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Introduction: Inherited retinal degenerations (IRDs) have long been consid-

ered untreatable and incurable. Recently, one form of early-onset autosomal

recessive IRD, Leber congenital amaurosis (LCA) caused by mutations in

RPE65 (retinal pigment epithelium-specific protein 65 kDa) gene, has

responded with some improvement of vision to gene augmentation therapy

and oral retinoid administration. This early success now requires refinement

of such therapeutics to fully realize the impact of these major scientific and

clinical advances.

Areas covered: Progress toward human therapy for RPE65-LCA is detailed

from the understanding of molecular mechanisms to preclinical proof-of-con-

cept research to clinical trials. Unexpected positive and complicating results in

the patients receiving treatment are explained. Logical next steps to advance

the clinical value of the therapeutics are suggested.

Expert opinion: The first molecularly based early-phase therapies for an IRD

are remarkably successful in that vision has improved and adverse events are

mainly associated with surgical delivery to the subretinal space. Yet, there

are features of the gene augmentation therapeutic response, such as slowed

kinetics of night vision, lack of foveal cone function improvement and relent-

lessly progressive retinal degeneration despite therapy, that still require

research attention.

Keywords: gene therapy, Leber congenital amaurosis, photoreceptors, retina, retinal pigment

epithelium, retinoid cycle

Expert Opinion on Orphan Drugs (2015) 3(5):563-575

1. Introduction

Inherited retinal degenerations (IRDs) are a group of blinding eye diseases now
recognized to be caused by hundreds of different gene defects, mainly affecting
photoreceptor cells and the retinal pigment epithelium [1-3]. Prior to the era of gene
discovery and known relationships of genes to specific diseases, clinicians specializing
in IRDs tried to make sense out of the confusing array of symptoms and signs by
subclassifying patients using Mendelian genetic type, age of disease onset, clinical
features and retinal function. Clinical trials of treatment mainly sought to slow the
natural history in groups of IRD patients using nutrient supplementation [4,5].

The discovery of genetic causes of IRDs has continued at a steady pace over the
last two decades with about 10 new genes discovered each year [6]. Knowing the
causative genes and mutations provides a basis for understanding human IRDs.
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Pathophysiological mechanisms can now be postulated and,

in rare instances, science-based treatments have been devised

for these historically incurable diseases. Rather than a

limited number of animal models for IRDs based only on

phenotype, now there are naturally occurring or de novo
generated models with gene defects that may mimic features

of the genetically corresponding human diseases. With a few

exceptions, consortia of basic science, animal and human

retinal specialists have not worked together to understand a

newly molecularly defined group of patients and how an

animal model relates to that human disease. Some of the

models move forward to be used for proof-of-concept stud-

ies; and human therapies have even been proposed based

on results in animals that may or may not be faithful mimics

of the human IRD.
About 15 years ago, advances in science and medicine came

together to pave the path toward therapies for an early-onset

autosomal recessive IRD. The form of Leber congenital

amaurosis (LCA) that has now been treated is caused by that

is caused by an abnormality in the visual (retinoid) cycle

resulting from deficiency of RPE65. Animal models of

RPE65 deficiency were available and proof-of-concept studies

for two forms of therapy in young animals showed efficacy.

This review summarizes the stepwise progress to treat humans

with this form of LCA and suggests further directions to take

now that early clinical trials of treatment have been successful.

The data presented herein are mainly those of the authors.

There are many recent reviews of retinal gene therapy or, spe-

cifically, gene augmentation in RPE65-LCA and these cover a

spectrum of viewpoints of this rapidly advancing field [7-13].

2. RPE65 and the retinoid cycle

Visual pigments in rod and cone photoreceptor cells detect
light because they have the covalently linked light-sensitive
chromophore, 11-cis-retinal. Light causes photoisomerization
of this chromophore and its release as all-trans-retinal. Meta-
bolic transformation of spent all-trans-retinal back to its
light-sensitive form, 11-cis-retinal, is achieved by a series of
transport and enzymatic processes termed the retinoid cycle.
Combining recycled 11-cis-retinal with opsins to form visual
pigments completes chromophore regeneration and permits
phototransduction and visual perception to continue [14-18].
One of the key enzymes of the retinoid cycle is retinoid
isomerase, which is encoded by the RPE65 gene (Figure 1).
Deficiency of RPE65 leads to visual loss in human LCA.
This visual disturbance is due not only to an inadequate
supply of 11-cis-retinal but also to varying degrees of retinal
degeneration [7,19-22].

