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Small-angle neutron scattering has been successfully used since the 1970s. As a

general rule, methods to extract the useful signal from that received by the

detector are well known and give good results. At the Laboratoire Léon

Brillouin, for example, these methods have been employed for a long time.

However, the data reduction software has been changed for the following

reasons. Problems are encountered if the container of the sample gives a

spurious signal or if the scattering angle is so large that its cosine cannot be

approximated by 1. In the present paper, generalizations of formulas are made

in order to account for these difficulties. The decrease of scattered intensity

delivered by an incoherent sample that is often observed at large angles is shown

to be only due to a geometrical effect. The consequent modifications of the

relations used for the normalization of cells of position-sensitive detectors and

for the absolute calibration are given. As for the inherent background of the

sample, the contribution of density fluctuations is usually neglected. This

contribution is formally given as a function of the contrast lengths and of the

isothermal compressibility of the sample. This new result allows numerical

evaluations of the different terms of the inherent sample background. Practical

examples are given. Finally, several methods, developed at the Laboratoire Léon

Brillouin, are given to determine the background properly. They are based on

systematic measurements of transmissions and background levels of suitably

prepared blank samples.

1. Introduction

Small-angle neutron scattering (SANS) is an efficient tool to

study nanostructures at typical length scales ranging from 1 to

100 nm. This technique was developed through pioneering

work of the 1970s (Cotton et al., 1972; Stuhrmann, 1974;

Schmatz et al., 1974; Jacrot, 1976; Kostorz, 1979). It is nowa-

days widely used to determine characteristic sizes, molecular

weights, interactions, shapes and internal structures of

macromolecules, aggregates, colloids, biological systems and

inorganic materials.

The basics of SANS are now well known and taught in

textbooks (Kostorz, 1979; Feigin & Svergun, 1987; Higgins &

Benoı̂t, 1994). The primary steps of raw data reduction are

widely inspired by those of small-angle X-ray scattering

(Guinier, 1964; Cotton et al., 1974) and absolute calibration

methods are commonly used to determine the differential

scattering cross section in absolute units (Wignall & Bates,

1987; Cotton, 1991b; Lindner, 2002). However, prior to any

data analysis and comparison with physical models, it is

necessary to extract from the measured count rate the quan-

tity that is related to the space correlations of heterogeneities

(e.g. concentration fluctuations).

Actually, the first step of data treatment amounts to back-

ground subtraction. There are two categories of background:

external (environmental background, electronic noise, direct

beam overflowing, i.e. beam tail, scattering from sample

container) and inherent to the sample (incoherent scattering,

sample compressibility). The usual procedure consists of

subtracting the intensity scattered by a blank sample from that

of the sample under study (Rawiso et al., 1987; Wignall &

Bates, 1987; Cotton, 1991b; Calmettes, 1999; Lindner, 2002).

This generally gives good results. The approximations used are

(i) the scattering angle � is so small that cos � ¼ 1, (ii) the

sample container gives no signal and (iii) the sample is

incompressible. These approximations are sometimes not

reasonable. This paper aims to state their relevance and give

improved formulas for continuous neutron sources in the

context of the single scattering approximation.

In the following, we describe the different steps to extract

from the measured raw data the differential scattering cross

section of heterogeneities of a sample, i.e. its coherent scat-

tering cross section. First, we explain how to access the total

scattering cross section of the sample. The case of a sample in a

container is fully treated, as well as corrections for large

scattering angles (� > 10�). It then remains to extract the



signal related to the space correlation of heterogeneities. We

show that isothermal compressibility in a multi-component

system is not always negligible. Subtraction of the inherent

background of the sample is also often complicated by

multiple scattering effects that are difficult to calculate in a

general way. These problems are widely encountered in most

samples of soft matter. In this field especially, it is possible to

overcome these difficulties by using appropriate blank

samples; their choice and the determination of the background

signal are discussed in x3. Finally, for some specific cases, we

describe practical methods to determine systematically the

inherent background of the sample.

2. From raw data to coherent differential scattering
cross section

2.1. Recall: usual data reduction for sample without
container

Let us denote �sðqÞ as the total scattering cross section of a

sample of volume V, with � as the solid angle. The differential

scattering cross section per volume unit ~��sðqÞ is

~��sðqÞ ¼
1

V

d�s

d�
: ð1Þ

The magnitude of the scattering vector q is defined by

q ¼ ð4�=�Þ sin �=2ð Þ; ð2Þ

where � is the scattering angle and � the neutron wavelength.

Classically, assuming scattering at a small angle �, the

approximation cos � ’ 1 allows us to write the intensity Isð�Þ
scattered by a sample of thickness zs as (Guinier, 1964)

Isð�Þ ¼ �ð�ÞA�ð�Þ��
Rzs

0

dx expð��sxÞ ~��sðqÞ exp½��sðzs � xÞ�;

ð3Þ

where � is the neutron beam flux (number per time and

surface units), A the sample area exposed to the neutron

beam, �ð�Þ the detector efficiency, �� the detector cell solid

angle, x the position of the sample layer where scattering

occurs (see Fig. 1), and �s the linear attenuation coefficient of

the sample for neutrons. The term exp½��sðzs � xÞ� accounts

for the attenuation of scattered neutrons due to absorption

and multiple scattering. Equation (3), commonly used, is valid

as long as multiple scattering is spread over a wide solid angle

and thus remains negligible at small angles.

Equation (3) yields the classical expression

Isð�Þ ¼ �ð�ÞA�ð�Þ�� zs expð��szsÞ ~��sð�Þ

¼ zsTsCð�Þ ~��sð�Þ

¼ zsTsFsð�Þ: ð4Þ

The subscript s denotes the sample. In practice, Isð�Þ is the

measured count rate, the transmission Ts ¼ expð��szsÞ is

measured during the experiment and the sample thickness

zs is known. Determination of the calibration constant

Cð�Þ ¼ �ð�ÞA�ð�Þ�� is required to obtain ~��sð�Þ in absolute

units (cm�1).

In the absence of the sample, the collimated beam reaches

the detector. Most of the beam is normally absorbed by a

beamstop, except the beam tail, which gives the corresponding

intensity, Fbð�Þ. In addition, an external background signal B

(electronic noise plus cosmic and ambiance neutrons coming

from neutron guides and other spectrometers) is recorded.

Then, the count rate recorded without a sample is

Ibð�Þ ¼ Fbð�Þ þ B:

Through the sample, this contribution is reduced to

TsFbð�Þ þ B. Thus, the scattered intensity of a sample is

Isð�Þ ¼ zsTsFsð�Þ þ TsFbð�Þ þ B: ð5Þ

In SANS, the scattering function Fsð�Þ is the sum of a coherent

signal and an incoherent term independent of q. The coherent

term (see x3) has two contributions: (i) space correlations of

heterogeneities, which is the information that the experi-

mentalist is looking for in most cases; (ii) density fluctuations

that display correlation lengths smaller than q�1 in SANS and

thus give a q-independent contribution. The sum of the two

q-independent contributions (incoherent plus density fluc-

tuations) is the inherent background of the sample. In order to

estimate this background, the scattered intensity, Ibk, of a

blank sample is usually measured. Using subscript bk to

denote the blank sample, we obtain, following equation (5),

Ibkð�Þ ¼ zbkTbkFbkð�Þ þ TbkFbð�Þ þ B: ð6Þ

The choice of an appropriate blank sample is difficult. It is

discussed in x3.

