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Abstract. Cloud storage allows cloud users to enjoy the on-demand
and high quality data storage services without the burden of local data
storage and maintenance. However, the cloud servers are not necessarily
fully trusted. As a consequence, whether the data stored on the cloud
are intact becomes a major concern. To solve this challenging problem,
recently, Chen proposed a remote data possession checking (RDPC) pro-
tocol using algebraic signatures. It achieves many desirable features such
as high efficiency, small challenges and responses, non-block verification.
In this paper, we find that the protocol is vulnerable to replay attack and
deletion attack launched by a dishonest server. Specifically, the server can
either fool the user to believe that the data is well maintained but ac-
tually only a proof of the challenge is stored, or can generate a valid
response in the integrity checking process after deleting the entire file of
the user. We then propose an improved scheme to fix the security flaws of
the original protocol without losing the desirable features of the original
protocol.

1 Introduction

Cloud storage provides a novel service model wherein data are maintained, man-
aged and backed up remotely and accessed by the users over the network at
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anytime and from anywhere [1]. Although cloud storage is targeted to take up
much of the workload from the client, it is fraught with security risks [2]. On
the one hand, frequent data access increases the probability of disk corruption,
as a result, loss of the data may occur constantly. Simultaneously, cloud service
providers may try to hide data loss incidents in order to maintain their repu-
tation. On the other hand, cloud providers are not fully trusted and thus, they
might discard the data that have not been or are rarely accessed for monetary
reasons. Therefore, whether the stored data keeps virgin is a major concern of
the cloud users.

In order to check the data integrity at untrusted stores, in 2007, Ateniese
et al. [3, 4] proposed the notion of provable data possession (PDP) for the
first time and presented two efficient and provably-secure PDP schemes based
on homomorphic verifiable tags. In their protocols, users are allowed to ver-
ify data integrity without accessing the entire file. At the same time, Juels
et al. [5] formalized the model of proof of retrievability (PoR) which enables
the server to produce a concise proof that a user can retrieve data, and then,
presented a sentinel-based PoR scheme using error-correcting code. In 2008,
Shacham and Waters [6,7] described two efficient and compact PoR schemes. In
2009, Ateniese et al. [8] provided a framework for building public-key homomor-
phic linear authenticators from any identification protocol, and then described
how to turn any public-key homomorphic linear authenticator into a publicly-
verifiable PDP scheme with an unbounded number of verifications. Subsequently,
a number of data auditing protocols [9–16] from some efficient PDP and PoR
schemes [5–7, 17–19], were proposed to ensure the integrity of users’ data. In
2013, Chen [20] proposed an algebraic signature based remote data possession
checking (RDPC) protocol, which is a similar notion inherited from PDP, but
the number of verifications in their basic protocol is limited. To overcome this
drawback, an improved scheme supporting to refresh tags after t verifications
was also proposed in [20]. Both protocols provide a number of desirable features
of a remote data possession checking protocol such as high efficiency, small chal-
lenges and responses, no-block verification and were suggested to be adopted to
the cloud storage scenario.

Our Contribution. In this paper, we identify several security flaws in the
RDPC protocols in [20]. Firstly, neither the basic protocol nor the improved one
is secure against the replay attack, in which the server is able to generate a valid
proof from the previous proofs, without accessing the actual data. Consequently,
the server needs only to store a previous proof and replay it as a valid response
when required. Secondly, the improved protocol is vulnerable to a malicious
server’s deletion attack; namely, the server can generate a valid response in the
integrity checking process after deleting the original data file. Then, we propose
a new RDPC protocol to fix these security problems. Finally, we show the fixed
protocol is secure based on the security model due to Ateniese et al. [3] and
maintains the desirable features of the original protocol on performance.
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Organization. Section 2 gives some preliminaries used in this paper. Section 3
reviews the RDPC protocols in [20] and discusses the security of the protocols.
Section 4 describes our new RPDC protocol. Section 5 provides security proofs
for the new RDPC protocol and Section 6 concludes the paper.

2 Preliminaries

In this section, we review basic knowledge of the RDPC protocols, including
security model, components and security requirements of a RDPC protocol.