The topic of the rod versus the cone visual cycle is worthy
of comment. During the last two decades, a significant
amount of biochemical evidence has indicated that Müller
cells are involved in regeneration of cone visual pigments
through a specific visual cycle pathway [23]. The key enzyme
of this hypothetical pathway is thought to be the dihydrocer-
amide desaturase-1 or Des-1 in conjunction with the key role
of the cellular retinaldehyde-binding protein (CRALBP,
encoded by RLBP1) in selection of the isomerization reaction
products [24]. The Müller cells are also a source of 11-cis-
retinal bound to CRALBP that is expressed in both RPE
and Muller cells [25]. However, there is little genetic evidence
from studies in humans and animals that provide proof of this
pathway and its interplay with the ‘canonical’ RPE65-
driven pathway.

3. Two preclinical experiments hold promise
for treating human RPE65 deficiency

3.1 Remarkable improvement with oral 9-cis-retinoid

in murine Rpe65 disease
Given knowledge of the retinoid cycle, a pharmacological
replacement therapy was devised and preclinical studies were
performed in Rpe65-deficient mice and dogs [26-32]. Studies
in young mice with Rpe65 deficiency but without retinal
degeneration demonstrated the feasibility of increasing visual
pigment and retinal function by oral administration of a
9-cis-retinoid, thus bypassing the retinoid cycle blockade in
this genetic disease (Figure 2A). The pathway for oral 9-cis-ret-
inoid action is proposed to involve absorption in the intestine,
storage in the liver, secretion into the blood and transport via
a binding protein to the RPE [16]. 9-cis-retinal released from
the RPE, possibly from storage sites composed of retinyl
ester-containing lipid droplets, termed retinosomes [33,34],
combines with opsin to form isorhodopsin within photore-
ceptor cells. Isorhodopsin, investigated for more than half a

Article highlights.

. Inherited retinal degenerations (IRDs) are a group of
blinding eye diseases that have long been considered
untreatable and incurable.

. An autosomal recessive IRD called Leber congenital
amaurosis (LCA), caused by mutations in the key
retinoid cycle gene encoding RPE65, has recently been
in clinical trials.

. Both gene augmentation therapy by subretinal injection
and oral retinoid administration have led to some visual
improvement in RPE65-LCA.

. There remain unresolved issues related to both
therapeutic approaches that warrant attention before
commercialization of the products.

. Most important is the issue of progressive photoreceptor
cell loss (retinal degeneration) that continues in the
treated regions even after vision-improving
gene therapy.

. Efforts are needed to improve the quality and longevity
of this novel treatment and thereby advance retinal
gene augmentation therapy for RPE65-LCA as well as
for other IRDs that will become candidates for this form
of intervention.

This box summarizes key points contained in the article.
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century [35], is a photosensitive visual pigment proposed to be

the source of residual function originating from rod

photoreceptors in Rpe65-deficient mice [36] and the cause of

improved vision after oral supplementation with 9-cis-
retinoids [26,27,29,30].

To explain further, opsin forms a stable pigment with 9-cis-
11-cis-retinal with two differences. First, the efficiency of

photoisomerization for isorhodopsin is about one-third lower

than that of rhodopsin. Second, the maximum absorption is

shifted ~ 7 -- 10 nm to lower wavelengths (hypsochromic

shift). Taking into consideration the range of human vision,

these differences should be readily tolerated. Both isorhodop-

sin and rhodopsin when photoactivated form the same signal-

ing intermediate termed metarhodopsin II [37], thus providing

a sound molecular basis of this approach.

3.2 Remarkable improvement after subretinal gene

augmentation in canine and murine Rpe65 disease
Surgically delivered gene augmentation therapy was also used
to correct the abnormal retinoid cycle in canine and murine
models of human RPE65-LCA. Subretinal gene therapy
improved visual function in three RPE65-mutant dogs using
a recombinant adeno-associated virus (AAV) vector-carrying
wild-type canine RPE65 cDNA [38]. This proof-of-concept
experiment was confirmed and extended in many additional
studies. Visual function improvements were recorded at
retinal, subcortical and cortical levels, and there were concor-
dant biochemical, morphological and immunohistochemical
observations [7,39,40].

Subretinal gene therapy using AAV, adenovirus (Ad) and
lentiviral vectors was also performed in the Rpe65-/-
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Figure 1. RPE65 and the retinoid cycle. Schematic of a retinal pigment epithelial (RPE) cell and a photoreceptor cell outer

segment with the flow of retinoids within and between the two different cells. There are intracellular and extracellular

retinoid-binding proteins (such as CRALBP, CRBP1, IRBP). The retinoid isomerase, RPE65 (top center of the figure), the retinoid

isomerase, is deficient in a form of LCA. See text for more details.
The figure is reproduced with permission from [18].