Finally, combination of equations (5) and (6) gives the

major formula of SANS data treatment:

Fsð�Þ � Fbkð�Þ ¼
Isð�Þ � B

zsTs

�
Ibkð�Þ � B

zbkTbk

�
1

zs

�
1

zbk

� �
Fbð�Þ:

ð7Þ

In practice, measurements of Isð�Þ, Ibkð�Þ, Ibð�Þ and B are

necessary to determine the scattering function Fsð�Þ. External

background B is measured by placing a strong absorbent

(cadmium or B4C) at the sample position. Equation (7) clearly

shows that measurement of Fbð�Þ without a sample is neces-
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Figure 1
Scattering at angle �, by a layer of thickness dx situated at distance x from
the incoming face of a sample of thickness zs.



sary as soon as the sample and its blank have a different

thickness. This is often the case with solid samples.

Generally, equation (7) is also used for a sample inside a

container, since the container contribution to scattered

intensity is expected to be accounted for by the blank sample

subtraction. As discussed below, in some cases this is not

correct.

2.2. Correction of the approximation cosh = 1

As mentioned above, equations (3) and (4) are valid for

small angles, when cos � is close to unity. For large angles,

corrections must be applied. Actually, for a typical detector at

a distance D ’ 2 m from the sample, the maximum scattering

angle can be greater than 10� ðcos � ’ 0:95Þ. Thus, for

experiments performed at smaller distances, the approxima-

tion cos � ’ 1 is not recommended, especially if important

information is determined from high q range data, where the

signal-to-noise ratio is generally weak.

Three parameters in equation (4) depend on cos �: detector

cell solid angle, detector efficiency (Lindner et al., 2000) and

attenuation of the neutron beam scattered at the angle �. The

first two parameters play a role in the calibration constant

Cð�Þ; the correction to apply is discussed in x2.4.2. The present

section is concerned with the angle dependence of the beam

attenuation (Calmettes, 1999).

Let us consider neutrons scattered with probability ~��ð�; �Þ,
at an angle �, by a sample layer at abscissa x (see Fig. 1). The

beam intensity at this abscissa is attenuated by upstream

layers, whereas downstream layers contribute to attenuation

of the scattered intensity [see equation (3)]. This latter

attenuation depends on the actual sample thickness,

ðzs � xÞ= cos �, in this direction (Guinier, 1964). Thus equation

(3) can be replaced by

Isð�Þ ¼ �ð�ÞA�ð�Þ��

Zzs

0

dx expð��sxÞ ~��sðqÞ exp ��s

zs � x

cos �

� �
:

ð8Þ

This equation amounts to writing the beam attenuation asR z

0 dx expð��sxÞ exp½��sðzs � xÞ=cos ��. Assuming cos � ¼ 1,

this latter integral equals z expð��zÞ ¼ zT and is indepen-

dent of �. When this assumption is not valid, this integral

becomes zTð�Þ with

Tð�Þ ¼ T
1� Tað�Þ

�að�Þ lnðTÞ
and að�Þ ¼

1

cos �
� 1: ð9Þ

Here, lnðTÞ has been introduced in order to express Tð�Þ as a

function of transmission T measured at � ¼ 0 (Calmettes,

1999). From a computational point of view, note that for

�! 0 and/or T ! 1, Tð�Þ ! T is a ratio of two quantities

that tend to 0. In order to be easily calculated, equation (9) can

be replaced by the expansion

Tð�Þ ¼ TE1½að�Þ lnðTÞ�; ð10Þ

with E1ðxÞ ¼ 1þ x=2þ x2=6þ x3=24þ x4=120þ . . ., which is

calculated in practice up to the fourth order.

The scattering angle dependence of the transmission is

more important for low Tð0Þ and high �. Fig. 2 shows some

examples. The angle of dependence of transmission is negli-

gible for Tð0Þ>� 0:8, but has to be considered for lower Tð0Þ,

especially at high q. Moreover, the angle dependence of the

transmission also influences the contribution, Fbð�Þ, of the

beam tail to the measured scattered intensity. Equation (7) can

be generalized

Fsð�Þ � Fbkð�Þ ¼
Isð�Þ � B

zsTsð�Þ
�

Ibkð�Þ � B

zbkTbkð�Þ

�
Tað�Þ

s

zs

�
T

að�Þ
bk

zbk

" #
Fbð�Þ: ð11Þ

This correction for attenuation at high scattering angles

(� > 10�) and its effect on subtraction of the beam without a

sample are often missing in SANS data reduction procedures.

2.3. Scattering by a sample inside a container

In the case of a sample inside a container, we have to

subtract from the measured scattered intensity the contribu-

tion, IECð�Þ, of the empty container. The calculation is given in

Appendix A for a container with two windows (before and

after the sample with respect to the neutron beam) made in

the same material and having the same thickness. It is assumed

that (i) there is no correlation between the atoms of the

sample and those of the container and (ii) multiple scattering

has a negligible contribution to the scattered intensity but may

only attenuate scattered intensity [see equations (3) and (8)].

Uppercase subscript S denotes the sample in its container,

whereas lowercase subscript s denotes the same sample

without container. In Appendix A, we demonstrate that the

scattered intensity is
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Figure 2
Scattering angle dependence, Tð�Þ=Tð0Þ, of the sample transmission
calculated following equation (9) for different values of the zero-angle
measured transmission Tð0Þ. The upper abscissa axis corresponds to the
scattering vector q for � ¼ 5 Å.