2.1 System Model

The remote data possession checking architecture for cloud storage involves two
kinds of entities: a cloud server and its users. The cloud server, which has signif-
icant storage space and computation resources, stores users’ data and provides
data access service. The users have large amount of data to be stored on the
cloud in order to eliminate the overhead of local storage. As users no longer
possess the entire data locally and the cloud server is not fully-trusted, it is of
critical importance for users to ensure their data are correctly stored and main-
tained in the cloud. Therefore, the users should be able to efficiently check the
integrity and correctness of their outsourced data.

2.2 Components of a RDPC Protocol

A remote data possession checking protocol, which can be used to verify the in-
tegrity of the users’ data, consists of five phases: Setup, TagBlock, Challenge,
ProofGen and ProofVerify [3, 4].

– Setup is a probabilistic algorithm run by the user to setup the protocol. It
takes a security parameter κ as input and returns k as the secret key of the
user.

– TagBlock is a probabilistic algorithm that is run by the user to generate
tags for a file. It takes the secret key k and a file F as input and returns the
set of tags T for file F .

– Challenge is a probabilistic algorithm that is run by the user to gener-
ate a challenge. It takes the security parameter κ as input and returns the
challenge chal.

– ProofGen is a deterministic algorithm that is run by the cloud server in
order to generate a proof of possession. It takes the blocks of file F and the
set of tags T as input and returns a proof of possession R for the challenged
blocks in F .

– ProofVerify is a deterministic algorithm that is run by the user in order to
evaluate a proof of possession. It takes his secret key k, the challenge chal
and the proof of possession R as input, and returns whether the proof is a
correct proof of possession for the blocks challenged by chal.
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2.3 Security Requirements

In cloud storage, the cloud server could be self-interested and might hide data
corruption incidents to maintain its reputation. So a practical remote data pos-
session checking protocol should be secure against the internal attacks a cloud
server can launch, namely replace attack, forge attack, replay attack and deletion
attack [14].

– Replace attack: The server may choose another valid pair of data block and
tag (Fi, Ti) to replace a challenged pair of data block and tag (Fj , Tj), when
it has already discarded Fj or Tj.

– Forge attack: The server may forge valid tags of data blocks to deceive the
user.

– Replay attack: The server may generate a valid proof of possession R from
previous proofs or other information, without accessing the outsourced data.

– Deletion attack: The server may generate a valid proof R making use of the
tags T or other information, even the user’s entire file has been deleted.

The security game due to Ateniese et al. [4] covers all the attacks mentioned
above by capturing that an adversary cannot produce a valid proof without
possessing all the blocks corresponding to a given challenge, unless it guesses all
the missing blocks. The details of the game are as follows:

– Setup: The challenger runs Setup algorithm to generate a secret key k and
keeps it secret.

– Query: The adversary chooses some data blocks Fi(i = 1, · · · , n) and makes
tag queries adaptively. The challenger computes the corresponding tags
Ti(i = 1, · · · , n) for the blocks and sends them back to the adversary.

– Challenge: The challenger generates a challenge chal and requests the adver-
sary to respond a proof of possession R for the challenged blocks.

– Forge: The adversary computes a proof R for the challenged blocks and
returns it to the challenger.

The adversary wins the game if VerifyProof(k, chal, Ti(i = 1, · · · , n), R)
holds. A RDPC protocol is secure against a malicious server if for any (prob-
abilistic polynomial-time) adversary the probability that it wins the security
game on a set of file blocks is negligible.

3 On the Security of the RDPC Protocols

In this section, we review the basic RDPC protocol and the improved one in [20]
and show that both protocols are insecure against the replay attack, and the
improved scheme is also susceptible to the deletion attack.



Improvement of a Remote Data Possession Checking Protocol 363

3.1 A Brief Review of the RDPC Protocols

The following symbols are used in the RDPC protocols in [20].

