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ABSTRACT 
 
We have been developing several automated methods for detecting abnormalities in fundus images. The purpose of this 
study is to improve our automated hemorrhage detection method to help diagnose diabetic retinopathy. We propose a 
new method for preprocessing and false positive elimination in the present study. The brightness of the fundus image 
was changed by the nonlinear curve with brightness values of the hue saturation value (HSV) space. In order to 
emphasize brown regions, gamma correction was performed on each red, green, and blue-bit image. Subsequently, the 
histograms of each red, blue, and blue-bit image were extended. After that, the hemorrhage candidates were detected. 
The brown regions indicated hemorrhages and blood vessels and their candidates were detected using density analysis. 
We removed the large candidates such as blood vessels. Finally, false positives were removed by using a 45-feature 
analysis. To evaluate the new method for the detection of hemorrhages, we examined 125 fundus images, including 35 
images with hemorrhages and 90 normal images. The sensitivity and specificity for the detection of abnormal cases was 
were 80% and 88%, respectively. These results indicate that the new method may effectively improve the performance 
of our computer-aided diagnosis system for hemorrhages. 
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1. INTRODUCTION 
 

The detection of hemorrhages is one of the important factors in the early diagnosis of diabetic retinopathy (DR). The 
existence of hemorrhages is generally used to diagnose DR or hypertensive retinopathy by using the classification 
scheme of Scheie. In spite of detecting microaneurysms, it is difficult for ophthalmologists to find them in noncontrast 
fundus images. The contrast observed in a microaneurysm image is very low; therefore, ophthalmologists usually detect 
microaneurysms by using fluorescein angiograms. However, it is difficult to use fluorescein as a contrast medium for 
diagnosing all the medical examinees subjected to mass screening. Therefore, the patients who show the possibility of 
having DR were thoroughly examined at a hospital in Japan. 

The number of patients with adult diseases such as diabetes and hypertension is on the rise in Japan. To prevent or 
detect these diseases in early stages, ophthalmologists rely on the examination of fundus images obtained from patients 
aged over 40 years during complete health examinations or mass screenings. DR is a complication associated with 
diabetes, and there is a high probability that diabetic patients will develop this condition within 10 years from the onset 
of diabetes. Furthermore, DR is the leading cause of blindness. In Japan, there are approximately 7.4 million patients 
with diabetes and approximately 16.2 million patients who may have diabetes [1]. Approximately three million are 
thought to suffer from DR. This disease can be prevented from developing into blindness if it is treated at an early stage. 
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However, it has been recorded that approximately 3,000 people have lost their vision following the onset of DR. Fundus 
photographs obtained by the fundus camera are used to diagnose DR. Japanese ophthalmologists usually examine the 
presence of hemorrhages, microaneurysms, and exudates in order to diagnose DR. 

Recently, many studies have been reported on the use of fundus images in the detection DR [2–9]. Niemeijer et al. 
proposed a method for the detection of microaneurysms in fluorescein angiograms [2–4]. Their method comprised two 
steps. Firstly, microaneurysms were detected by using a watershed transform. The false positives were then reduced by 
reliable vessel detection in the vicinity of each microaneurysms candidate. Serrano et al. proposed a method for 
detecting microaneurysms by the region growing technique in order to analyze fluorescein angiograms [5]. Usher et al. 
presented a method for detecting hemorrhages, microaneurysms, and exudates [6, 7]. The region growing method used 
by them segmented the abnormal and retinal regions. Nagayoshi et al. presented a method that included two additional 
processes to this method [8]. One of these was the normalization of the color pixel values and the other was the use of 
the color pixel values for blood vessels. Moreover, the previous method had the drawback of a long operation time of 
approximately 43 s per image [8].  

We also reported a method for detecting hemorrhages and exudates in noncontrast fundus images [9]. Although the 
sensitivity for hemorrhages was 85%, the specificity was 21%. In our previous study, we had two problems—the 
absence of a technique to normalize fundus images and the removal of false positives. In this study, we aim to develop 
methods for fundus image normalization and false positive elimination method in the noncontrast images. 
 
 

2. METHODS 
 
2.1 Overall Scheme 

The flowchart for our overall detection scheme is shown in Fig. 1. It consists of seven stages: (1) image digitization, 
(2) image normalization, (3) extraction of optic nerve head, (4) detection of hemorrhage candidates, (5) elimination of 
false positives in blood vessels, (6) elimination of funicular-shaped false positives, and (7) elimination of false positives 
by feature analysis. Further details are described below. 