CRALBP: Cellular retinaldehyde-binding protein; LCA: Leber congenital amaurosis.
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(knockout) mouse model as well as the naturally occurring
Rpe65rd12 mouse model. For the most part, there was
improved retinal function (Figure 2B) with supporting immu-
nohistochemistry, rhodopsin biochemistry and cortical activ-
ity studies [7].

4. Human RPE65 disease

Although there was promising preclinical evidence of efficacy
with oral cis-retinoid and subretinal gene augmentation ther-
apy in Rpe65-deficient animals, there were no studies specifi-
cally inquiring whether the disease expression in humans with
RPE65 mutations resembled that in the animal models. It was
assumed to be similar enough. Young canine and murine
models of Rpe65 deficiency, however, exhibited near normal
photoreceptor structure despite severe rod and cone dysfunc-
tion that was reversed by the therapies. Other than in certain
rare congenital stationary night or day blinding disorders,
normal photoreceptor structure would be unusual in man.
High-resolution optical coherence tomography (OCT) was
used to quantify photoreceptor layer thickness in RPE65-
LCA patients (ages 11 -- 53) to define the relationship of
retinal structure to vision [19]. Cone photoreceptor-rich
central retina and rod-rich regions were specifically studied.
Despite severely reduced cone vision, many RPE65-mutant
retinas revealed a near-normal central microstructure. Absent
rod vision was associated with a detectable but abnormally
thinned photoreceptor cell layer. The human disease was
thus not only a retinal dysfunction due to a biochemical block-
ade of the retinoid cycle but also a retinal degeneration. In
contrast to other IRDs, however, RPE65-LCA patients
showed greater photoreceptor nuclear layer integrity than

predicted from their low level of vision [19]. In the mouse
model, it was asked whether abnormally thinned Rpe65-
mutant retina with photoreceptor loss, such as found in the
human disease, could respond favorably to treatment. Rpe65-
/- mice at advanced disease stages show photoreceptor cell
loss and this represented a more faithful mimic of the human
disease. When gene therapy or oral retinoid treatment were
administered to these late-stage degeneration mice, retinal
function did improve but only in animals with better pre-
served photoreceptor structure. To accomplish early-phase
clinical trial goals of testing safety and efficacy of subretinal
gene therapy, retinal locations with retained photoreceptors
would need to be identified (with OCT) and targeted. Other-
wise, the goals of the clinical trials would either not be
achieved or left to a trial-and-error approach. Oral cis-retinoid
therapy clinical trials would also be best conducted if patients
were evaluated pre-enrollment using noninvasive OCT imag-
ing. In other words, RPE65-LCA patients should be ‘staged’
for severity of degeneration prior to entry into clinical trials
(see Section 7). Results of the trials would then be
more interpretable.

Further studies of retinal photoreceptor structure in young
patients with RPE65-LCA (ages 6 -- 17) revealed that there
was considerable interindividual variation and a simple
relationship of age to severity of degeneration could not be
assumed [21]. Summary maps of photoreceptor cell topogra-
phy showed that superior-temporal and temporal pericentral
retina was better preserved than other regions. Only more
recently were natural history studies performed in the
Rpe65 deficient dogs and mice and results used to decide
when to administer treatment that would better approximate
the human disease [41,42].

Wild type
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B.
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Figure 2. Preclinical studies showing improvement in retinal function in Rpe65-mutant mice treated with oral 9-cis-retinoids

(A) or subretinal gene delivery of AAV2-Rpe65 (B). Left: Dark-adapted electroretinograms (ERGs) to increasing stimulus light

intensity for a representative wild-type mouse. (A) ERG recordings in a representative 2-month-old Rpe65-/- mouse and in a

2.1-month-old Rpe65-/- mouse 48 h after oral 9-cis-retinal treatment. The treatment causes a lower stimulus threshold and

larger amplitude ERGs. (B) ERG recordings comparing the untreated eye of a 2.9-month-old Rpe65rd12 mouse and the

contralateral eye treated with subretinal gene therapy. The treatment effect was a lowering of threshold and larger

amplitude ERGs.
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5. Clinical trials of treatment

