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Abstract

The advancement of bioprocess monitoring will play a crucial role to meet the future requirements

of bioprocess technology. Major issues are the acceleration of process development to reduce the

time to the market and to ensure optimal exploitation of the cell factory and further to cope with

the requirements of the Process Analytical Technology initiative. Due to the enormous complexity

of cellular systems and lack of appropriate sensor systems microbial production processes are still

poorly understood. This holds generally true for the most microbial production processes, in

particular for the recombinant protein production due to strong interaction between recombinant

gene expression and host cell metabolism. Therefore, it is necessary to scrutinise the role of the

different cellular compartments in the biosynthesis process in order to develop comprehensive

process monitoring concepts by involving the most significant process variables and their

interconnections. Although research for the development of novel sensor systems is progressing

their applicability in bioprocessing is very limited with respect to on-line and in-situ measurement

due to specific requirements of aseptic conditions, high number of analytes, drift, and often rather

low physiological relevance. A comprehensive survey of the state of the art of bioprocess

monitoring reveals that only a limited number of metabolic variables show a close correlation to

the currently explored chemical/physical principles. In order to circumvent this unsatisfying

situation mathematical methods are applied to uncover "hidden" information contained in the on-

line data and thereby creating correlations to the multitude of highly specific biochemical off-line

data. Modelling enables the continuous prediction of otherwise discrete off-line data whereby

critical process states can be more easily detected. The challenging issue of this concept is to

establish significant on-line and off-line data sets. In this context, online sensor systems are

reviewed with respect to commercial availability in combination with the suitability of offline

analytical measurement methods. In a case study, the aptitude of the concept to exploit easily

available online data for prediction of complex process variables in a recombinant E. coli fed-batch

cultivation aiming at the improvement of monitoring capabilities is demonstrated. In addition, the

perspectives for model-based process supervision and process control are outlined.

Introduction
Bioprocess technology is currently employed for the pro-

duction of several economically important commodity
and fine chemicals [1], enzymes and therapeutically active
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recombinant proteins. To give an indication of the market
volume of the production of recombinant proteins, the
top selling biopharmaceutical product of the year 2000,
reached a world sales volume of € 13 billion in [2]. Due
to economic needs and because of the complex nature of
microbial growth and product formation in batch and
fed-batch cultivations, the monitoring and control of bio-
processes represents an ever-increasing engineering chal-
lenge. In order to achieve optimal exploitation of the
particular production organism, the advancement of bio-
processes to improve monitoring and control capabilities
is pivotal to achieve reduction of production costs and
increase of yield while at the same time maintaining the
quality of the individual metabolic product. However, a
great number of the current processes are still far from
being optimal mainly due to limited process monitoring
capabilities.

For further optimisation of bioprocesses as well as for
ensuring high, consistent product quality, the lack of accu-
rate real-time monitoring of different physical, chemical,
and biological parameters will be the bottleneck. There-
fore, in the years to come, increasing focus has to be given
to online/inline techniques for process monitoring,
driven by the industry's never-ending need for process
optimisation. Further requirements will arise by regula-
tory affairs like the process analytical technology (PAT)
initiative issued by the FDA. The major goal of PAT is to
improve the understanding and control of the manufac-
turing process: quality cannot be tested in products, it
should be built-in or should be achieved by design. Proc-
ess Analytical Technology is seen as a system for design-
ing, analyzing, and controlling manufacturing through
timely measurements (i.e. during processing) of critical
quality and performance attributes of raw and in-process
materials and processes with the goal of ensuring final
product quality. The observation of variables related to
the biological system, representing the production entity,
is one of the key requirements to enable controlled gene
expression and optimal operation of the host cell. On the
contrary, key variables of cultivation processes are still
beyond direct measurement despite the progress in mon-
itoring and control of bioprocesses in the last years [3]. A
direct reading of biological key process variables, such as
biomass, has not yet been achieved, although online sen-
sor systems that provide different types of signals are
available. However, the inability to directly measure these
key process variables does not imply one cannot extract
valuable information from the bioprocess. In order to
develop novel monitoring concepts, it is necessary to scru-
tinise the role and properties of the different cellular com-
partments to the synthesis process of economically
important biotechnological products at first.