– t: the number of verifications;
– c: the number of blocks challenged in each challenge;
– Ekt(·), Dkt(·): the encryption and decryption algorithms of a symmetric
cryptosystem, where kt is the symmetric key;

– F = F [1], · · · , F [n]: F denotes a file name, and F [i] denotes the ith data
block of the file F ;

– T = T1, · · · , Tt: T denotes the set of block tags and Ti denotes the ith tag;
– f(·): {0, 1}κ × {0, 1}l → {0, 1}l, denotes a pseudo-random function (PRF);
– σ(·): {0, 1}κ × {1, · · · , n} → {1, · · · , n}, denotes a pseudo-random permuta-
tion (PRP);

– ASg(·): denotes an algebraic signature algorithm. Here the algebraic signa-
ture on a block s0, s1, · · · , sn−1 is defined as:

ASg(s0, s1, · · · , sn−1) =
∑n−1

i=0 si · gi,
where g is a primitive element of a Galois field [21].

The details of the basic RDPC protocol in [20] are described in Figure 1.

Setup: The user generates a master

key k
R←−− {0, 1}κ, an encryption key

kt
R←−− {0, 1}κ, and two random

values r1, r2
R←−− {0, 1}κ.

TagBlock:

0 < i ≤ t

ki = fk(r1 + i)

s = 0

for 0 < j ≤ c

lj = σki(r2 + j)

s = s+ F [lj]

δi = ASg(s)

Ti = Ekt(δi)

The user sends < F, T > to the server.

Challenge: For the ith challenge,

the user computes ki = fk(r1 + i),

and sends < r2, ki > to the server.

ProofGen:

F ′
i = 0

for 0 < j ≤ c

lj = σki(r2 + j)

F ′
i = F ′

i + F [lj ]

return < F ′
i , T

′
i >.

ProofVerify:The user checks whether

ASg(F
′
i ) = Dkt(T

′
i ) holds.

Fig. 1. The basic RDPC protocol in [20]

An improved scheme using challenge updating was proposed as well to over-
come the drawback of limited number of data verifications in the basic protocol.
The new tag generation and challenge updating are shown in Figure 2 and the
other processes are the same as those of the basic protocol.
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Setup: The user picks a master key k
R←−− {0, 1}κ, the encryption key

kt
R←−− {0, 1}κ, and three random numbers r1, r2, r3

R←−− {0, 1}κ.

TagBlock:

for 0 < i ≤ n

τi = ASg(F [i])

for 0 < i ≤ t

s = 0

ki=fk(r1 + i)

for 0 < j ≤ c

lj = σki(r2 + j)

s = s+ τlj

Ti = Ekt(s)

Forward < F, T, τ > to the server.

Challenge-updating:

For the mth updating

kum = fk(r3 +m)

for 0 < i ≤ t

s=0

ki = fku
m
(r1 + i)

for 0 < j ≤ c

lj = σki(r2 + j)

s = s+ τlj

T ′′
i = Ekt(s)

Send < T ′′ > to the server.

Fig. 2. The improved RDPC protocol in [20]

3.2 Replay Attacks on the Protocols

The User

1.For the first challenge,

compute k1 = fk(r1 + 1) �< r2, k1 >

The Server

2.Compute lj = σk1(r2 + j) for

1 ≤ j ≤ c and F ′
1 =

∑c
j=1 F [lj ]� < F ′

1, T
′
1 >

3.Verify ASg(F
′
1) = Dkt(T

′
1)

4.If the proof is available, discard

< F, T >, and keep < F ′
1, T

′
1 >

5.For the ith challenge,

compute ki = fk(r1 + i) �< r2, ki >

6.Replay < F ′
1, T

′
1 >� < F ′

1, T
′
1 >

7.Verify ASg(F
′
1) = Dkt(T

′
1)

Fig. 3. Replay attack on the RDPC protocols

The replay attack, a serious security threat to RDPC protocols, says that the
server can generate a valid proof from previous proofs or other information
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without accessing the actual data of the user. In the RDPC protocols in [20], since
the replayed proof < F ′

1, T
′
1 > can always make the equation ASg(F

′
1) = Dkt(T

′
1)

hold and as a consequence, the server only needs to keep < F ′
1, T

′
1 > instead of

the entire file and verifiable tags < F, T > of the user. Thus, the RPDC protocols
in [20] are insecure against replay attack as shown in Figure 3.