Fsð�Þ ¼
ISð�Þ � B

zsTS�Sð�Þ
� �Sð�Þ

IECð�Þ � B

	ECð�ÞTEC

� �

þ �Sð�Þ
T

að�Þ
EC

	ECð�Þ
�

T
að�Þ
S

	Sð�Þ

" #
Fbð�Þ: ð12Þ

The dimensionless quantities �Sð�Þ and 	Sð�Þ tend to 1 for

�! 0 and/or T ! 1. They are defined by

�Sð�Þ ¼ T
að�Þ=2
EC

� TS=TEC

� �að�Þ

�að�Þ ln TS=TEC

� �
¼ E2 að�Þ ln TEC

� �	 

� E1 að�Þ ln TS=TEC

� �	 

ð13Þ

and

	Sð�Þ ¼ 1þ
TS

T
1=2
EC

 !að�Þ
2
4

3
5� 1� T

að�Þ=2
EC

�að�Þ lnðTECÞ

¼ E3 að�Þ ln TS=T
1=2
EC

� �	 

E4½að�Þ lnðTECÞ�; ð14Þ

with E2ðxÞ ¼ 1þ x=2þ x2=8þ x3=48þ x4=384þ . . ., E3ðxÞ ¼

1þ x=2þ x2=4þ x3=12þ x4=48þ . . . and E4ðxÞ ¼ 1þ x=4þ

x2=24þ x3=192þ x4=1920þ . . .. The quantity �Sð�Þ has the

dimension of a reverse thickness. It is defined as

�Sð�Þ ¼
1

zs

	Sð�Þ

�Sð�Þ
: ð15Þ

From the above expansions of �Sð�Þ and 	Sð�Þ, one can see

that �Sð�Þ benefits from cancellation of opposite variations

with �. In practice

�Sð�Þ ’ 1=zs: ð16Þ

Equations (12)–(15) only use measurable quantities such as

transmission of the container, TEC, and transmission of the

sample inside its container, TS, which is related to the actual

transmission Ts by TS ¼ TECTs. The same formulas also apply

to the blank sample Fbkð�Þ. Finally, the difference

Fsð�Þ � Fbkð�Þ is

Fsð�Þ � Fbkð�Þ ¼
ISð�Þ � B

zsTS�Sð�Þ
�

IBKð�Þ � B

zbkTBK�BKð�Þ

�
IECð�Þ � B

	ECð�ÞTEC

�Sð�Þ � �BKð�Þ
	 


þ Fbð�Þ
T

að�Þ
EC

	ECð�Þ
�Sð�Þ � �BKð�Þ
	 
(

þ
T

að�Þ
BK

zbk�BKð�Þ
�

T
að�Þ
S

zs�Sð�Þ

)
: ð17Þ

The subscript BK denotes the blank sample inside the

container. We can see from this equation that, in most cases,

measurements of the empty container as well as of the beam

without sample are both required. Equation (17) should be

used systematically in all treatments of SANS data. The

program PAsidur-PRO (Lairez, 2006) at the Laboratoire

Léon Brillouin (LLB) now performs all these corrections.

In the case of sample and blank of the same thickness,

equation (16) allows us to simplify equation (17) to

Fsð�Þ � Fbkð�Þ ¼
ISð�Þ � B

zsTS�Sð�Þ
�

IBKð�Þ � B

zbkTBK�BKð�Þ

� Fbð�Þ
T

að�Þ
S

zs�Sð�Þ
�

T
að�Þ
BK

zbk�BKð�Þ

" #
: ð18Þ

Measurement of the beam without sample is still necessary.

At small angles, i.e. for cos � ’ 1, equation (17) simplifies to

Fsð�Þ � Fbkð�Þ ¼
ISð�Þ � B

zsTS

�
IBKð�Þ � B

zbkTBK

�
1

zs

�
1

zbk

� �
IECð�Þ � B

TEC

: ð19Þ

In this case, and if the sample and blank thicknesses differ,

only measurement of the scattering of the empty container is

needed.

In order to test the efficiency of equation (17) for data

reduction, the scattered intensity of a solid sample made of

a mixture of 2% (v/v) deuterated polystyrene (PSD) and

98% (v/v) non-deuterated polystyrene (PSH) inside an

aluminium alloy container of 2� 1:5 mm thickness was

measured. Because of the grain boundaries of metallic alloys,

the container significantly contributes to the measured signal

at small angles (see Fig. 3). Nevertheless, such materials are

frequently used in shear cells, in pressure devices, in supra-

conducting magnets or for other sample environments.

Measurements were performed at � ¼ 6 Å and D ¼ 2:38 m

(� < 8�). The sample and its blank were also measured without

the container. The spectra recorded for the sample in the

container and for the sample and container apart are reported

in Fig. 3. The blank sample is a pure PSH solid sample. Its

incoherent signal was measured in the same conditions as the
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Figure 3
Ratio F=Fwater of scattering functions of different samples to that of
1 mm-thick layer of water versus scattering vector q. Full triangles:
0.5 mm-thick solid sample made of 2% (v/v) deuterated polystyrene
(PSD) and 98% (v/v) non-deuterated polystyrene (PSH) in a 3 mm-thick
Al alloy container. Hollow circles: empty container. Full circles: solid
sample alone. Hollow triangles: beam without sample. Measurements
performed on PACE (LLB) at � ¼ 6 Å, D ¼ 2:38 m. Statistical error bars
are smaller than the data symbols.



sample and subtracted from the corresponding sample signals.

Fig. 4 shows the data reduction (i) using all corrections

[equation (17)] and (ii) using the usual approximation

[equation (7)]. It appears that equation (17) allows us to

account correctly for the container contribution and to

superimpose scattering curves obtained for the sample alone

and within the container. On the other hand, the usual data

reduction method [equation (7)] leads to a huge over-

estimation of sample scattered intensity.

Note that our procedure for subtraction of the empty

container contribution is valid whatever the origin of the

scattering by the empty cell: coherent or incoherent. It is thus

more general than the alternative procedure previously

reported (Horkay et al., 1991). In addition, our procedure is

even valid for anisotropic scattering of the container, once

isotropic averaging of the data has been performed. In the

case of anisotropic scattering of the sample itself, the proce-

dure remains equally valid but data treatment has to be

performed without isotropic averaging.

2.4. Normalization of detector efficiency and absolute
measurements

In order to account for different efficiencies of detector

cells, normalization is achieved by dividing the signal of the

sample by that measured with a reference sample giving a high

flat signal (note that in this paper the term ‘normalization’ is

always used with this meaning). Such a reference sample is

generally a hydrogenated sample since the incoherent cross

section of hydrogen is very high. The scattering function,

Frefð�Þ, of this reference sample is obtained from the measured

scattered intensity, IREF, once the ‘beam without sample’ and

‘empty container’ contributions have been adequately

subtracted in the same way as for the sample [see equation

(12)]:

Frefð�Þ ¼
IREFð�Þ � B

zrefTREF�REFð�Þ
� �REFð�Þ

IECð�Þ � B

	ECð�ÞTEC

þ �REFð�Þ
T

að�Þ
EC

	ECð�Þ
�

T
að�Þ
REF

	REFð�Þ

" #
Fbð�Þ: ð20Þ

Finally, to obtain the absolute values of the differential scat-

tering cross sections (in cm�1) after data normalization, it is

necessary to calculate

~��sð�Þ � ~��bkð�Þ ¼
hFrefð�Þi

Cð�Þ
�

Fsð�Þ � Fbkð�Þ

Frefð�Þ
; ð21Þ

where Cð�Þ is the calibration constant [see equation (4)] and

hFrefð�Þi is the mean value of the incoherent scattering func-

tion used for normalization. To determine absolute values of

the differential scattering cross section, different calibration

methods can be equally used (Jacrot & Zaccaı̈, 1981; Wignall

& Bates, 1987; Ragnetti et al., 1985; Russell et al., 1988; Cotton,

1991b; Glinka et al., 1998; Lindner, 2002). Here, we only

discuss the choice of the incoherent scatterer and the origin of

deviations of the reference spectra from the expected flat

profile, which are often observed.

2.4.1. Incoherent scatterer and multiple scattering. The

reference sample can be an incoherent scatterer, such as

highly hydrogenated samples. Among hydrogenated samples,

a 1 mm-thick layer of water is a good choice. If experiments

are performed in solutions of a hydrogenated solvent, the

latter suits very well. A hydrogenated solid polymer such as

poly(methylmethacrylate) or polycarbonate of about 1 mm

thickness is also suitable, provided that its surfaces are not

scratched (Ghosh & Rennie, 1999).