5.1 Subretinal gene augmentation therapy
Gene augmentation therapy for RPE65-LCA has been trans-
lated to the clinic and there are now multiple clinical trials
worldwide with follow-up of at least 3 years showing safety
and modest efficacy [7-13,43-47]. In the earliest versions of these
trials, subretinal injection(s) of rAAV2-hRPE65 was adminis-
tered to the worse-functioning eye at various dose levels.
Primary outcomes were systemic and ocular safety. Secondary
outcomes assayed visual function with a variety of methods,
including visual acuity, dark-adapted full-field sensitivity test-
ing, visual fields, pupillometry and mobility performance.
Both cone- and rod-photoreceptor-based vision improved in
treated areas [46]. For extrafoveal cones, there were increases
of up to 17 dB (50-fold); and for rods, there were gains of
up to 48 dB (63,000-fold). A summary of the clinical trial
(conducted by the authors) of 15 patients (age range,
11 -- 30 years) showed there was no detectable systemic toxic-
ity; any ocular adverse events were related to the retinal
surgery [48]. Visual function improved in all patients to differ-
ent degrees; and improvements were localized to treated areas.
Cone and rod sensitivities increased significantly in study eyes
but not in control eyes (Figure 3A). Minor visual acuity
improvements were recorded in many study as well as control
eyes. Major acuity improvements occurred in study eyes with
the lowest entry acuities and parafoveal fixation loci treated
with subretinal injections. Other patients with better foveal

structure lost retinal thickness and acuity after subfoveal injec-
tions. It was concluded that RPE65-LCA gene therapy was
safe and efficacious to the extrafoveal retina. To treat the fovea
was of no benefit and carried some risk. There was no
evidence of age-dependent effects [48].

5.1.1 Unexpected results encountered to date
Detailed studies of the effects of gene therapy in patients with
RPE65-LCA have produced several unexpected observations.

5.1.1.1 Slow rod kinetics in treated retina
To assess what fraction of full visual potential was restored by
gene therapy (taking into account the degenerative compo-
nent), the relationship of the degree of light sensitivity to the
level of remaining photoreceptors within the treatment area
was determined. It was found that treatment could
overcome nearly all the loss of light sensitivity resulting from
the biochemical blockade component of RPE65-LCA. The
reconstituted retinoid cycle, however, was not completely nor-
mal. Newly treated rods were remarkably slow to resensitize
after light exposure and required 8 h or more to attain full sen-
sitivity as compared to < 1 h for normal eyes. Cone sensitivity
recovery time was rapid. These results demonstrated dramatic
but imperfect recovery of rod and cone photoreceptor-based
vision after RPE65 gene therapy. In addition to theoretical
interest in the basis of the slowed kinetics of rod adaptation,
there is the practical implication that these patients need an
extended time to dark adapt post-treatment or the visual
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Figure 3. Comparison of early efficacy post-treatment in subretinal gene therapy (A) and oral cis-retinoids (B) in RPE65-LCA.

Pseudo-three-dimensional representation of fully dark-adapted sensitivities across the visual field of the (A) gene-treated eye

of two patients at baseline and 30 days post-treatment. P9 had a single subretinal injection in the superior retina; P11 had two

subretinal injections, one in the superior retina and another in the nasal retina. (B) Baseline and 5 -- 6 days after beginning a

week-long course of oral cis-retinoids in one eye of two patients. Part B is reproduced with permission from [52].
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gain in rod sensitivity would be underestimated. More
concerning would be an apparent variability in magnitude of
rod-mediated visual gain if insufficient (or different amounts
of) dark adaptation was used to test for efficacy on different
post-treatment assessments [46].

5.1.1.2 Pseudo-fovea formation
A self-report by a patient about 1 year after gene therapy led
to the observation that there could be late emergence of fur-
ther visual gain in the treated eye. A pseudo-fovea developed
and under certain conditions, the patient showed a preference
to fixate at the treated retinal region (in the superior-temporal
retina) rather than at the anatomical fovea. This suggested an
experience-dependent plasticity of the adult visual system [49].
Further examples of this behavior have been documented
subsequently and recently reported [50].

5.1.1.3 Continued progression of retinal degeneration,

independent of therapy
A key question about the effects of gene therapy on photore-
ceptor longevity was addressed recently [42]. As demonstrated
previously, untreated RPE65-LCA patients show degeneration
as well as dysfunction of photoreceptors even at the earliest
ages. When examined serially over years, untreated RPE65-
LCA outer photoreceptor nuclear layers (ONL) displayed pro-
gressive thinning. It has been expected, although unproven,
that correction of the underlying cellular dysfunction by
gene therapy could rescue the photoreceptors from degenera-
tion. In treated RPE65-LCA, however, retinal degeneration
also continued to progress despite the improved vision. This
set of observations indicated that gene therapy in RPE65-
LCA should not be considered as a permanent one-time treat-
ment. An expanded view of the therapy is needed and ways to
improve photoreceptor survival should be explored. Neuro-
protective agents could be delivered independently to patients
or in combination with gene augmentation and this could be
tested experimentally in the canine model [42].

