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Abstract. Adjustments are proposed of the Delayed Detached Eddy Simulation (DDES) 

approach to turbulence.  They preserve the DDES capabilities particularly for natural DES 

uses, and resolve the mismatch of the logarithmic layers discovered earlier for the basic DES 

technique when used for Wall-Modelled Large-Eddy Simulation (WMLES) of attached flows. 

The adjustments are defined both for the Spalart-Allmaras and the Menter SST models. The 

first one concerns the definition of the LES length scale in general for anisotropic grids near 

a wall, and makes use of the wall distance along with the grid spacing; it clearly benefits even 

the Smagorinsky model. The second one manages the blending of RANS and LES behaviour 

within a WMLES to advantage, greatly increasing the resolved turbulence activity near the 

wall, and finely adjusting the resolved logarithmic layer. This is seen in channel flow over a 

wide Reynolds-number range, and through some grid variations. Tests show that the new 

method, although somewhat more complex, returns the desired behaviour not only in channel-

flow LES, but also in channel-flow RANS, in a backward-facing-step case with side-by-side 

LES and RANS regions, and over an airfoil in deep stall. 
 

1 INTRODUCTION 

The importance of the problem of Wall Modelling in LES has motivated numerous 

studies, and some rather complex proposals. Many of them use substantial outside 

information such as fields from well-resolved LES or DNS runs (e.g., Davidson and 

Dahlstrom
1)

) or synthetic turbulence (e.g., Davidson and Billson
2)

) at the RANS-LES 

interface, and/or require averages in the wall-parallel directions to define intermediate 

quantities (e.g., Temmerman et al.
3)

) or to avoid negative eddy viscosities and similar 

difficulties. Although rather successful in the simple flows, these proposed solutions become 

very debatable once a complex geometry is involved. In contrast to this, no impractical, 

“channel-friendly” steps are needed when DES is used for wall modelling in LES. The 

equations of DES provide a simple and robust “wall model” for LES, and since the problem 

of wall modelling is arguably the principal one for LES, building from the DES equations 

could be a very viable way to empower LES principally in terms of Reynolds number. 
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It is quite generally recognized that wall modelling naturally uses RANS logic near the 

wall, in the region where the wall distance is much smaller than the boundary-layer thickness, 

but very large in wall units, and the grid spacings parallel to the wall are also very large in 

wall units. The averaging is not over infinite spatial or temporal samples, but over samples 

large compared with the scales of the turbulence at the present distance from the wall.  

Therefore, the fact that DES contains RANS empiricism does not make DES-based methods 

any less fundamental than the other ones. Note that DES and similar approaches that draw 

both on Reynolds-Averaged Navier-Stokes (RANS) models and on LES have uses that may 

be called “natural,” and other uses which are described as “extended”, but are equally 

promising. A natural tendency in such situations is to optimise a version of the approach for 

each of the uses, but this is not desirable here. The ambition is to have a single set of 

formulas, so that different regions inside a single simulation over a complex geometry can 

benefit from different modes.  

Natural DES uses treat the boundary layers with RANS, and the massively-separated 

regions with LES. Extended uses treat even attached boundary layers and other wall-bounded 

flows with LES, i.e., are essentially WMLES approaches; most of the exercises have actually 

been conducted in channels. This defeats the initial purpose of DES, namely avoiding the high 

cost of LES in relatively simple boundary layers, if it is applied over the entire domain; thus, 

any sensible practical application will confine LES to regions of very thick boundary layer, 

and still treat the thin boundary layers with RANS. This will be achieved by proper grid 

design, and be assisted by the DDES correction
5)

. Another view is that the initial or natural 

concept of DES is aimed at external aerodynamic flows, and that many internal flows have 

different needs: the flow region is filled with turbulence. The descriptions “natural” and 

“extended” could, therefore, be supplemented by words such as “external-flow priority” and 

“internal-flow priority.”  

The first attempt at a DES application as WMLES in the study of Nikitin et al.
4)

 was 

overall successful, in that very large grid spacings, in wall units, were used without trouble 

and the response to grid refinement and Reynolds-number variations was spotless. However 

two issues remained.  