3.3 Deletion Attack on the Improved Protocol

The deletion attack enables the server to generate a valid proof from the block
tags or other information after deleting all the stored data of the user. In the
improved protocol in [20], the server can launch deletion attack to fool the user
to believe that the data in the cloud are well maintained, while actually only the
block tags are stored. The details of the attack are shown below:

– Receiving the stored file < F, T, τ > from the user, the server keeps the
values < T, τ > and discards the file F .

– When receiving the ith challenge < r2, ki > from the user, the server com-
putes lj = σki(r2 + j) for each j ∈ [1, c], and generates the lj-th data block
F ∗[lj ] = s∗lj,0, · · · , s∗lj ,n−1 using τlj as follows: pick n − 1 random values
s∗lj ,1, · · · , s∗lj ,n−1, and compute s∗lj ,0 as:

s∗lj ,0 = τlj −
n−1∑

j=1

s∗lj ,j · gj .

– After generating all the challenged data blocks {F ∗
l1
, · · · , F ∗

lc
}, the server

computes F ∗
i =

∑c
j=1 F

∗
lj

and responds the proof < F ∗
i , Ti > to the user.

The verification equation ASg(F
∗
i ) = Dkt(T1) holds since F ∗

i is equal to Fi

and thus, the user believes that the data in the cloud are well maintained. But
in fact, the server stores only the block tags of the file < T, τ > instead of the
whole data < F, T, τ >. As a consequence, the server can delete the file F and
rent the storage space to other cloud users without being detected by the user
in data possession checking process.

4 Our RDPC Protocol

To enhance the security of original RDPC protocols in [20], we incorporate the
basic RDPC scheme and the tricks due to Shacham and Waters [6, 7], namely,
we involve the name of the file Fid and the block sequence numbers i in generat-
ing block tags. Besides, since algebraic signatures in [20] are non-cryptographic
encoding methods rather than digital signatures, the server can generate a valid
proof using the block tags τ after deleting all the data of the user. In our proto-
col, we enhance the algebraic signature algorithm by involving pseudo-random
functions. Moreover, to improve the efficiency of the RDPC protocol, we make
use of the random sampling technique to challenge the server. It’s not necessary
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for the user to update the tags after t times verifications in the new protocol.
Besides, the communication flows of our RDPC protocol should be transmit-
ted via an authenticated and reliable channel in order to avoid the attack by
Ni et al. [22]. The details of Setup, TagBlock, Challenge, ProofGen and
ProofVerify are shown below.

– Setup: κ denotes the security parameter which determines the size of a prime
q. Let G1 be a cyclic group generated by g with order q. The user generates

a secret key k
R←−− Z∗

q , and defines two pseudo-random functions (PRF): δ:
{0, 1}∗ × Z∗

q → Z∗
q and φ: Z∗

q × Z∗
q → Z∗

q . π: Z
∗
q × {1, · · · , n} → {1, · · · , n}

represents a pseudo-random permutation (PRP); H : {0, 1}∗ → Z∗
q stands

for a hash function. Choose kenc as the secret key of a symmetric encryption
scheme Enc(·) and Dec(·).

– TagBlock: Given a file F , the user firstly splits F into m blocks
F = {F [1], · · · , F [m]}, further divides each block say F [i] into n sectors
{si,1, · · · , si,n}. Next, the user picks n random values {α1, · · · , αn} in Z∗

q

and generates τ = Fid||m||n||Enckenc(α1|| · · · ||αn) as the file tag of the file
F where Fid is the name of the file F . Then, the user computes the verifiable
tag of F [i] as

Ti =

n∑

j=1

(αj · si,j +H(Fid||gid||i)) · gjid,

where gid is computed as gid = δk(Fid). Finally, the user sets T =
{T1, · · · , Tm} and sends (τ, F, T ) to the server.

– Challenge: The user chooses a value c as the number of the blocks chal-

lenged, and generates two random numbers k1
R←−− Z∗

q , k2
R←−− Z∗

q , then
sends the challenge chal = (c, k1, k2) to the server.

– ProofGen: Upon receiving the challenge from the user, the server computes
the lt = πk1 (t) and at = φk2(t) for 1 ≤ t ≤ c. Then the server generates
σ =

∑c
t=1 at · Tlt and ρj =

∑c
t=1 atslt,j for 1 ≤ j ≤ n. Finally, the server

sets ρ = {ρ1, ρ2, · · · , ρn} and responds (τ, σ, ρ) to the user.