5.2 Oral retinoid therapy
Oral synthetic retinoid treatment (ClinicalTrials.gov Identi-
fier NCT01014052) advanced to clinical trials in 7 RPE65-
LCA patients and in another molecular subtype of LCA
(lecithin retinol acyltransferase, LRAT) that also involves the
retinoid cycle. Results of light-adapted metrics, such as visual
acuity and kinetic perimetry, were reported to be improved
following a week-long course of treatment with most return-
ing to baseline by 2 years post-treatment. A minority of
patients had longer-term persistence of improved acuity or
visual field responses [51]. Considering the dramatic improve-
ment in rod photopigment and rod physiology in the proof-
of-concept studies of oral 9-cis retinoids in murine
Rpe65 deficiency [19,26,27] it is of interest that results of
dark-adapted perimetry were reported in two RPE65-LCA
patients (ages 24 and 40) who received oral cis-retinoid [52].
Increases in dark-adapted sensitivity averaged 12 dB at

10 -- 50% of loci. With extended dark adaptation, there
were more dramatic increases in sensitivity of, on average,
16 -- 19 dB over baseline at 40 -- 83% of loci; individual
loci could be as much as 24 -- 36 dB increased (Figure 3B).
The fact that extended dark adaptation led to further increases
in rod sensitivity leads to the speculation that, like the slowed
kinetics of rod adaptation in gene treated RPE65-deficient
retina [46], the kinetics of rod adaptation after oral retinoid
was also abnormally prolonged.

6. Comparison of the two treatments for
RPE65-LCA

What are the differences between the results to date from
surgically delivered gene augmentation therapy with
AAV2-RPE65 and the oral cis-retinoid treatment? Ocular
gene therapy involves subretinal injection(s) of a certain
volume of vector gene that is expected to transfect a localized
region of the retina. Within a few days after this surgical
procedure in one eye, there was evidence of an increase in
rod vision in that eye limited to the region of subretinal
treatment [48]. There is progressive retinal degeneration
despite the improved vision [42], suggesting that vision would
also eventually be impacted by the underlying cellular losses.

Oral cis-retinoid therapy is expected to affect retinal areas in
both eyes, presumably those that retain sufficient photorecep-
tors and RPE to support the improved vision. Within days of
therapy, there was evidence of an increase in rod vision across
both eyes. The length of time that improvement in rod vision
is sustained after oral cis-retinoid has not been reported; if pre-
dicted from rodent proof-of-concept experiments [29], it would
be expected to diminish soon after dosing stops. It is also
unknown whether the retinoid has any effect on the natural
history of the progressive retinal degeneration in RPE65-LCA.

7. Next steps for treatment of RPE65-LCA

Ocular gene therapy of RPE65-LCA initially appeared decep-
tively simple with remarkable visual improvement occurring
days to weeks after subretinal injection and apparent persis-
tence of the positive effects for years. Treatment of the human
disease (and later stages in animal models) has now been
revealed to have limitations. Though augmenting wild-type
RPE65 restored the retinoid cycle function (albeit not nor-
mally) and it improved rod and cone vision (but not foveal
vision) in a measurable way, what was not measured, except
in one of the clinical trials, was the degenerative component
of this disease. If not quantified by serial optical imaging,
the degenerative component would not have been noted to
change until atrophy would become evident on ophthalmo-
scopic examination years to decades later. Clearly, the natural
history of photoreceptor loss was independent of treat-
ment [42]. The time course of visual loss that would be
expected to eventually accompany the photoreceptor losses
in treated and untreated retinal regions has not been reported.
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Based on what is known to date of the effects of gene ther-
apy in RPE65-LCA, it is obvious that the existing therapy is
not fully adequate. What can be done now to advance the
application of gene therapy to RPE65-LCA and other poten-
tially treatable retinopathies?