The first is that the wall-normal grid spacing is not large in wall units, with a typical value 

of 1 for the first point, as is normal in RANS practice without wall functions. Some in the 

community consider that even the wall-normal spacing should be unlimited in wall units; 

roughly, the near-wall grid cells could be cubic just like the cells away from the wall. This 

might be achieved some day, but the extra difficulty is substantial, and the practical value of it 

would be limited by the fact that, with grid stretching, the grid count increases only 

logarithmically with Reynolds number even as the first spacing drops almost as fast as the 

inverse of that number.  In other words, the cost of being limited to 1~+y  is very 

manageable. 

The second issue, which has received more attention, is the “Log-Layer Mismatch” or 

LLM. As expected, the channel simulations produced two stacked logarithmic layers, once the 

resolution and Reynolds number were sufficient. The lower one, the modeled log-layer, arises 

because the RANS model was constructed to provide it. The upper or resolved log-layer arises 
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because LES is functioning well once all three grid sizes are much smaller than the distance to 

the wall. The Karman constants of the two layers are close (not that the grids were fine 

enough to discuss the exact value of κ). The mismatch is in the level of the two log-layers, or 

intercept, C. The resolved layer has a higher C by almost 3 units, which is substantial, as it 

lowers the skin-friction coefficient by 15 to 20%. It must be emphasized again that a realistic 

set of expectations for WMLES by the DES equations with no adjustment at all, as used by 

Nikitin et al.
4)

, would not have included a good match of the two log-layers. The nature of the 

simulation changes completely across an ambiguous region, from the turbulence being fully 

modeled to it being almost fully resolved, which prevents any genuine connection between 

the two layers. Therefore a solution to LLM, which is the goal of the present work, is very 

unlikely without adding empiricism, essentially aimed at a single result: the intercept of the 

resolved log layer. Note that LES Sub-Grid-Stress (SGS) and especially wall models in the 

literature all contain much empiricism, and some are limited in terms of grid aspect ratios and 

similar respects. The challenge is to repair LLM in DES without hurting its accuracy in other 

regions, and with as little extra complexity as possible. 

Another goal, more qualitative, is to “make good use” of the grid; visualizations showed 

that the smallest resolved eddies are commensurate with the grid in center of the channel, but 

not near the wall, where the eddies are very elongated and slowly-evolving. There is a distinct 

impression that the resolution is wasted, which is rarely good; even if LLM were absent in the 

channel, other flows with some streamwise gradients of the boundary conditions and mean 

flow would have to benefit from a decent use of the grid spacing. 

This present work starts from DDES, which will be in print very soon
5)

 and will become 

the standard version of DES, barring unforeseen problems as it starts being used outside the 

originator group. DDES is opposed to the original version
6)

, now called DES97. The 

difference is that DDES handles “ambiguous” grids much better than DES97. Such grids, fine 

enough to activate the DES limiter on eddy viscosity but not to support an accurate LES, 

confuse DES97
5-7)

; in contrast, DDES detects such situations and quite reliably keeps the 

model in RANS mode. This is at the price of a moderate increase in complexity, and also of 

new behaviours including the higher likelihood of multiple solutions. Therefore, it is 

important to detect possible disruptive interference between DDES and the new changes 

proposed here, but these changes will work with both versions of DES. 

The rest of the paper is organized as follows. In Section 2 we present the new model 

formulation which includes a subgrid length-scale definition (2.1) and a detailed description 

of the suggested RANS-LES hybridization (2.2). Then, in Section 3 a series of model tests is 

presented which includes its application to channel flow over a wide Reynolds-number range, 

i.e., in a pure WMLES mode, to a backward-facing-step flow with side-by-side LES and 

RANS regions, and, finally, to an airfoil in deep stall, i.e., in the “natural” DES mode. 

2 MODEL FORMULATION 

The modifications to DDES suggested in the present work to resolve the LLM issue are 

fairly minor in terms of implementation, but not as minor in theoretical terms. The two major 

elements are: a new definition of the subgrid length-scale that includes an explicit 
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wall-distance dependence, unlike the usual LES practice which involves only the grid 

spacing, and an empirical RANS-LES hybrid function designed to provide a more successful 

coupling of the two approaches inside attached boundary layers. The presentation assumes a 

structured orthogonal grid, so that the wall-parallel spacings are uniform. 