Cellular compartmentation in the context of the 
synthesis process of economically important 
products
The principal goal of biotechnological production of eco-
nomically important substances is in most cases a maxim-
isation of space/time yield. However, the desired
overproduction of a given substance of interest most
likely affects the cellular metabolism in many ways as the
cellular metabolism is a tightly controlled and highly
interconnected network. Therefore, aiming at optimisa-
tion, the role of the different cellular compartments in the
biosynthesis process must be taken into account. Conse-
quently, analytical methods must be available to identify
and, in a second step, allow the online monitoring of
these variables during a cultivation process. A schematic
illustration shows the variety of variables that must be
acquired and monitored during the cultivation process
(Figure 1).

Consequently, a variety of complex key process variables
of the host and, in the case of recombinant protein pro-
duction the expression vector system needs to be moni-
tored, as well. In the case of recombinant cultivation
processes, relevant variables can be divided into two
groups:

• Variables related to properties and functionality of the
host cell system, comprising biomass concentration, cell
number, cell viability, metabolic stress response, specific
quantities of metabolites and activity of particular enti-
ties.

• Variables related to the applied expression vector sys-
tem, comprising the recombinant gene dosage (PCN),
content of recombinant product and the product forma-
tion rate.

In order to adjust product formation rates, in particular
recombinant gene expression, in relation to the metabolic
capabilities of the host cell's synthesis machinery, real-
time knowledge of a cluster of key process variables over
the whole process is of paramount importance. Hence,
online monitoring methods are required providing spe-
cific knowledge for optimal process operation, e.g. maxi-
mal exploitation of the host cells synthesis capacity or
termination of the cultivation process.

Monitoring of biotechnological cultivation 
processes
The current state of bioprocess monitoring has evolved
from chemical engineering. In general only a low number
of variables can be acquired followed by thorough charac-
terisation of the product. By maintaining environmental
conditions within validated limits it is "assumed" that the
product is formed according to defined regulatory issues.
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The current monitoring concepts are developed due to the
lack of sensors not considering the strong dynamics of the
biochemical synthesis process in combination with its
complexity. With regard to process monitoring it is impor-
tant to have in mind that process development and opti-
misation of a novel product requires the observation of
many more variables than in a validated production proc-
ess.

Therefore in the first instance the development of novel
bioprocess monitoring concepts has to identify significant
monitoring and/or control variables strongly involved in
pathway regulation and regulatory networks. In the next
step the information contained within individual data
sub-sets, i.e. the potential contribution to improve process
knowledge must be assessed, whereby as many as possible
on-line and in situ signals should be acquired. However,
the availability of on line sensors useful for in situ bio-
process monitoring is comparatively low due to specific
requirements of aseptic conditions, high number of ana-
lytes, drift, and often rather low physiological relevance.
Sensors used in situ must not contaminate the bioprocess
and it is obvious that their components must not leak into

the culture (biocompatibility). Additionally, sensor sys-
tems must be able to perform without recalibration as
bioprocesses may potentially run for weeks. A compre-
hensive overview over today's instrumentation of bio-
processes is given in [4].

Measurement principles and commercial 
availability of state-of-the-art online sensor 
systems
In the following paragraph, state-of-the-art online sensor
systems are described that have the potential to yield high-
quality signals from a bioprocess.

The measurement principle, delivered information and
examples of state-of-the-art sensor systems commercially
available for bioprocess monitoring, advantages and dis-
advantages are presented (Table 1). A direct assignment of
a signal to a biological variable is not possible, except the
Biomass Monitor, were capacitance can be allotted to bio-
mass.

The price/performance ratio of the above listed devices
varies from approx. 20 k€ for e.g. oxygen analysers to

The production of economically important biotechnological products is governed by a multitude of influencing factors hat require a multidisciplinary approach (biochemistry, molecular biology, analytical methods as well as mass balances and thermo-dynamics)Figure 1
The production of economically important biotechnological products is governed by a multitude of influencing factors hat 
require a multidisciplinary approach (biochemistry, molecular biology, analytical methods as well as mass balances and thermo-
dynamics).
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about 50 k€ for e.g. optical and dielectric spectroscopy
and finally up to 100 k€ for highly sensitive mass spec-
trometry based systems.

Widely applied in bioprocess monitoring are spectro-
scopic methods, which are based on the interaction of a
sample with electromagnetic radiation. These versatile
techniques are well suited to capture changes in bioproc-
esses, as spectroscopy allows non-invasive, non-destruc-
tive and continuous monitoring of a process.