7.1 Staging the disease
There is no strategy yet to define in detail patient candidacy
for receiving gene therapy. The stage of the RPE65-LCA
disease at the time of clinical presentation should serve as a
guide to whether a subretinal injection procedure is an appro-
priate recommendation for that patient. Age of a patient has
been assumed to be a major determinant of candidacy and
benefit. By extrapolating from data of animal models of
various IRDs, it has been assumed that an invariant decline
in retinal function and photoreceptor structure with age is
probably also what occurs in the population of patients with
RPE65-LCA, despite a spectrum of different causative mutant
alleles and diversity of genetic backgrounds. Are there data in
humans to support this reductionist assumption? Individual
untreated patients with RPE65 mutations definitely show a
decline in vision with age [22]. The kinetics of retinal degener-
ation in untreated human RPE65-mutant retina has also been
investigated [42]. The conclusion from these studies is that
there is no simple relationship between age and severity of
disease when examining a population of patients with
RPE65 mutations. The onset, degree and spatial distribution
of retinal degeneration across patients differ such that some
young patients can have relatively severe degenerative disease
while some older patients can have far better retinal preserva-
tion determined by careful imaging and visual functional
analyses [21,22]. There are in vitro results for certain mutant
RPE65 alleles [53-55], but there are no data on the relationship
of the many different mutations in the RPE65 gene (and any
modifier genes) to severity of in vivo disease expression.
Considerable variation of severity of retinal degeneration
exists in the first two decades of life. For patients above the
age of 30 years, however, evidence of limited function and
structure should provoke serious consideration of the risks
versus the benefits of administering gene therapy [20-22].

Staging for severity of retinal degeneration is akin to per-
forming biopsies as is commonly used to stage progressive
nonocular diseases in order to make decisions about treating
or type of treatment. To stage RPE65-LCA patients is within
modern clinical capabilities. In RPE65-LCA, it can be accom-
plished noninvasively by in vivo imaging of the retina with
OCT. Segmentation of these images and calculation of the
average photoreceptor layer thickness across a wide retinal
area would allow a patient’s retinal disease to be classified
into one of possibly three stages (namely mild, moderate or
severe). Patients without measurable photoreceptors would
not be candidates for this therapy. For example, the average
(and standard deviation) of photoreceptor layer thickness
was measured across the central retinal region (30� � 30�

square, 870 loci) in 12 RPE65-LCA patients and the patients

were grouped as mild, moderate or severe (4 patients per
group). In this sample, the statistically different averages
were: 31 (6.7), 22.5 (6.1) and 11 (3.5) µm, respectively. Ret-
rospective or prospective staging of all patients in ongoing
clinical trials could be related to treatment efficacy by using
some visual function criterion such as dark-adapted full-field
sensitivity testing [56,57]. From such data a decision could be
made about the frequency of treatment efficacy for each stage.
In the future, it would be ideal and fair to present data to a
patient about the chance of a successful outcome, rather
than just a list of possible adverse events associated with
retinal surgery.

Methods for rapidly testing interventions, such as in cancer
treatment or prevention, are of strong interest to develop in
the future, but have yet to be realized [58,59]. Based on the
preliminary report about improvement in dark-adapted meas-
ures of vision using oral 9-cis-retinoid in two RPE65-LCA
patients [52], it would seem worthwhile to consider this reti-
noid for use as a provocative test of the potential for efficacy
in patients with RPE65-LCA before there is commitment to
ocular surgery for gene therapy. This testing could be
especially valuable for patients staged as ‘severe’ based on
OCT average results. Some functional improvement from
oral retinoid would suggest that a patient could be considered
for gene therapy. A way to predetermine the value of gene
therapy to a given patient would be a welcome addition to
the therapeutic strategy for RPE65-LCA.

7.2 Disease management strategy
A long-term management strategy with gene therapy for
RPE65-LCA also has not been proposed to date. All clinical
trials began by treating one eye with a single subretinal injec-
tion. One clinical trial also treated two retinal locations in one
eye in later cohorts to increase retinal coverage [48] and there is
a report of second eye treatment administered years later [60].
Binocular strategies with single injections on separate days are
also in progress (NCT00999609). Same eye retreatment has
not been reported to date. Given a calculated stage of severity
at first presentation, a photoreceptor life expectancy from
time of initial OCT mapping can be determined using the
delayed exponential model of the disease [42]. This prognosis
should help define the long-term therapeutic strategy.