– ProofVerify: Upon receiving the proof from the server, the user computes
lt = πk1(t), at = φk2(t) for 1 ≤ t ≤ c and gid = δk(Fid), then decrypts
α1|| · · · ||αn = Deckenc(Enckenc(α1|| · · · ||αn)) and checks whether the iden-
tity holds:

σ =
n∑

j=1

(αj · ρj +
c∑

t=1

(at ·H(Fid||gid||lt))) · gjid.

If the equation holds, it indicates the user’s data are well maintained; Oth-
erwise, the data have been corrupted. The protocol is illustrated in Figure
4.
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The User

1.Compute τ and Ti =
∑n

j=1(αjsi,j +H(Fid||gid||i))gjid
for F [i] where gid = δk(Fid). �(τ, F, T )

The Server

2.Store (τ, F, T ).

3.Generate a random challenge:

chal = (c, k1, k2) �(c, k1, k2) 4.Compute lt = πk1(t) and

at = φk2 (t) for 1 ≤ t ≤ c.

5.Generate σ =
∑c

t=1 at · Tlt .

6.Generate ρj =
∑c

t=1 atslt,j

for 1 ≤ j ≤ n.�(τ, σ, ρ)
7.Compute lt = πk1(t) and

at = φk2 (t) for 1 ≤ t ≤ c

and gid = δk(Fid).

8.Decrypt τ and check whether the equation

σ =
∑n

j=1(αj · ρj +
∑c

t=1(at ·H(Fid||gid||lt))) · gjid holds.

Fig. 4. Our new RDPC protocol

The correctness of the protocol is elaborated as follows:

σ =

c∑

t=1

at · Tlt (1)

=

c∑

t=1

at ·
n∑

j=1

(αj · slt,j +H(Fid||gid||lt)) · gjid (2)

=

n∑

j=1

c∑

t=1

at(αj · slt,j +H(Fid||gid||lt)) · gjid (3)

=
n∑

j=1

(
c∑

t=1

at · αj · slt,j +
c∑

t=1

at ·H(Fid||gid||lt)) · gjid (4)

=
n∑

j=1

(αj · ρj +
c∑

t=1

(at ·H(Fid||gid||lt))) · gjid (5)

5 Security Proofs

In this section, we prove that our RDPC protocol is secure under the security
model of Ateniese et al. [3] using the tricks due to Shacham and Waters [6, 7].
Intuitively, without maintaining the whole file, an adversary cannot generate
a valid response to a challenge. That is, we will prove that the ProofVerify
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algorithm will reject except when the prover’s ρj are computed correctly, i.e. are
such that ρj =

∑c
t=1 atslt,j .

Theorem 1. If the pseudo-random function is secure and the symmetric en-
cryption scheme is semantically secure, then there exists no adversary to break
our RDPC protocol, that cause the user to accept a corrupted proof in the re-
mote data possession checking process, within non-negligible probability, except
the responding proof (σ, ρ) is computed correctly by ProofGen phase.

In order to prove theorem 1, we construct a series of games and interleave
the game description by limiting the difference in adversary’s behavior between
successive games.

Game 0. The first game, Game 0, is defined the same as the security game
defined in Section 2.3.

Game 1. In Game 1, the challenger uses the a random bit-string of the same
length as encryption of α1|| · · · ||αn to replace the ciphertext. When given a
challenged tag, the adversary can distinguish the encrypted value of the tag,
rather than attempting to decrypt the ciphertext, the challenger declares failure
and aborts.
Analysis. In Game 1, the challenger keeps a table of plaintexts α1|| · · · ||αn and
their tags to respond queries in decryption oracles. The challenger can break the
semantic security of the symmetric encryption scheme employing the adversary
if the probability of the adversary’s success between Game 0 and Game 1 is non-
negligible. In order to bridge the gap between Game 0 and Game 1, we must use
a hybrid argument between “all valid encryption” and “no valid encryption”,
which will cause the reduction suffer a 1/qs security loss, where qs is the number
of queries made by the adversary.