Once normalization is achieved, dimensionless spectra are

obtained. The spectra then need to be multiplied by the cross

section of the incoherent scatterer that has been chosen as

reference sample [equation (21)]. Most of the hydrogenated

reference samples used in SANS have a thickness close to the

mean free path, �, of neutrons. However, their height and

width are much larger (’ 10�). This means that neutrons

scattered in these directions interact several times and have no

chance to exit the sample at � ¼ 90�. Their probability of

going out forwards or backwards is thus increased (May et al.,

1982; Calmettes, 1999). This explains why the apparent cross
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Figure 4
Comparison of the usual [equation (7)] and improved [equation (17)]
data reduction methods for the measurements of Fig. 3. The reference
spectrum is measured for the sample without container (F3). For
measurement of the same sample in a container that contributes to
scattered intensity, the challenge for data treatment is to obtain a result as
close as possible to the reference spectrum. This is achieved using
equation (17) (F2 superimposes to F3) whereas the usual method fails
[equation (7), F1 does not superimpose to F3].



section of hydrogen can be found to be up to twice its nominal

value of 80 barns.

In addition to this geometrical effect on the apparent cross

section of the hydrogenated reference sample, it is important

to emphasize the role of inelastic scattering that occurs at high

q (q> 1 Å
�1

) but adds to the forward signal as a result of

multiple scattering. For such a reference sample, scattered

neutrons reaching the detector display a wide distribution of

wavelength. Thus, the measured count rate varies with the

wavelength dependence of the detector efficiency [see equa-

tion (23) below].

As a major consequence, the apparent cross section of a

given reference sample, i.e. the calibration factor, is a char-

acteristic of each spectrometer. For instance, a difference of

about 20% is observed at 5 Å between PACE (LLB) and D11

(ILL). Thus, calibration curves that have been published for

specific spectrometers (May et al., 1982; Ragnetti et al., 1985)

cannot be universal (Lindner, 2002).

2.4.2. Deviation of reference signal from a flat shape. In

many cases, measured reference signals deviate from the

expected flat profile and decrease at high q. The argument

generally used to explain this observation is the multiple

scattering that has been discussed in the previous section; the

apparent cross section of the hydrogenated reference sample

is increased in the forward direction and falls down at � ¼ 90�.

An angular dependence is thus expected and usually invoked

to account for decreasing incoherent signals (Calmettes, 1999).

In this section, we show that the decrease of the incoherent

signal is properly accounted for using some simple geometrical

arguments. Three contributions have to be considered:

(i) Angular dependence of the transmission [see equation

(9) and Fig. 2] leads to a decrease of the measured intensity

with �.

(ii) Absence of curvature of the detector (Lindner et al.,

2000). The real solid angle of detector cell of area s is

��ð�Þ ¼
s cos �

D= cos �ð Þ
2
¼ ��ð0Þ cos3 �: ð22Þ

This leads to a decrease of the measured intensity with �.

(iii) Detector efficiency � depends on the actual thickness

z0=cos � of detection gas in the direction � (Lindner et al.,

2000). This is expressed as

�ð�; �Þ ¼ 1� exp½��ð�Þz0=cos ��; ð23Þ

where �ð�Þ is the lineic absorption coefficient of the detection

gas. It is a characteristic of the detector, proportional to the

wavelength, and depends on the detection gas, pressure and

thickness. For instance, �ð�Þz0=� ¼ 0:20 Å
�1

on the PACE

spectrometer at LLB. Equation (23) corresponds to an

increase of detector efficiency with scattering angle.

Finally, for an incoherent signal which is normally inde-

pendent of the scattering angle, the actual measured intensity

varies as

Irefð�Þ ¼ Frefð�ÞzrefTrefð�Þ
�ð�; �Þ

�ð�; 0Þ
cos3 �: ð24Þ

In order to check the validity of this expression, it is first

necessary to take into account the ‘gondola defect’ often

observed on multidetectors (Fig. 5). This is due to a regular

increase of the thickness of the detection gas (BF3 or He) from

the center to the border of the detector (Lindner et al., 2000).

The gondola defect increases detector efficiency with scat-

tering angle. It is observed on PAXY and PAXE at LLB, but it

is not observed on our third spectrometer PACE. In practice,

the gondola defect does not affect the shape of spectra as long

as normalization is achieved using a reference sample

measured using the same spectrometer configuration as for

the sample. However, it has to be taken into consideration to

test the validity of equation (24).

At small angles, the variation of Irefð�Þ reported in equation

(24) is negligible and measurements allow us to estimate the

gondola effect. In Fig. 5, the scattered intensity of a sheet of

poly(methylmethacrylate) measured on two spectrometers

(PACE and PAXY at LLB) with a sample-to-detector distance

D ’ 3 m are compared. The deviation from a flat profile is due

to the gondola effect. PACE is free from this defect and is used

in the next section to test equation (24).

In Fig. 6, the incoherent signal of a water layer of 1 mm

thickness is compared with equation (24) with the zero q

scattered intensity as the only adjustable parameter. One can

see that equation (24) fully accounts for the decrease of Irefð�Þ.
As a consequence, for a given configuration (D, �) of the

spectrometer, a hydrogenated sample is suitable for normal-

ization of measurements following equation (21), at least up to

q values of 0.7 Å�1, the upper limit of our SANS experiments.

2.4.3. Fast measurement of reference signal. Frequently,

scattered intensity is measured at different detector positions,

D, and wavelengths, �. Then, superimposition of data obtained
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170 Annie Brûlet et al. � Improvement of data treatment in SANS J. Appl. Cryst. (2007). 40, 165–177

Figure 5
Scattered intensity of 1 mm-thick poly(methylmethacrylate) (PMMA)
divided by the value at q! 0 versus detector cell number (cell number 0
is the nearest to the beam). Circles: spectrometer PAXY, LLB (D = 3 m,
� = 10 Å). Diamonds: spectrometer PACE, LLB (D ¼ 2:5 m, � ¼ 6 Å).
In this q range geometrical effects due to cos � 6¼ 1 can be neglected. The
deviation from the expected flat profile is due to the gondola effect. Lines
are guides for the eyes.



under different configurations requires normalization

measurements and absolute calibrations for each configura-

tion. At large distances and large wavelengths, measurements

require a long time to obtain good statistics. Actually, (i) the

incoherent count rate scales as the solid angle 1=D2, (ii) an

appropriate symmetric collimation of neutron beam decreases

the flux by the same factor, 1=D2, and (iii) the neutron flux

through a mechanical selector decreases roughly as 1=�4.

Therefore, at small angle q / ð�DÞ
�1, the time needed to

measure the flat scattering of an incoherent sample decreases

as q�4. Good normalization measurements at low q would

require a huge amount of beam time. However, equation (24)

can be used to improve the statistics and save time. Actually,

only measurement of the incoherent signal at a short distance

(with the same wavelength and beam collimation) is needed.

Equation (24) allows us to calculate the normalization spec-

trum that has to be used for reduction of data obtained at

smaller q. For instance, if normalization measurement is

performed at D ¼ 1 m instead of D ¼ 5 m, the corresponding

beam time is reduced by 25, i.e. the ratio of solid angles.