A sequence from clinical diagnosis to staging to treatment
is illustrated (Figure 4). In the clinical staging column, there
is a photoreceptor life expectancy graph. The horizontal axis
is the time (years) since degeneration phase onset; ONL frac-
tion remaining is plotted vertically in log units. The photore-
ceptor life expectancy for each stage (labeled below horizontal
axis) is based on the patient’s average ONL fraction at time of
imaging (marked by circle) until the ‘end-of-life’ criterion
(-1 log unit ONL fraction, which is 10% of normal mean).
A relatively simple gene transfer strategy with a series of single
uniocular subretinal injections over years is shown. More
complex strategies with two injections per eye and binocular
treatments are possible. Initial administration targets the
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superior retina, as shown in the schematic of the fundus.
Hypothetical outcomes are illustrated for each of three disease
severities (see Staging above). Predicted visual improvement
(at peak response) is shown as a square on a visual field
map. After an interval determined by disease severity stage
and the expected time to peak improvement, the nasal retina
is treated. Treatment of the temporal retina could follow after
a further interval, thereby providing a substantial total area of
visual field that would otherwise be lost.
In any future management strategy, it must be remembered

that RPE65-LCA disease and gene therapy treatment effects
are dynamic processes. Given the addition of a neuroprotec-
tive agent [42], the lifespan of photoreceptor cells could
increase thus possibly lengthening the interval between
follow-on treatments. Whether oral retinoid treatment
becomes an alternative or a complement to gene therapy
remains an important question.

7.3 Other treatment strategies
Nonviral gene therapy of Rpe65-deficient murine models
has also been explored [61-63]. Specifically, proof-of-concept
experiments with subretinal DNA nanoparticles have

been encouraging with long-term persistence of efficacy.

Given further improvement of this method, concern over

re-administration of AAV-mediated delivery could be elimi-

nated if nonviral therapy was used. Problems with subretinal

injection, however, would remain.
Staging of LCA patients with molecular evidence of

disease-causing RPE65 mutations will lead to identification

of those with such severe photoreceptor and RPE loss (or

who have some other exclusion criterion) that the gene-

specific methods described above may not be appropriate.

Such patients deserve consideration as possible candidates

for other current methods being developed to improve severe

vision loss [64]. For example, the development of a retinal

prosthesis has a long history and there have been recent

clinical trials; and further advances are expected. With

evidence of extremely impaired vision, little or no measurable

photoreceptors by OCT and presence of inner retinal lami-

nae, this becomes one option [65-69]. Another evolving method

uses optogenetics to transform remaining inner retinal cells

into light sensors [70]. Light-gated ion channels via a gene ther-

apy approach are introduced into the residual inner retinal

neurons [71,72]. Such optochemical and optochemical-genetic
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approaches have also shown proof-of-concept efficacy in large
and small animal models of retinal degeneration [73].

Finally, the field of regenerative medicine is advancing such
that stem cells of different origins can eventually become
alternatives for improving vision in patients without sufficient
photoreceptors to respond to current therapies [74,75].

8. Expert opinion

The new challenge for clinicians will be to decide if or when
novel therapies should be recommended and administered
to specific IRD patients. As in all branches of medicine, treat-
ment options create the need for decision-making. The most
difficult decisions will require judgment based on knowledge
of the topic(s). There will be pressure upon general ophthal-
mologists and retinal specialists who only rarely see IRD
patients to be up-to-date (with the diseases, the natural his-
tory, the disease mechanisms) and be able to speak knowled-
gably about the latest therapies. Speaking from clinical
experience will not be possible for many years. IRD patients
tend to be well-informed about their diseases and will require
more information from the physician than what they may
have already gleaned from the popular media. There is now
even more pressure than in past decades to administer ther-
apy. Well-meaning patient organizations, for example, have
fund-raised for decades to support basic and applied research,
and have from the beginning promised clinical (not only basic
scientific) progress. Their constituents have waited for these
promises to be kept and there are accumulated feelings of
obligation by organizations to announce and even promote
treatments sometimes without the usual scientific scrutiny
and complete knowledge of the outcomes and risks.

Will the workups and longer consultations needed to
discuss novel therapies with the rare IRD patients fit into
the active clinical schedules of ophthalmic practitioners? In
the past, some of the busier practitioners found it expedient
simply to provide a generally poor prognosis to their IRD
patients. Ongoing needs of such patients including referrals
for low vision and mobility training, career counseling,
genetic counseling and even routine ophthalmic care to avoid
complicating eye diseases were occasionally not pursued.
Patients tended to learn from each other in support groups
and at meetings of research-oriented foundations or associa-
tions to help the blind. The ophthalmic clinician will now
have to practice an evolving form of personalized medicine
for this group of orphan diseases.