Specifically, the challenger interacts with the adversary A following the se-
curity game in section 2.3 and keeps track of the files stored by A. Then, if A
succeeds in some data integrity checking interaction with a proof that is differ-
ent from that would be generated by the ProofGen algorithm, the challenger
aborts and outputs 1; Otherwise, outputs 0. Assume the challenger outputs 1
with some non-negligible probability ε0 if its behavior is as specified in Game
0, and the challenger outputs 1 with some non-negligible probability ε1 if its
behavior is as specified in Game 1, we will show that the gap between ε0 and ε1
is negligible as long as the symmetric encryption scheme is semantic secure.

In game 0, the challenger uses the ciphertext of α1|| · · · ||αn to generate each
tag. In Game 1, the challenger encrypts a random string of the same length
in generating each tag. Suppose that |ε1 − ε0| is non-negligible. Consider the
hybrid argument in which the challenger generates the first i tags using random
ciphertexts, and the remaining qs − i tags involving random values. Thus, there
must be a value of i such that the difference between the challenger’s outputs in
hybrid i and hybrid i+1 is at least |ε1−ε0|/qs, which is non-negligible. According
to this, we will construct an algorithm B to break the security of the symmetric
encryption scheme.
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The encryption oracle for kenc is accessible to B, as well as a left-or-right
oracle which given strings m0 and m1 of the same length, outputs the encryption
of mb, where b is a random bit. B interacts with A acting as the challenger. In
answeringA’s first i queries, B uses its encryption oracle to obtain the encryption
of α1|| · · · ||αn, which includes in the tag. In answering A’s the (i + 1)th query,
B generates the correct plaintext m0 = α1|| · · · ||αn and a random plaintext m1

of the same length and submits both to its left-or-right oracle. In answering A’s
remaining queries, B encrypts a random plaintext which has the same length as
the correct plaintext using its encryption oracles and includes the result in the
tags. B keeps track of the files stored by the adversary. If A succeeds in some
data possession checking interaction but the proof is different from that would
be generated by the ProofGen algorithm, the challenger aborts and outputs 1;
Otherwise, outputs 0.

If the left-or-right oracle receives its left input, B is interacting with A accord-
ing to hybrid i. If the left-or-right oracle receives its right input, B is interacting
with A according to hybrid i + 1. There is a non-negligible difference in A’s
behavior and therefore in B’s, which breaks the security of the symmetric en-
cryption scheme. Note that, since the values α1|| · · · ||αn are randomly chosen
and independent with each file, the values given by B to its left-or-right ora-
cle are consistent with a query it makes to its encryption oracle with negligible
probability.

Game 2. In Game 2, the challenger uses truly random values in Z∗
p instead of

the outputs of the pseudo-random function δ, remembering these values to use in
verifying the validation of the adversary’s responses in data possession checking
instances. More specifically, the challenger evaluates gid not by applying the
PRF gid = δk(Fid), but by generating a random value r ← Z∗

q and inserting an
entry (k, Fid, r) in a table; it queries this table when evaluating the PRF δ to
ensure consistency.
Analysis. In Game 2, the challenger uses random values to replace the outputs
of the PRF δ and then keeps a table of (k, Fid, r) to ensure the verification of the
adversary’s proof. If there is a difference in the adversary’s success probability
between Games 1 and 2, we can use the adversary to break the security of the
PRF δ. This means that if the adversary can distinguish random values from
the outputs of PRF, the challenger can break the security of the PRF involving
the adversary.

As in the analysis of Game 2, the difference in behavior we use to break the
security of PRF is the event that the adversary succeeds in a data possession
checking interaction but responded values (σ, ρ) are different from those that
would be by the ProofGen algorithm. Similar to the analysis of Game 1, a
hybrid argument is necessary to proof Game 2 with a security loss 1/(mqs)
in the reduction, where m is a bound on the number of blocks in any file the
adversary requests to have stored.

Game 3. In Game 3, the challenger handles RDPC protocol executions initiated
by the adversary differently than in Game 2. In each such RDPC protocol execu-
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tion, the challenger issues a challenge as before. However, the challenger verifies
the adversary’s response differently from what it specified in ProofVerify phase.