This method gives very good results, as shown in Fig. 7,

which reports measurements of scattered intensity of a 1 mm

thick layer of water in a quartz container. Measurements are

performed at � ¼ 4:5Å and D ¼ 0:76, 2.38 and 4.6 m,

respectively. Beam collimation is ensured by two diaphragms

(
 ¼ 7 and 12 mm) separated by 2.5 m for the two smallest

distances and by 5 m for the highest one. For this reason, data

obtained at D ¼ 4:6 m are multiplied by a factor 4 to account

for the corresponding beam flux. In Fig. 7, once angular

corrections of equation (24) are taken into account, the three

spectra superimpose within 2% error bars (even detector

defects are reproduced). Such a difference is weak compared

with the other errors for absolute calibration.

3. Determination of the inherent sample background

Another problem of SANS data reduction is concerned with

the proper subtraction of the inherent sample background. In

the following, we first recall the expression for the scattering

cross section of a sample (x3.1). Then, we discuss the choice of

an ideal blank sample and explain how to determine the

inherent sample background from the scattering of an actual

blank sample (x3.2).
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Figure 6
Top: raw incoherent signal, Irefð�Þ, of 1 mm of H2O measured on the
spectrometer PACE at high q (D = 0.65 m; � = 4.5 Å). The full line is
equation (24) with Iq!0 as the only adjustable parameter. Bottom:
incoherent scattering function, Frefð�Þ ¼ Irefð�Þ= Tð�Þ�ð�; �Þ cos3 �

	 

. The

expected flat profile is recovered. Note that even the first and last points
of the spectrum, which show a large deviation from the curve due to the
beam stop and edges of the detector, are finally accounted for after the
last stage [equation (21)] of data treatment (see for instance Fig. 4).

Figure 7
Scattered intensity, Fref , of a 1 mm-thick layer of water in a quartz
container measured on PACE at LLB at � ¼ 4:5 Å and three different
distances, D, between sample and detector. Bottom and middle:
Fref ¼ Iref= Tð0Þ��ð0Þ½ � versus scattering vector q or detector cell
number. The Fref so calculated corresponds to the approximation
cos � ¼ 1. Data measured at high q display a different profile. Top:
Fref ¼ Iref�ð�; 0Þ= Tð�Þ�ð�; �Þ��ð�Þ½ � calculated following equation (24).
The three spectra superimpose well.



3.1. Expression of the scattering cross section of a sample

Let us consider a generalized solution of volume V made of

different chemical species. � ¼ 1 denotes the solvent and

� ¼ 2m the different solutes. For each component, v� is the

partial molar volume, a� the coherent scattering length,

b� ¼ a� � a1v�=v1 the contrast length (b1 ¼ 0), and

x� ¼ n�v�=V the volume fraction occupied by the n� mol-

ecules. The coherent scattering cross section per volume and

solid angle units, ~��ðqÞ, is expressed as a function of concen-

tration and density fluctuations as (Cotton, 1991a)

~��ðq< q�Þ ¼ ð1=VÞ
P
�;	

b�b	S�	ðqÞ þ AskT�s
T

¼ sðqÞ þ AskT�s
T : ð25Þ

sðqÞ is the coherent scattering cross section of concentration

fluctuations and is the interesting quantity. �s
T is the

isothermal compressibility of the solution and q� the reverse

correlation length of density fluctuations (Cotton, 1991b). In

practice, q�> 0:5 Å�1. The contribution of compressibility to

the coherent scattered intensity is weighted by the contrast

factor As:

As ¼
a1

v1

Xm

1

x�
v�

b� þ a�ð Þ: ð26Þ

As x1 ¼ 1�
Pm

�¼2 x�, As can be rewritten as

As ¼ A1 1þ 2
v1

a1

Xm

2

x�
b�
v�

 !
with A1 ¼

a2
1

v2
1

: ð27Þ

Assuming that the partial molar volume of pure solvent

remains unaffected with solute addition, As is simply

expressed as a function of solvent characteristics A1.

For neutrons, scattering depends on the isotope and on the

spin state of the nucleus. The corresponding fluctuations cause

an additional contribution to the scattering cross section:

V ~��inc. If ainc
i ¼ ðha

2
i i � haii

2
Þ

1=2 is the incoherent scattering

length of the ith nucleus of scatterer � (with i ¼ 1N�), the

incoherent scattering cross section, ~��inc, of the solution can be

written as

~��inc
s ¼ ð1=VÞ

Pm
�¼1

n�
PN�

i¼1

ainc
i

� �2

� �

¼
Pm
�¼1

ðx�=v�Þ
PN�

i¼1

ainc
i

� �2

� �
¼
Pm
�¼1

~��inc
� ; ð28Þ

where ~��inc
� is the incoherent scattering cross section per solid

angle and per volume unit of species �. Finally, the total

scattering cross section per solid angle and per volume unit is

~��sðqÞ ¼ ~��ðqÞ þ ~��inc
s

¼ sðqÞ þ AskT�s
T þ ~��inc

s : ð29Þ

It is deduced from the measurement of scattering intensity

following equation (4). Nevertheless, sðqÞ is the meaningful

function for the sample structure [see equation (25)] and the

problem is to evaluate the q-independent terms of equation

(29), i.e. the inherent sample background:

~��sbkg ¼ AskT�s
T þ ~��inc

s : ð30Þ

This is achieved by measuring the scattered intensity of a

blank sample.

3.2. Choice of a blank sample

An ideal blank sample would display a scattering cross

section, ~��bk, independent of q, such as

~��sbkg ¼ ~��bk ¼ AbkkT�bk
T þ ~��inc

bk : ð31Þ

In principle, a blank sample having the same incoherent

scattering cross section as the sample to be studied can be

easily prepared. However, the contrast weighting coefficient of

density fluctuations will probably differ. Comparing density

fluctuations and incoherent scattering contributions with the

scattered intensity for simple cases (see Appendix B), it

appears that �s
T and �bk

T can both be neglected for solutions

in hydrogenated solvents. For instance, the ratio
~��inc

bk =ðAbkkT�bk
T Þ ’ 7300 for H2O. However, for a deuterated

solvent, compressibility has to be taken into account:
~��inc

bk =ðAbkkT�bk
T Þ ’ 1:4 for D2O. These two cases are discussed

in the next sections.

3.2.1. Incoherent scattering predominates. In this case, the

sample inherent background can be reasonably estimated by

~��sbkg ’ ~��inc
s : ð32Þ

A first approximation would be to use the pure solvent as

blank sample. Its incoherent intensity, ~��inc
bk , however, differs

from that of the sample, ~��inc
s , owing to the solute. Nevertheless,

knowing the sample composition and the volume fraction of

solute, it is possible from tables (Sears, 1992) to calculate the

ratio ~��inc
s = ~��inc

bk

� �
calc

of the expected scattering cross sections.

Then, the actual incoherent scattering cross section of the

sample could be estimated by

~��inc
s ’ ~��inc

bk ~��inc
s = ~��inc

bk

� �
calc
; ð33Þ

where ~��inc
bk is the measured incoherent scattering cross section

of the solvent (see Appendix B). Unfortunately, this is not

valid because multiple scattering (Calmettes, 1999; Strunz et

al., 2000) causes the measured intensity to be much higher

than and not proportional to the calculated intensity (see

x2.4.1). Note that this problem cannot be bypassed by

decreasing the sample thickness as the effect is due to the

sample size in the directions perpendicular to the neutron

beam.