For those who specialized in IRDs before the current novel
therapeutics, personalized medicine has long been the only
form of medicine practiced [76]. Now, there are simply more
branches to the decision tree. A modified version of the four
approaches to the practice of personalized medicine by
Meyer [77] can be applied to RPE65-LCA. First is the assess-
ment of an individual and the clinical diagnosis (from eye
examination and electroretinography) and then molecular
genetic testing. The latter demands a DNA sample and an

infrastructure to submit it to a standardized approved labora-
tory and then the expertise in interpreting the result and
explaining it to the patient/family [78,79]. Incidentally, there
is no evidence to date that prenatal genetic diagnosis
(e.g., in the case of a sibling with RPE65-LCA) is warranted,
just as there is no evidence for administering gene therapy
within the first years of life (see above). However, early diag-
nosis of RPE65-LCA remains a goal -- mainly to be able to
begin administration of a neuroprotective agent to alter the
natural history [42]. Improvement of central cone function
(given foveal cone structural integrity) is another plausible
reason for early diagnosis and possible intervention. The latter
could be a pharmaceutical agent or a gene therapy targeting an
alternative cone visual cycle [15,24] with an intravitreal vector
delivery (but not subretinal surgery with its attendant risk of
foveal cell loss). Second is to ‘increase diagnostic precision’
beyond molecular diagnosis by defining the phenotype with
‘prognostic and therapeutic implications’ [77]. Staging the
retinal degenerative component of the disease using OCT is
key to estimating the prognosis and deciding when to admin-
ister gene therapy (Figure 4). Third is ‘tailoring of treatment to
the individual characteristics of each patient’ [77]. Even simple
staging of the degree of degeneration would identify nonres-
ponders. Improved tailoring of treatment to individuals could
come from classifying patients by a predictable response to
treatment derived from a consensus about how to measure
efficacy in relationship to stage of degeneration in currently
ongoing clinical trials (see above). The rapid move to higher
phase trials has forced less rather than more information to
be collected in the pursuit of ‘quality of life’ measurements.
Focus should return to those details needed to understand a
disease better and thereby improve the quality of its treat-
ment. For example, gene therapy in RPE65-LCA has been
popularized to an extent that it would seem to be in an
advanced state, but some of the basics of the human disease,
such as genotype--phenotype studies, have been bypassed in
favor of a trial-and-error approach in the clinic and operating
room. Clarifying whether patients with specific RPE65
mutant alleles have different natural histories than others
and require a specifically timed treatment strategy is essential.
A starting population to study could be the group of RPE65
patients with the same founder alleles in Israel to determine
if there is a predictable natural history in this relatively homo-
geneous group [47]. A fourth tenet of personalized medicine
from Meyer [77] is the ‘proper evaluation of objective and sub-
jective clinical outcomes.’ OCT imaging, a feasible objective
outcome for mechanism and safety, led to the observation
that gene therapy did not alter the natural history of cell
loss [42] and that foveal cell loss can accompany subfoveal
injection [44,48]. The full-field sensitivity test after extended
dark adaptation has offered the best assessment of outcome
from these trials [46,48,57]. The clinical utility of the therapy
will not be improved until the impaired kinetics of dark adap-
tation are explained and corrected. The gain in night vision,
one of the major improvements as a result of this therapy, is
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now constantly in jeopardy of being of no clinical utility

unless the patients somehow learn to attend to their light

history, a difficult way to live life in our well-lit modern

world. Most reports by patients in the popular media are

essentially proclaiming gains of extrafoveal cone vision.
Gene correction of IRDs, perhaps by a CRISPR-Cas9 or

related approach, will advance and extend to other retinopa-

thies [8,10]. The dual pathomechanism of RPE65-LCA disease,

dysfunction and degeneration, however, is unlikely to be rep-

licated in many other IRDs. Most IRDs will require natural

history studies performed with quantitative outcomes for

structure and function to try to detect negative changes in

relatively short periods of time. Yet, there could be conditions

in which photoreceptor outer segment lengths in residual cells

would increase as a result of therapy and this could lead to

some visual restoration. There are also retinal disorders that

may be permanently cured by gene augmentation such as

forms of congenital stationary night blindness that do not

have a degenerative component [80].
In summary, treatment of IRDs seems to be at an inflection

point, with early successes of gene therapy for RPE65-LCA
deservedly infusing the field with optimism. However, careful

clinical examination of these patients over time has revealed

that simple, one-time gene therapy does not lead to a perma-

nent therapeutic outcome and that there is a need to reexam-

ine how clinical decisions are made relating to both initial

treatment and follow-up options. This review has attempted

to lay out a logical scaffold for dealing with these complex
but ultimately approachable issues.
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