The challenger keeps a table of the TagBlock queries made by the adversary
and the corresponding responses to maintain consistency; the challenger knows
the values ρj and σ that the sever would have produced in response to the query
it issued. If the values the adversary sent were exactly these values, the challenger
accepts the adversary’s response. If in any of these interactions the adversary
responds in such a way that (1) passes the verification algorithm but (2) is not
what would have been computed by an honest server, the challenger declares
failure and aborts.
Analysis. The adversary’s view is different in Game 3 and Game 2 only when
the response of adversary (1) can make the verification algorithm satisfied but
(2) is not what would have been computed by the challenger, which acts as an
honest server, in some RDPC protocol interaction. We show that the probability
that this happens is negligible.

Before analyzing the difference in probabilities between Game 3 and Game
2, we firstly describe the notion and draw a few conclusions. Suppose the file F
that causes the abort is divided into m data blocks F = F [1], · · · , F [m], further
divides each block into n sectors F [i] = si,1, · · · , si,n. Fid denotes the name of
the file F and i represents the block number of F [i]. Assume chal = (c, k1, k2)
is the query that causes the challenger to abort and the adversary’s response to
that query is (σ∗, ρ∗). If the adversary’s response satisfies the verification–i.e., if

σ∗ =

n∑

j=1

(αj · ρ∗j +
c∑

t=1

(at ·H(Fid||r||lt))) · rj ,

where lt = πk1(t) and at = φk2 (t) for 1 ≤ t ≤ c and r is the random value
substituted by Game 2 for gid. Let the expected response, which would have
been obtained from an honest prover, be (σ, ρ), where σ =

∑c
t=1 at ·Tlt and ρj =∑c

t=1 atslt,j . Because of the correctness of the protocol, the expected response
can pass the verification equation, that is

σ =

n∑

j=1

(αj · ρj +
c∑

t=1

(at ·H(Fid||r||lt))) · rj .

Observe that if ρ∗j = ρj for each j, the value of σ∗ should be equal to σ, which
contradicts our assumption above. Therefore, let us define Δσ = σ∗ − σ and
Δρj = ρ∗j − ρj for 1 ≤ j ≤ n and subtracte the verification equation for σ from
that for σ∗, we have

Δσ =

n∑

j=1

αj ·Δρj · rj .

The bad event occurs exactly when some Δρj is not zero, which means that
the adversary’s submitting a convincing response is different from an honest
server’s response.
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However, the values {α1, · · · , αn} for every file are randomly chosen and there-
fore independent of the adversary’s view. There is no other needed to consider
the encryption in generating the tags, and the appearance is in computing Ti =∑n

j=1(αj ·si,j+H(Fid||r||i))·rj , whereH(Fid||r||i) is a secure hash function. Since
the output of δ is replaced by a random value r, Ti is independent of {α1, · · · , αn}.
Therefore, the probability that the bad event happens if the challenger first picks
the random values {α1, · · · , αn} for each stored file and then undertakes the data
possession checking interactions is the same as the probability that the bad event
happens if the challenger first undertakes the data possession checking interac-
tions and then chooses the value {α1, · · · , αn} for each file.

Consider the values Δρj and Δσ in responses from the adversary and the
choice of {α1, · · · , αn}. The probability makes the equation Δσ =

∑n
j=1 αj ·Δρj ·

rj hold for a specific entry in an interaction is 1/p. Therefore, the probability
that the equation holds for a nonzero number of entries is at most qP /p, where
qP is the number of RDPC protocol interactions initiated by the adversary.
Thus, except with negligible probability qP /p, the adversary never generates a
convincing response which is different from an honest server’s response, so the
probability of the challenger aborts is negligible.

Wrapping Up. Yet we have argued that, assuming the PRF is secure and the
symmetric encryption is semantic security, there is only a negligible difference in
the success probability of the adversary in Game 3 compared to Game 0, where
the adversary is not constrained in this manner. This completes the proof of
Theorem 1.

6 Conclusion

In this paper, we presented a security analysis on a remote data possession check-
ing protocol using algebraic signature in [20], and showed that it suffers from the
replay attack and deletion attack. We also proposed an improved protocol by
using the techniques of Shacham and Waters [6,7] to fix these security flaws. In-
volving the security model due to Ateniese et al [3], we provided formal security
proofs of our new RDPC protocol.
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