More properly, a blank sample has to be prepared using a

mixture of deuterated and non-deuterated solvent. Assuming

that deuteration does not change the partial molar volume, the

volume fraction xslvD of deuterated solvent in this blank

sample needs to fulfill the condition

~��inc
s ¼ ~��inc

bk ¼ ð1=v1Þ xslvD ainc
slvD

� �2
þð1� xslvDÞ ainc

slvH

� �2
h

þ xslvDð1� xslvDÞ aslvD � aslvHð Þ
2


; ð34Þ

with ~��inc
s calculated following equation (28).
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A blank sample so prepared, measured with the same

wavelength and container geometry, displays the same trans-

mission and the same multiple scattering as the sample. The

incoherent signal so measured can be adequately subtracted

from the scattered intensity of the sample. At this point, one

may question why the sample and the blank have the same

transmissions while the sample displays an additional impor-

tant central scattering. Actually, transmission takes into

account the integral over 4� steradians of incoherent and

coherent scattering. The coherent contribution is negligible

for the blank (this section is precisely concerned with this

case), while it is concentrated in a few 10�3 steradians for the

sample. The latter integral is often negligible compared with

the incoherent contribution.

As an example, for a solution at 0.1 g cm�3 of D-polystyrene

in H-benzene, the proper blank contains 28% (volume frac-

tion) of D-benzene (see Appendix B). This high volume

fraction is a result of the composition fluctuations term, i.e. the

last term in equation (34). Note that possible isotopic

exchange in solvent mixtures (as in H2O/D2O mixtures)

results in a still higher incoherent background, since the

solvent mixture contains more than two components (see

Appendix B).

Sometimes, because of inaccuracy of volume or weight

measurements, a blank sample prepared following equation

(34) does not display exactly the same transmission as the

sample. Then a good approximation consists of multiplying the

blank spectrum by the ratio of the logarithm of blank trans-

mission to that of sample transmission.

3.2.2. Incoherent scattering does not predominate. In this

case, exact calculation of the inherent sample background

following equation (30) is not easy because �1
T is known for

pure solvents (see Appendix B), but �s
T is generally unknown

for solutions. A reasonable approximation assumes �s
T ’ �

1
T.

Then, equation (30) becomes

~��sbkg ’ AskT�1
T þ ~��inc

s ð35Þ

where As and ~��inc
s can be calculated following equations (27)

and (28), respectively. Examples are reported in Table 1. In

this table, our better estimation of ~��sbkg given by equation (35)

is used to compare the accuracy of the usual approximations

that consist of (i) using the pure solvent as blank:
~��bk1 ¼ A1kT�1

T þ ~��inc
1 ; (ii) using a blank made of H and D

solvent with the same incoherent scattering cross section as

the sample: ~��bk2 ¼ AxkT�1
T þ ~��inc

s .

The consequences of such errors are especially important at

high q where coherent scattering is generally weak.

A proper blank sample would be a mixture of H and D

solvents obtained by a calculation similar to that described in

the previous section [see equation (34)] but accounting for the

difference in compressibility terms. Such a blank sample

would now fulfill the condition

~��sbkg ¼ AbkkT�1
T þ ~��inc

bk ð36Þ

with

Abk ¼ A1 1þ 2xslvD

aslvD

aslvH

� 1

� �� �

and

~��inc
bk ¼

1

v1

xslvD ainc
slvD

� �2
þð1� xslvDÞ ainc

slvH

� �2
h

þ xslvDð1� xslvDÞ aslvD � aslvHð Þ
2


;

with ~��sbkg calculated following equation (35). In equation (36),

the only unknown quantity is xslvD and, in principle, a blank

could be prepared solving this equation. However, in practice,

this would be tedious, particularly in the case of a long series

of different samples.

3.3. Systematic methods for inherent background calibration

During a long series of measurements with similar samples,

it is possible to reduce the beam time devoted to determina-

tion of inherent backgrounds by making a calibration curve of

the background level. As stressed above, measurements on
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Table 1
Examples of different contributions in the inherent background of a solution.

c is the solute concentration. Subscripts 1, 2 and s refer to solvent, solute and solution, respectively. ~�� is a differential cross section per volume unit. xslvD is the
fraction of deuterated solvent in a blank composed of H and D solvent with the same incoherent scattering cross section as the sample. A1kT�1

T , AxkT�1
T and

AskT�1
T are the compressibility contributions to scattered intensity of pure solvent, of a blank with a fraction xslvD of deuterated solvent and of the sample,

respectively. ~��inc
s is the incoherent contribution to the inherent background of the sample. Err1 ¼ ð ~��bk1 � ~��sbkgÞ= ~��sbkg is the error using the pure solvent as blank.

Err2 ¼ ð ~��bk2 � ~��sbkgÞ= ~��sbkg is the error using a blank with a fraction xslvD of deuterated solvent. Negative values correspond to underestimations and positive values
to overestimations.

c ~��inc
1 ~��inc

2 xslvD A1kT�1
T AxkT�1

T AskT�1
T ~��inc

s Err1 Err2

Solution (10�2 g cm�3) (10�2 cm�1) (10�2 cm�1) (%) (10�2 cm�1) (10�2 cm�1) (10�2 cm�1) (10�2 cm�1) (%) (%)

PSH/C6D6 10 0.611 2.95 94.2 1.164 1.052 0.990 3.564 �60 �1.4
1 0.658 0.295 99.4 1.164 1.115 1.148 0. 953 �13 0.28

C6D6† 1.164 0.668
PSD/C6H6 10 24.3 0.079 28.2 0.0554 0.211 0.102 24.33 6.3 �0.45

1 25.9 0.0079 10.6 0.0554 0.103 0.060 25.94 �0.17 �0.16
C6H6† 0.055 25.9
PSD/CS2 10 0.00110 0.070 0.057 0.101 0.071 �66

1 0.00180 0.0070 0.057 0.061 0.008 �16
CS2† 0.057 0.001

† Values from Table 2.



samples and blanks have to be performed in conditions

leading to the same multiple scattering effect, i.e. with same

wavelength and same thickness. Here again, two cases have to

be considered depending on the incoherent background.

3.3.1. Calibration for high incoherent background. This is

the case of a hydrogenated matrix (solids or solutions). The

method involves measuring scattering intensities of a series of

blanks composed of H and D solvents, varying the volume

fraction of D solvent in a range of concentration such that the

blank transmissions cover those of the samples. As flat signals

are expected for these blanks, the statistics are increased by

averaging each spectrum over q. Then, an accurate reference

curve, C1, of the level of the incoherent signal as a function of

the transmission, Tbk, is experimentally determined:

~��bk ’ ~��inc
bk ¼ C1ðTbkÞ: ð37Þ

The inherent background of the sample is then determined

from the value of its transmission as equal to
~��sbkg ’ ~��inc

s ¼ C1ðTsÞ.

Note that the use of transmission as a characteristic for the

incoherent scattering is valid if absorptions of samples and

solvent mixtures are negligible. This is the case of most organic

solvents.

3.3.2. Calibration for a series of solid samples. For a series

of solid samples, some difficulties may arise from the control

of sample thicknesses or inaccuracy in their measurements

(for instance due to sample roughness or mechanical stress).

For such a series with a given amount of incoherent scat-

terers, both the incoherent scattering and the sample trans-

mission depend unambiguously on the sample thickness. Thus,

two calibration curves can be obtained from the measurement

of a few blank samples having different well controlled

thicknesses.