 
2.2 Image digitization 

One hundred forty five fundus images were captured using a fundus camera and a flatbed-type scanner. Eighty seven 
fundus images were obtained at a resolution of an array of 1,600 × 1,600 pixels with 24-bit color, and 58 fundus images 
were obtained at a resolution of an array of 2,800 × 2,800 pixels with 24-bit color. An example of a color fundus image 
is shown in Fig. 2 (a). 

Subsequently, the scale of the matrix was first reduced to the VGA size (width 640 pixels) by obtaining detailed 
subsamples from the original image data to improve processing efficiency. 

 
2.3 Image normalization 

Due to the flash, there is an atypical change in the color of the fundus images. We suggested a scheme of brightness 
correction using hue saturation value (HSV) space. First, the brightness values of the HSV space were calculated. The 
brightness correction value Bc(i, j) is given by the following equation:  

 
2( , ) 1 { ( , ) 1}Bc i j V i j= − −       (1) 

 
where V(i, j) is the brightness value of the HSV space. 

 
( , ) , : ( , ), ( , ), ( , )V i j MAX MAX R i j G i j B i j=    (2) 

 
Next, the red value R(i, j), green value G(i, j), and blue value B(i, j) changed by Bc(i, j) are given by the following 
equation: 
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Fig. 1. Flowchart for detecting hemorrhages on fundus images. 
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where H(i, j) is the hue value and S(i, j) is the saturation value. 
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However, equation (2) cannot be used when S(i, j) is zero. The brightness was equally corrected from the center to the 
skirt region of the fundus image (as shown in Fig.2 (b)). The color fundus images corrected by Bc(i, j) were then 
processed by gamma correction. The gamma value was experimentally set to 1.5 (as shown in Fig.2 (c)). Finally, the 
histograms of each red, blue, and blue-bit were extended (as shown in Fig.2 (d)). The fundus images were standardized 
and made unclear by using these processes. 
 

       
(a)                                    (b) 

       
(c)                                   (d) 

 
Fig. 2. Color contrast enhancement. (a) Original color fundus image. (b) Brightness of fundus image 

was changed by the nonlinear curve with brightness values of HSV space. (c) Image after 
processing by gamma correction. (d) Image was adjusted in the dynamic range.  
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2.4 Extraction of optic nerve head 
The color images were converted into the grayscale images by selecting only the green component. Thus achieving a 

clearer contrast was obtained as compared to the original images, which included all the color components. After the 
optic nerve head was highlighted with brightness greater than that used for highlighting other tissues, it was investigated 
by the p-tile method [10]. The shape of the detected region was approximated to a circle. 
 
2.5 Detection of hemorrhage candidates 

The pixel values of hemorrhages in an image are lower than those of other regions. Therefore, the haemorrhages 
were detected by performing finite difference calculations along with smoothing. This method was carried out in two 
steps: the rough and detailed detection processes. Firstly, the fundus images were smoothed by using a mask of 3 × 3 
pixels. Next, the difference in the pixel values between two smoothed images was calculated. Subsequently, the 
hemorrhage and blood vessel candidates were segmented by the thresholding technique. Fig. 3 (b) shows an image of 
the roughly detected vessels. As shown in this image, the end of thin vessels was not detected. Therefore, the end of the 
vessels was detected by using a similar method that uses two types of images smoothed with a mask of 9 × 9 pixels. Fig. 
3 (c) shows an image of the detailed parts of the vessels. By combining both types of techniques for the detection of 
hemorrhages and vessels, we could detect all the blood vessels from the optic nerve head up to the end of the vessels. 
Fig. 3 (d) shows an image of the end of the vessels. Finally, the vessel candidates connected to the optic nerve head 
were eliminated (as shown in Fig. 3 (e)) and the vessel candidates with large or very small areas were eliminated. Fig. 3 
(f) shows an example of a resulting image. 