Dielectric spectroscopy makes use of the electrical proper-
ties of the cells, which are exposed to a radio-frequency
electrical field and has a high potential to provide online
monitoring of cellular properties [5]. Cells with intact
plasma membranes act as capacitors, since the non-con-
ducting nature of the cell plasma membrane allows the
build up of charge. The resulting capacitance is measured
and is dependent upon the cell type, the cell size (as the
size determines the cell volume) and the concentration of
viable cells [6]. Although the above mentioned factors
influence the capacitance reading, this method is less sus-
ceptible to particles or fouling effects than optical turbid-
ity measurements. However, due to the underlying
measurement principle, it cannot deliver signals regarding
intracellular components and therefore insights into met-
abolic state and cellular metabolic activity are possible
only to a very limited extent. Optical sensor systems for
process monitoring allow non-invasive in vivo monitor-
ing of bioprocesses, do not interfere with the metabolism
of the cells and consequently offer versatile intracellular
information that is nearly impossible to obtain with other
methods. In addition, sampling (always a potential source
of contamination) and sample pre-treatment are generally

not necessary for optical sensor systems and in most cases
no analyte is consumed [7]. Today, the available optical
spectroscopy sensor devices for bioprocess monitoring
use 2 different regions within the electromagnetic spectra.
Within the visible part of the electromagnetic spectrum,
fluorescence spectroscopy is a useful tool particularly
since the development of multi-wavelength devices in the
early 1990's [8] due to the fact that many intracellular
components show fluorescence properties. Former online
fluorescence sensors used only one excitation and one
emission channel, limiting the sensor to monitor a single
fluorophore. Recently developed fluorometers use several
excitation and emission wavelengths, increasing the
number of constituents in the biosuspension that can be
monitored simultaneously [9]. Multi-wavelength fluores-
cence spectroscopy provides direct monitoring of changes
in biologically relevant fluorophores, e.g. NAD(P)H,
which can provide information about the energetic state
of the cell and the state of oxygen supply, in particular
close to anaerobic conditions. As many of these fluores-
cent compounds play crucial roles in metabolic pathways,
this technique has proven to be a valuable tool for bio-
process monitoring [10,11].

Outside the visible range of the electromagnetic spectrum,
near infrared light (NIR), ranging from 780 nm to 2526
nm (12820 to 3959 cm-1, as defined by the American
Society for Testing and Materials), can be used to measure
the concentration of certain organic species, even in com-
plex media. Biologically important bonds (aliphatic C-H,
aromatic or alkene C-H, amine N-H and O-H) absorb in
the NIR range. Each chemical structure is related to a spe-
cific position, shape, and size of the analyte's absorption
bands. Process related changes could be captured in the

Table 1: 

Measurement 
principle

Target/Information Vendor (commercial 
system e.g.)

Advantages Disadvantages

Paramagnetism Oxygen/mass balancing ABB Ltd CH-8050 
Zurich Switzerland

Selectivity, stability Desiccation of sample, delayed 
delivery of representative gas sample 

due to varying head space

Dielectric 
spectroscopy

Membrane-enclosed 
biovolume

Aber Instruments 
(Biomass Monitor)

Good correlation to 
biomass

Signal influenced by variation of 
conductivity of fermentation broth

2D-Fluorescence 
spectrometry

Typical intracellular 
substances involved in 
metabolic pathways

DELTA (BioView) Capture of minute changes 
in chemical composition of 

the cell

Direct reading of process variables 
not possible multivariate data 

analysis required

Infrared 
spectrometry

Typical intracellular 
substances

FossNIR-Systems 
(Model 6500) ABB 
(BOMEM MB160)

Spectral fingerprint of 
principle cellular 

constituents

Direct reading of process variables 
not possible multivariate data 

analysis required

Mass spectrometry Volatile organic compounds Ionimed (PTR-MS) Identification of chemical 
components, mass 
balancing enabled

Critical issue: sampling of head space

Metal Oxide Field 
Effect Transistor

Volatile organic compounds ALPHA M.O.S Versatile sensor arrays Direct reading of process variables 
not possible multivariate data 

analysis required
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NIR spectra of the culture fluid [12] and infrared and
Raman spectroscopy were applied to online bioprocess
monitoring [13-16]. For further reading please refer to
[17].