~��bk ’ ~��inc
bk ¼ C2ðTbkÞ;

zbk ¼ C3ðTbkÞ:
ð38Þ

The first calibration curve is identical to equation (37),

whereas the second aims to provide the sample thickness from

its transmission: zs ¼ C3ðTsÞ.

For instance, this method has been used for the study of the

relaxation of conformation of stretched solid polymers

(Fourmaux-Demanges, 1998). Samples were made of a

mixture of 50% of D-labelled polymers (with only 17% of

protons replaced by deuterium) and 50% of H polymers

(without deuterium) in order to access the single chain form

factor. In this case, for the different thicknesses needed for the

calibration curve, ~��bk is calculated as equal to the half sum of

the scattering intensities delivered by a 100% H polymer

sample and a 100% D-labelled polymer sample.

Note that in the case of solid blank samples surface

roughness may be responsible for small-angle scattering. Thus,

the scattering cross section ~��bk that has to be accepted for the

calibration curve corresponds to the high q limit of the spec-

trum.

3.3.3. Calibration for weak incoherent background. In this

case, the role of density fluctuations in the scattered intensity

of a blank sample cannot be neglected. As these fluctuations

mainly contribute to high q signals (for instance the first-

neighbor correlation peak in liquids), transmission of the

sample does not reflect scattered intensity measured at low q

(for instance an increase of the signal at high q should be

responsible for a decrease of transmission but would probably

have no effect on scattered intensity at low q). The transmis-

sion value is not a characteristic of the background level.

From equation (36), it appears that for the blank this

characteristic can be more adequately taken as the volume

fraction, xinc
bk , of incoherent scatterers (the minority species):

~��bk ¼ AbkkT�1
T þ ~��inc

bk ¼ C4ðx
inc
bk Þ: ð39Þ

The reference curve C4ðxincÞ is obtained by preparing different

blanks varying xinc
bk . For a given sample, an ideal blank

composition, xinc
s , can be calculated following equation (36).

The inherent background of this sample is thus approximated

as equal to C4ðx
inc
s Þ and deduced from the reference curve.

4. Conclusion

This paper provides a survey of problems for background

subtraction in SANS experiments.

Our first discussion is devoted to data obtained at scattering

angles above 10� where cos � differs significantly from 1.

Angular corrections play a role in transmission values and in

the efficiency of the detector. For instance, the decrease of the

scattering intensity of water at large angles is shown to be due

to a geometrical effect that can be easily corrected. This result

suggests a method for measuring quickly the reference scat-

tering needed for normalization of cells of the position-

sensitive detector when it is far from the sample and the

neutron count rate is too weak.

Secondly, we discuss the case of a sample container that

gives spurious scattering. The proper method allowing

subtraction of this contribution to sample scattering is given

and has been experimentally verified. Note that the correct

subtraction method requires measurements of both ‘empty

container’ and ‘beam without sample’ scattering. As a result, it

is possible to use containers with strongest windows which are

useful for studies of samples under high pressures, very low or

very high temperatures, and under stress.

Thirdly, subtraction of the inherent sample background is

considered. Two complications arise. The first is multiple

scattering that occurs with incoherent scatterers. It comes

from the geometry of the sample containers used to maximize

the neutron flux. It is difficult to calculate, so we only give

methods allowing for the preparation of blank samples deli-

vering the same multiple scattering as that of the sample. The

second complication is the contribution of compressibility. We

give an expression allowing the evaluation of this coherent

background. It is often negligible but involves contrast terms

that may reveal important surprises.

Even if the corrections proposed here are somewhat

tedious, it seems reasonable to increase the accuracy of SANS

measurements by introducing them systematically in data

treatment procedures.
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174 Annie Brûlet et al. � Improvement of data treatment in SANS J. Appl. Cryst. (2007). 40, 165–177



Throughout this paper it is assumed that the different

contributions for background subtraction add to one another.

For example, the contribution from the empty container adds

to that from the sample, or incoherent scattering adds to

coherent scattering. Implicitly this is only valid for single

scattering. As soon as multiple scattering is not negligible,

these different contributions do not simply add but are

convoluted with each other component, making background

subtraction more complicated. To our knowledge, this is still

an unsolved problem. Generally, multiple scattering involves

highly scattered intensity that renders background subtraction

a secondary problem. In the case of negligible background, the

effects of multiple scattering can be removed from the data

(Schelten & Schmatz, 1980; Monkenbusch, 1991) so as to

obtain the coherent, single scattering cross section of the

sample.

Finally, prior to data analysis, a last stage for data treatment

is sometimes necessary. It consists of signal desmearing

(Glatter, 1977) that accounts for the resolution function. For

this stage, the q-dependent resolution of the spectrometer has

to be calculated (Pedersen et al., 1990; Lairez, 1999). The latter

calculation is also implemented in the new software for data

treatment at LLB (Lairez, 2006).

APPENDIX A
Scattering by a sample inside a container

The problem of scattering by a sample inside a container is

slightly complicated by a possible contribution of the

container (aluminium sheets, alloy windows etc.). This

problem can be solved if multiple scattering is negligible. Let

us consider a sample of thickness zs between two windows of

the same thickness, zec, and made with the same material (see

Fig. 8). The scattering intensity is the sum of three components

that depend on the location of interaction between the

neutron and the scatterer. Scattering functions are denoted

Fecð�Þ for the front and back windows of the container and

Fsð�Þ for the sample.

The scattered intensities can be written as

I1ð�Þ ¼
Rzec

0

dx exp½��ecx�Fecð�Þ exp½��sðzs � xÞ= cos ��

� exp½�ð�szs þ �eczecÞ= cos ��; ð40Þ

I2ð�Þ ¼
Rzs

0

dx exp½�ð�eczec þ �sxÞ�Fsð�Þ

� exp½��sðzs � xÞ=cos �� expð��eczec=cos �Þ; ð41Þ

I3ð�Þ ¼
Rzec

0

dx expð��ecxÞFecð�Þ exp½��ecðzec � xÞ=cos ��

� exp½�ð�szs þ �eczecÞ�: ð42Þ

The total intensity is the sum of I1ð�Þ, I2ð�Þ and I3ð�Þ. Let us

define the following quantities:

Ti ¼ expð��iziÞ;

Tið�Þ ¼ Ti

1� Ta
i ð�Þ

að�Þ�i

;

að�Þ ¼ ð1=cos �Þ � 1

T �
i ¼ T

1=cos �
i :

Note that the transmission, TS, measured for the sample inside

its container is related to the transmissions of each layer of the

overall sample by

TS ¼ T2
ecTs ¼ TECTs ¼ exp½�ð2�eczec þ �szsÞ�:

Uppercase subscript S refers to the sample inside the

container and uppercase subscript EC to the overall empty

container, whereas lowercase subscripts s and ec stand for the

sample alone and the two windows of the container.