 

 
              (a)                             (b)                               (c) 
 

 
(d)                              (e)                               (f) 

 
Fig. 3. Illustration of the hemorrhage detection processes. (a) Input image. (b) Roughly detected 

hemorrhages and blood vessels. (c) Details of detected hemorrhages and blood vessels. (d) 
Combination of (b) and (c). (e) Candidates connecting blood vessels and candidate with large 
areas were eliminated. (f) Final image of hemorrhage detection. 
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2.6 Elimination of incorrectly detected vessels 
The images of the retinal vessel include those reflected from the arterial wall. Further, the fundus images were 

obscured due to cataract. Therefore, it was difficult to detect all the vessels up to the end by using the method proposed 
in section 2.5. We can resolve such difficulties by changing the threshold value proposed in section 2.5. However, the 
hemorrhage candidates were connected to the vessel candidates. Therefore, our method could not separate the connected 
candidates into hemorrhage and vessel candidates. The measures taken to resolve this problem can be described as 
follows. 

Firstly, the threshold value was selected in such a manner that the vessels could be continuously detected. The 
centerlines of the vessels were extracted by using a thinning technique. Subsequently, the centerlines with large areas 
were extracted in such a manner that the hemorrhage candidates could not be extracted. Finally, the vessels extracted 
with the centerlines were eliminated in order to avoid the vessels from being incorrectly detected.  
 
2.7 Elimination of funicular shapes 

All the false positives on the vessels were not eliminated by the method proposed in section 2.6. Hence, the 
remaining false positives were eliminated by evaluating the length-to-width ratio. The value of this ratio was small 
when the candidate was incorrectly detected as a vessel. The details of the evaluation can be described as follows. 
Firstly, the minimum rectangular region that surrounds the candidates was determined. The angle of the hemorrhage 
candidate was then determined by calculating the moment so that the X and Y axes could be determined by using the 
obtained angle. Subsequently, binarized images were projected on the X and Y axes. By examining each of the projected 
images, the positions Xa, Xb, Ya, and Yb were determined. In this way, we could specify the black and white regions. 
Finally, we could determine the length-to-width ratio, denoted by LW, using the following equation: 
 
 

      (5) 
 
 
where min(|Xa–Xb|,| Ya–Yb |) is the mean value of the width, and max(|Xa–Xb|,| Ya–Yb |) is the mean value of the 
length. 
 
2.8 Elimination of false positives by feature analysis 

The minimum rectangular region that surrounds the hemorrhage candidates extends beyond five pixels in each 
direction along the X and Y axes. Next, the average pixel values inside and outside the candidate region were calculated. 
Further, the contrast was determined by evaluating the ratio between the two average values.  

Furthermore, we proposed a cascade classification process. 
At first, the false positives were eliminated by a rule-based method using 45 features. Typical false positives were 
eliminated in this step. We extracted the following 15 features from the rectangular regions: 12 features calculated from 
the co-occurrence matrix [11], two features based on gray-level difference statistics [12], and one feature determined by 
the extrema method [13]. The 12 features from the co-occurrence matrix were (1) angular second moment, (2) contrast, 
(3) correlation, (4) sum of squares, (5) inverse difference moment, (6) sum average, (7) sum variance, (8) sum entropy, 
(9) entropy, (10) difference variance, (11) difference entropy, and (12) information measurements for correlation. The 
two features based on gray-level difference statistics were (a) angular second moment and (b) mean. The minimum 
rectangular region that surrounds the candidates was determined. These features were calculated in the rectangular 
regions in the three grey-level images, which comprised red, green, and blue-bit images.  

Finally, the false positives were eliminated by employing the discemment machines and using Mahalanobis 
distances [14]. It was used suggested three Mahalanobis’ distances by using above 15 features from the rectangular 
regions in the three grey level images. 
 
 

3. RESULTS AND DISCUSSIONS 
 

The contrast of hemorrhages in the images was enhanced. The contrast of the processed image (as shown in Fig. 4 
(c)) was higher than that of the original image (as shown in Fig. 4 (b)). Moreover, the color of the processed image was  
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            (a)                              (b)                               (c)  
 

  
(d)                              (e) 
    

Fig. 4. Process of hemorrhage enhancement. (a) Original image. (b) Enlarged image of the region 
indicated by the white rectangle in (a). Black arrow shows the hemorrhage. (c) Enhanced image 
of (b). (d) Enlarged image of the region indicated by the gray rectangle in (a). Black arrow shows 
the laser mark. (e) Enhanced image of (d). 

 
standardized by the histogram extended method. However, if the fundus image has some laser marks, the marks are 
changed blighter and more obscure than the original color pixel (as shown in Fig.4 (d) and (e)). 