Beside techniques that directly interact with the cells itself,
methods that use process exhaust gas have similar advan-
tages (non-invasive and non-destructive) and yield valua-
ble information about the process. Chemical multi-sensor
arrays (electronic nose) and mass spectrometry were
applied to analyse off-gas of cultivation processes and
have shown their aptitude for process monitoring [18-
21], although the chemical multi-sensor array was never
commercialised for the application as a sensor device for
bioprocess monitoring purposes. In this context, it must
be mentioned that, an electronic nose is available from
the company ALPHA M.O.S., however, to the best of our
knowledge, this system was not applied for bioprocess
monitoring so far. Another commercially available system
that allows the detection of volatile organic compounds
(VOC) is Proton-Transfer Reaction mass spectrometry
(PTR-MS). As a comprehensive description of the devel-
opment of the PTR reaction principle can be found in
[21], only a basic description of the reaction principle is
given here: In a PTR-MS, primary ions H3O+ react with

uncharged molecules under well defined conditions. On
the way through a reaction region (flow-drift tube prior to
the MS-inlet) the ions perform many non-reactive colli-
sions with buffer gas atoms or molecules (Figure 2). How-
ever, once they collide with a reactant gas particle they
may undergo the following reaction: A+ + R → products.
In the case of H3O+, these perform proton transfer reac-
tion (if energetically allowed): H3O+ + R → RH+ + H2O.

PTR mass spectrometry allows the detection and quantifi-
cation of compounds in the range of ppb to ppt. It has
been applied to a variety of analytical tasks, such as med-
ical applications via breath analysis, food research or envi-
ronmental monitoring [23-25]. For example, the volatile
organic compounds acetone, ethanol, methanol, propa-
nol and isoprene were analysed in human breath, while in
food analysis, methanethiol and dimethyl sulphide ema-
nating from meat were monitored.

The aptitude for bioprocess monitoring was proven in our
lab by chemostatic cultivations of E. coli where typical
metabolic VOCs were identified (data not shown).
Remarkable was the detection of sulphur containing com-
pounds at the end of batch cultivation simultaneously to
cell lysis (confirmed by flow cytometric analysis). Alto-

Schematic representation of the PTR-MS apparatus [22]Figure 2
Schematic representation of the PTR-MS apparatus [22].
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gether the results so far make PTR-MS a promising tech-
nique for bioprocess monitoring.

Mathematical methods for deconvolution and 
extraction of relevant information from large 
multivariate datasets
A common problem of the mentioned sensor systems is
that the data do reflect changes in the process, but cannot
directly be assigned to a biological process variable. How-
ever, the inability to directly measure key process variables
does not mean that no relevant information can be
extracted from process data. In this context, mathematical
methods provide tools for structural understanding,
exploratory simulation, interpretation, and evaluation of
measured data or prediction and design. Thus, they assist
to bridge the gap between online signals and the broad
spectrum of complex offline data. Mathematical methods
show a wide applicability and relevance for data analyses
in bioprocess monitoring (Figure 3).

Mathematical models are indispensable tools to analyse,
understand and control bioprocesses [26]. For process
monitoring purposes, modelling allows the transforma-
tion of discontinuous signals into continuous variables.
Several different approaches in model design, ranging
from structured models (e.g. mass balances) to complex,
unstructured nonlinear models like artificial neural net-
works, are described in [28]. This insight into a bioprocess
is improved further if combinations of different online

sensor systems are used simultaneously. Combining the
data from sensors with different underlying measurement
principles yields a complete picture, showing the process
from different points of view and therefore holds great
potential for process monitoring [29-31]. Today, chemo-
metric methods are applied in two ways for bioprocess
monitoring: i) to predict key process variables or ii) to vis-
ualise the course of cultivation by identifying the response
patterns of the applied sensor systems. The term MSPC
(Multivariate Statistical Process Control) was established
to illustrate the application of multivariate methods for
process supervision and control purposes. In an applica-
tion of this approach, predictions of end-of-batch quality
measurements were performed during the progress of a
batch run [32]. Process monitoring, quality estimation
and fault diagnosis activities are automated and super-
vised by embedding them into a real-time knowledge-
based system (RTKBS). Albeit regulatory challenges,
MSPC is not limited to academic or research purposes, the
application of MSPC for an industrial penicillin process is
described in [33].