During the experiment, the scattering signal ISð�Þ recorded

on the detector is

ISð�Þ ¼ Tsð�ÞTecT �
ecFsð�Þ

þ Tecð�Þ T �
ecT �

s þ TecTs

� �
Fecð�Þ

þ T �
ec

� �2
T �

s Fbð�Þ þ B:

That of the empty container is

IECð�Þ ¼ Tecð�Þ T �
ec þ Tec

� �
Fecð�Þ þ T �

ec

� �2
Fbð�Þ þ B:

In this formula, we can check that the scattering intensity of

the empty container is weighted by the usual factor:

Tecð�ÞðT
�

ec þ TecÞ ¼ Tec

1� Tað�Þ
ec

að�Þ�ec

�
Tec

h
1þ Tað�Þ

ec

i�

¼ T2
ec

1� T2að�Þ
ec

að�Þ�ec

¼ TECð�Þ:

It is useful to write all coefficients as a function of experi-

mental parameters TS, TEC, zs and zec. The equations
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Figure 8
Schematic representation of the scattering by a sample of thickness zs in a
container with front and back windows of thicknesses zec1 and zec2,
respectively.



Tsð�ÞTecT �
ec ¼ zsTS

�
T

að�Þ=2
EC

1� ðTS=TECÞ
að�Þ

�að�Þ lnðTS=TECÞ

�
¼ zsTS �Sð�Þ;

Tecð�ÞðT
�

ecT
�

s þ TecTsÞ ¼ 2zecTS

�
1� T

að�Þ=2
EC

�að�Þ lnðTECÞ

�
1þ

�
TS

T
1=2
EC

�að�Þ �
¼ 2zecTS 	Sð�Þ;

introduce �Sð�Þ and 	Sð�Þ. Finally, we obtain for the scattered

intensity of the sample

ISð�Þ ¼ zsTS�Sð�ÞFsð�Þ þ 2zecTS	Sð�ÞFecð�Þ þ T �
S Fbð�Þ þ B;

and for the empty container

IECð�Þ ¼ 2zecTEC	ECð�ÞFecð�Þ þ T �
ECFbð�Þ þ B:

As a result, the scattering function of the sample Fsð�Þ is

FSð�Þ ¼
ISð�Þ � B

zsTS�Sð�Þ
�
	Sð�Þ

zs�Sð�Þ

IECð�Þ � B

	ECð�ÞTEC

� �

þ
1

zs�Sð�Þ

�
	Sð�ÞT

�
EC

	ECð�ÞTEC

�
T �

S

TS

�
Fbð�Þ

Finally, this reduces to equation (12).

APPENDIX B
Incoherent scattering of an H and D solvent mixture:
example of calculation

Let us consider a hydrogenated solvent of molar mass mslvH

and volumic mass �H. It contains 1=vsolv ¼ Na�HmslvH mol-

ecules per volume unit, where Na is Avogadro’s number. The

coherent and incoherent scattering lengths are aslvH and ainc
slvH.

Its deuterated homolog is assumed to have the same partial

molar volume and to be characterized by aslvD and ainc
slvD. For a

mixture made of a fraction xslvD of D molecules and a fraction

ð1� xslvDÞ of H molecules, the incoherent scattering per solid

angle and volume unit is

~��inc
solv ¼ ð1=vsolvÞ

h
xslvDða

inc
slvDÞ

2
þ ð1� xslvDÞða

inc
slvHÞ

2

þ xslvDð1� xslvDÞðaslvD � aslvHÞ
2
i
: ð43Þ

The last term of equation (43) is the incoherent term of mixing

(Cotton, 1991a, 1999). It depends on the coherent scattering

lengths of molecules and comes from the absence of correla-

tion between the location of one molecule and its isotopic

composition.

As an example, we have calculated the fraction xslvD of

D-benzene to be used in a blank sample for c ¼ 0:1 g cm�3 of

D-polystyrene (PSD) dissolved in H-benzene. Numerical data

are given in Table 2. In this case, incoherent scattering

predominates and the difference in compressibility terms

between the solution and the solvent mixture can be

neglected. The number of PSD molecules per unit volume of

solution is x2=v2 ¼ Nac=mC8D8
¼ 5:38� 1020 cm�3. The

corresponding volume fraction is x2 ¼ 8:74� 10�2. Thus, the

number of solvent molecules per unit volume of solution is

x1=v1 ¼ 1=v1 � ðx2=v1Þ ¼ 6:17� 1021 cm�3. The incoherent

scattering of the solution is ~��inc
s ¼ ða

inc
C6H6
Þ

2
x1=v1þ

ðainc
C8D8
Þ

2x2=v2 ¼ 0:237 cm�1. The composition of the mixture

having this incoherent cross section is obtained by solving

equation (43). The positive solution of this equation is

xslvD ¼ 0:28. Note that this volume fraction of D-benzene is

high compared with the concentration of the D-polymer

(0.1 g cm�3) in solution. This clearly shows the importance of

composition fluctuations (Cotton, 1991b, 1999) in incoherent

scattering of the solvent mixture.

Equation (43) assumes that no isotopic exchange between

H and D molecules occurs. This is not the case in water, in

which H2O, D2O, HDO and DHO coexist in the mixture. In

this peculiar case, a correct calculation leads to

~��inc
water vwater ¼ xslvDða

inc
D2OÞ

2
þ ð1� xslvDÞða

inc
H2OÞ

2

þ xslvDð1� xslvDÞ
	
4ðaD � aHÞ

2

þ 2ðaD þ aH þ aOÞ
2


; ð44Þ

where aD, aH and aO are the coherent scattering lengths of H,

D and O nuclei. The ‘incoherent’ scattering signal is increased
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Table 2
Numerical value for simple scatterers.

v is the molecular volume; a is the coherent scattering length; ainc is the incoherent scattering length (Sears, 1992); �T is the isothermal compressibility at 298 K
(Lide, 1995–1996; Brandrup & Immergut, 1989); ~��inc is the incoherent scattering cross section per volume and solid angle unit. CS2 is an interesting and rare solvent
with a very low incoherent scattering cross section.

v�1 a ðaincÞ
2 kT�T a2v�2kT�T ~��inc

Scatterer (1021 cm�3) (10�12 cm) (10�24 cm2) (10�24 cm3) (10�2 cm�1) (10�2 cm�1)

Water H2O 33.4 �0.167 12.8 1.88 0.00587 42.7
Heavy water D2O 33.4 1.92 0.327 1.88 0.772 1.09
H-cyclohexane C6H12 5.58 �0.500 76.6 4.69 0.00365 42.5
D-cyclohexane C6D12 5.58 12.0 1.96 4.69 2.10 1.09
H-benzene C6H6 6.77 1.74 38.3 3.98 0.0554 25.9
D-benzene C6D6 6.77 7.99 0.981 3.98 1.16 0.668
Carbon disulfide CS2 10.0 1.23 0.00120 3.79 0.0577 0.00120
H-polystyrene –(C8H8)n– 6.15 2.33 51.1 0.910 0.0186 31.4
D-polystyrene –(C8D8)n– 6.15 10.7 1.31 0.910 0.391 0.805



since the mixture contains more than two species. Equation

(44) rectifies an oversight of Cotton (1991a) and corrects a

mistake of Cotton (1999).
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Laboratoire Léon Brillouin, CEA-Saclay, France.
Feigin, L. & Svergun, D. (1987). Structure Analysis by Small-Angle

X-ray and Neutron Scattering. New York: Plenum Press.
Fourmaux-Demanges, V. (1998). PhD thesis, Université Paris XI,
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