We set some parameters experimentally by using 20 fundus images with hemorrhage. The sensitivity was 95% 
(19/20). To eliminate the incorrectly detected hemorrhages, we used 45 calculated features. One hundred and twelve 
hemorrhages were detected with 630 false positives in 20 fundus images. Table 1 shows the number of false positives 
eliminated by using the rule-based method. In Table 1, the most effective grey-scale image is the green-bit image. 
Moreover, the most valid feature was the information measure of correlation from the co-occurrence matrix for the 
green-bit image, which could eliminate 74 false positives (12%) by the rule-based method. However, four features in 
the green-bit image could not eliminate one for false positive. When we used 45 features for the elimination of false 
positives, 166 false positives (26%) were eliminated without the loss of a true positive.  

Then, we constructed a discemment machine by using Mahalanobis distances; we used 45 features for each grey-
scale image (as shown in Table 2). When we constructed a discemment machine by using 112 true positives and 630 
false positives, 117 false positives (19%) were eliminated. Table 2 shows that the most effective image is the blue-bit 
one, though Table 1 showed the most effective image was green-bit one. We think that the worst features that were 
ineffective had a negative influence on the discemment machine with regard to the green-bit image. 

Subsequently, 219 false positives (35%) were eliminated using a rule-based method and three discemment machines 
by Mahalanobis’ distances. 

Finally, to evaluate our method of detecting hemorrhages, we examined 125 fundus images; hemorrhages were 
detected in 35 images, and no abnormal cases were detected in the remaining 90 images. By using our scheme, we 
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succeeded in obtaining satisfactory results with a sensitivity of 80% (28/35) when the specificity was 88% (79/90). Our 
scheme could not detect any hemorrhages. The main reason was that hemorrhages that touched the blood vessel were 
undetectable. Our algorithm was not able to separate the blood vessel regions and hemorrhage regions, and therefore 
such hemorrhages were removed together with the blood vessels (discussed in section 2.6).  
 

Table 1. The false positives were eliminated by 45 rule-based methods. 
      

 Features Red Green Blue  

 Extrema 19 9 1  
 CM: Angular second moment 3 26 6  

Contrast 25 5 12  
Correlation 3 8 16  
Sum of squares 24 37 7  
Inverse difference moment 4 2 8  
Sum average 3 3 10  
Sum variance 23 0 11  
Sum entropy 24 0 14  
Entropy 23 7 9  
Difference variance 26 0 14  
Difference entropy 23 0 12  
Information measurements 39 74 17  

 GD: Angular second moment 3 2 11  
Mean 28 5 12  

 Subtotal 58 105 44  

 Total 166  

CM: co-occurrence matrix, GD: gray-level difference statistics 
 
Table 2. The false positives were eliminated by three discemment machines using Mahalanobis distances. 

  
   

 

  Red Green Blue  
 Discemment machine 52 17 64  

 Three discemment machines 
combined  117  

 Forty five rule-based methods and 
Three discemment machines 
combined 

219 
 

 
 

4. CONCLUSION 
 

In this study, a new scheme for automatically detecting hemorrhages is presented by using digitized noncontrast 
fundus images as an example. This scheme can be applied to the computer-aided diagnosis (CAD) system for 
diagnosing eye diseases. The results of the preliminary testing showed a desirable consistency with those obtained from 
the proposed scheme. It was demonstrated that the algorithm detected abnormalities with high accuracy and reliability. 
The result of the initial work on fundus images clarified that the efficiency and accuracy of the diagnosis of DR was 
considerably improved. The results of this study will be sent to ophthalmologists for further evaluation. The efficiency 
and accuracy of the diagnosis of DR was improved due to the detection of hemorrhages with a high accuracy. The 
application of the proposed scheme to fundus images enhances the CAD system performance for detecting hemorrhages 
in fundus images.  
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We have been attempting to develop a synthetic fundus CAD system [15–22]. We reported methods of detecting 
abnormal blood vessels to help in the diagnosis of hypertensive retinopathy [15–18]. Moreover, we proposed a method 
of detecting retinal nerve fiber layer defects (NFLD) [19] and a method of calculating the cup to disc ratio (C/D ratio) 
[20] to help in the diagnosis of glaucoma. In addition, we proposed a technique to obtain the depth value from the stereo 
image pair of a retinal fundus for the 3-D reconstruction of the optic nerve head [21, 22]. In the future, the integrated 
analysis scheme will be further improved and more clinical cases will be reported for evaluating its accuracy. The 
techniques employed in our system will help in improving diagnostic accuracy as well as in reducing the workload of 
ophthalmologists in the future. 
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