Case study: sensor combination and 
chemometric modelling for improved process 
monitoring in recombinant E. coli fed-batch 
cultivations
In order to demonstrate the aptitude of the aforemen-
tioned methods and concepts to improve process moni-
toring capabilities, a case study for recombinant E. coli

Integration of mathematical methods for advanced process control (adapted from [26])Figure 3
Integration of mathematical methods for advanced process control (adapted from [26]).
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cultivation processes is presented. For the production of a
specific group of biopharmaceuticals, on lab and indus-
trial scale as well, E. coli is an appropriate and widely used
host due to its rapid growth and well-known physiologi-
cal requirements [34-36]. Despite its importance, most
current processes for production of recombinant proteins
are characterised by a lack of process monitoring capabil-
ities regarding biological key process variables. This limi-
tation severely impairs the application of techniques for
controlled expression of foreign genes in relation to the
host cells metabolic synthesis capacity, such as transcrip-
tion rate control [37]. For this approach, it is mandatory
to obtain real-time information of these key process vari-
ables over the whole cultivation process. Aim of this case
study was to improve process monitoring capabilities in
recombinant E. coli fed-batch cultivations and to establish
model-based process supervision and control in order to
allow the full exploitation of the host cell synthesis capac-
ity.

In order to extend the available signals for chemometric
modelling, two specific sensor systems were chosen in

addition to monitoring of standard variables (base con-
sumption, off gas analysis). Dielectric spectroscopy was
applied to obtain information regarding the host cell sys-
tem, while two-dimensional, multi-wavelength fluores-
cence spectroscopy was applied as second sensor system
to deliver signals regarding intracellular components.

Both sensor systems were applied in a series of identical
fed-batch cultivations except different levels of recom-
binant protein expression in order to obtain appropriate
data sets for training and evaluation. In total, 7 such culti-
vations were performed, whereby during each cultivation,
the process variables off-gas composition, base consump-
tion, capacity, conductivity and a complete set of fluores-
cence spectra were measured every 5 minutes. The
cultivation was followed over 28 h, during the cultivation
period the offline analytes biomass dry matter (BDM),
total cell number (TCN), percentage of dead cells (DC),
recombinant product and plasmid copy number (PCN)
were determined. In order to induce recombinant protein
expression IPTG was added to the bioreactor after 1 gen-
eration in the feeding phase in different ratios to biomass.

Prediction of target process variables BDM, TCN, DC, product load, qP and PCN of a non-induced cultivation experiment with a RBF model generated with classical input signals (CO2/O2, base consumption)Figure 4
Prediction of target process variables BDM, TCN, DC, product load, qP and PCN of a non-induced cultivation experiment 
with a RBF model generated with classical input signals (CO2/O2, base consumption)
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Finally, for each cultivation a data set with 156 online sig-
nals and 6 offline target variables was obtained. The data
sets of five cultivations were used to build multivariate
process models in MatLab to estimate the offline target
variables using two different chemometric algorithms,
Partial Least Squares regression (PLS) and a Radial Basis
Function neural network (RBF-NN). The predictive power
of the model was evaluated against a data set previously
unseen, i.e. not included in the training process. A com-
prehensive description of the experimental setup is given
in [38]. It was shown that different sensor systems, differ-
ent modelling algorithms and different input signals sig-
nificantly influenced the prediction results. It was found
that the best estimation results (i.e. the lowest error) for
the estimation of the 6 target variables was obtained with
a RBF network and selected input signals from both sen-
sor systems. The improvement in estimation results is
demonstrated in the figures 4 and 5, whereby bad per-
formance of modelling due to unspecific on-line data is
demonstrated by false positive prediction of product load
and qP in a non-induced experiment (Figure 4). It was

found that the lowest RMSEP's for all target offline varia-
bles were obtained when applying a non-linear RBF
model that uses selected online signals of dielectric and
optical spectroscopy as input (Figure 5). Regardless of the
data set used for evaluation of the chemometric model,
this approach yielded best results for all target offline var-
iables, cell-related as well as product-related. In order to
apply the previously created model in an online predic-
tion during a cultivation process, a MatLab function was
programmed to perform data input, chemometric model-
ling and display of the estimation results online during a
cultivation process. Finally, a Graphical User Interface
(GUI) was designed to facilitate the online estimation
process and to prepare the application of this approach in
further processes.

In this case study, it was demonstrated that online signals
from different sensor systems in combination with chem-
ometric modelling methods greatly extend the monitor-
ing capabilities of complex biological process variables of
recombinant host/vector systems.

