silver epoxy adhesive, significantly improving its thermal and electrical conductivity.

4. Conclusions

In this paper, a research study on a simple and effective method to enhance the thermal
conductivity of silver epoxy adhesive by treating it with water vapor is presented. The
method leads to a significant improvement in the thermal conductivity of the adhesive,
with a value of 9.1 W/(m·K), which is three times higher than the value obtained using
traditional curing methods (2.7 W/(m·K)). The research revealed that the H2O present
in the adhesive can penetrate the gaps and holes, creating additional paths for electron
conduction, which significantly improves the thermal and electrical conductivity of the
adhesive. Furthermore, the method is anticipated to improve the performance of other
packaging materials and fulfill the high-performance requirements of ECAs.
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