Improved prediction of target process variables BDM, TCN, DC, product load, qP and PCN with a RBF model generated with selected input signals (dielectric spectroscopy, fluorescence spectroscopy)Figure 5
Improved prediction of target process variables BDM, TCN, DC, product load, qP and PCN with a RBF model generated with 
selected input signals (dielectric spectroscopy, fluorescence spectroscopy). Arrows indicate induction of recombinant protein 
expression.
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However, the application of chemometric data analysis
and model development for the forecast of important var-
iables is not limited to recombinant protein expression or
biotechnological processes. More examples for the suc-
cessful application of MSPC can be found in [39], where
4 case studies are described using industrial cultivation
data that utilise these models in the context of prediction
and monitoring of bioprocess performance. In [40]
online batch monitoring with dynamic PLS methods was
performed in a chemical polymerisation process. Once
established, model-based process supervision and control
can greatly enhance and ease process supervision. In [41]
real-time statistical process monitoring to an industrial
Bacillus process was applied, where the operator is pro-
vided with a clear view of the process performance.

Conclusion
In the years to come, increasing focus will be given to fur-
ther exploitation of chemical/physical principles to
enhance the spectrum of online/inline techniques and the
application of miniaturised sensor systems, e.g. micro
machines for process monitoring. This development is
driven by the ever increasing needs to improve the effi-
ciency of process development, to implement rational
design and pursue the FDA's initiative regarding process
analytical technology. Following the goal of PAT the man-
ufacturing process must be better understood and easier
to control. Quality cannot be solely derived from the
products, it should be built-in or should be by design.
Therefore Process Analytical Technology relies strongly on
monitoring of physiological relevant variables, which
have to be gained "on-line" by modelling. By application
of the modelling approach the discrete offline samples are
transformed into continuously available signals, whereby
permanent supervision is provided and moreover devia-
tions from predefined states can be identified at early
stages. Within the PAT framework, multivariate data
acquisition and analysis is an important tool, which high-
lights the upcoming importance of these methods regard-
ing regulatory affairs. Gains in quality, safety and/or
efficiency will vary depending on the product and are,
among other points, likely to come from increasing auto-
mation to improve operator safety and reduce human
errors. This implies that MSPC is going to be applied not
only for monitoring, but more frequently for control pur-
poses also. As an example, constituents predicted simulta-
neously in a V. cholerae cultivation have been used for
automatic feeding control [42]. A key aspect of this work
is the fact that the proposed control loop aided to keep the
specific growth rate under the critical value, restricts fur-
ther formation of acetate and thus consequently limits
inhibitory effects of this by-product. Consequently, a pos-
sible future scenario regarding model based process super-
vision and control is given in [43]: More than 1800
different signals from gas sensors, electrodes, spectrome-

ter detectors, balances, flowmeters, etc., were integrated in
a data set and used for processing. By application of a
number of computational tasks such as partial least-
square regression, principal component analysis, artificial
neural network modelling, heuristic decision-making and
adaptive control the benefit of this concept was proven
and demonstrated on different cultivation processes
which illustrated sensor fusion control, multivariate sta-
tistical process monitoring, adaptive glucose control and
adaptive multivariate control.

To achieve further advances in bioprocess optimisation,
key process variables describing the potentials and limits
of the biological system need to be available online. As it
was shown, online signals from different sensor systems
in combination with chemometric modelling methods
allow the timely estimation of complex biological varia-
bles. This approach has the potential to enhance the proc-
ess monitoring capabilities and to fulfil the upcoming
requirements for bioprocess development and operation.

Abbreviations
ASCII American Standard Code for Information Inter-
changing

BDM Bacterial Dry Matter

cAMP cyclic adenosinemonophosphate

CFU Colony Forming Units

DC Dead Cells

DIGE differential -gel electrophoresis

FDA Food and Drug Administration

FSC Forward Light Scatter

GFP Green Fluorescent Protein

GUI Graphical User Interface

HPLC High Performance Liquid Chromatography

IPTG Isopropyl β-D-thiogalactopyranoside

OLE Object Linking and Embedding

OPC OLE for Process Control

PAT Process Analytical Technology

PCN Plasmid Copy Number
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PLC Programmable Logic Controller

PLS Partial Least Squares – Model

ppGpp guanosine tetraphosphate

PTR Proton Transfer Reaction

qP Product formation rate

RBF Radial Basis Function – Network

RMSEP Root Mean Square Error of Prediction

RTKBS Real-Time Knowledge-Based System

SCADA Supervisory Control and Data Acquisition

SOM Self-Organising Map

SSC Side Light Scatter

TCN Total Cell Number
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