2.1 Subgrid length-scale definition 

The issue of the adequate definition of the subgrid length-scale in an LES is far from 

trivial, especially when the computational grid is significantly anisotropic, which is typical of 

the wall-bounded flows we are concerned with in the present study. Almost all simulations of 

such flows use a finer spacing in the wall-normal direction than in the other two directions, 

and some also use finer spacing in the lateral direction than in the streamwise direction. 

Historically, the most widely employed definition has been the cubic root of the cell volume. 

While this is a plausible balanced quantity, it was challenged in DES literature
6)

, in which the 

maximum of the three cell dimensions was advocated instead. Neither definition is successful, 

if judged by a straightforward application to well-resolved LES of wall-bounded flows: the 

SGS constants which work well in free turbulent flows with cubic cells are then too large. For 

instance, the optimal value of the Smagorinsky constant for LES of channel flow is about 0.1 

if the cube root is used, or roughly half its optimal value for Decaying Isotropic 

Homogeneous Turbulence (DIHT). Using the maximum grid spacing as in DES97
6)

 and 

DDES
5)

, the difference between the optimal model constants for DIHT and channel flows is 

even larger. This suggests that neither choice of the subgrid length-scale is successful, and 

motivates a search for another, more physically justified, definition which would not demand 

an adjustment of the subgrid model constants for LES of different turbulent flows. 

Since wall-proximity effects, primarily inviscid blocking, are involved, it seems natural to 

allow such a definition to rely not only on the cell sizes, but also to explicitly include a wall-

distance dependency, i.e., have the form: 

),,,( wzyx dhhhf=∆ , (1)

where ∆  is the needed subgrid length-scale, xh , yh , and zh  are the local streamwise, 

wall-normal, and lateral cell sizes respectively, and wd  is the distance to the wall. 

Let free∆  be the infinite- wd  limit of the function ),,,( wzyx dhhhf . Then, following the 

concept in the DES papers (recall, however, that this is a general LES issue), it is set equal to 

the maximum local grid spacing 

},,max{max zyxfree hhhh ≡=∆ . (2)

Note that away from the walls, the grid for an LES should be fairly isotropic anyway, and 

so the impact of this specific choice is not crucial. 

As for the behaviour of ∆  in close vicinity of the wall, it should not follow the drastic 

decrease of the wall-normal step typical of this region and, therefore, should depend on the 

wall-parallel steps only: 
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),()( zxwwall hhdconst ∆==∆  (3)

Assuming, finally, that between these two limiting cases ∆  is a linear function of wd  and 

that at any distance to the wall it varies within the range maxmin hh ≤∆≤ , a definition of the 

subgrid length-scale satisfying all the above demands is formulated as follows: 

}],,,min{max[ maxmax hhhCdC wnwww=∆ , (4)

where wnh  is the grid step in the wall-normal direction and wC  is an empirical constant set 

equal to 0.15 based on a well-resolved LES of the developed channel flow, as seen shortly. 

Figure 1 shows two possible types of variation of the subgrid length-scale ∆  defined by 

(4), normalized by the maximum grid step, across a plane channel with half-width H . 

The first type (solid line in Fig.1) takes place if wwwn dCh ≤  and, therefore, in accordance 

with (4), as long as maxhdw < , the length scale ∆  remains constant equal to maxhCw . Then, 

once maxhdw > , it grows linearly ( wwdC=∆ ) until reaching the value of maxh , and stays 

constant after that.  

The second type of ∆  variation (dashed line in Fig.1) corresponds to a strong wall-normal 

step stretching. In this case, ∆  remains constant equal to maxhCw  as long as maxhCh wwn < . 

Then, it grows with a rate higher than wC  until reaching the value of maxh  and after that, just 

as in the first case, remains constant. Note that this scenario is undesirable, but still is not a 

disaster. For instance, for a wall-normal step varying in accordance with a geometric series, it 

takes place if 15.1)1( =+> wCk , which is acceptable. On the other hand, the value of k  for a 

sufficiently accurate LES should not be larger than 3.12.1 ÷ . 

An example illustrating the performance of the subgrid length-scale (4) in the framework 

of a well-resolved LES with the use of the Smagorinsky model is presented in the next 

section. 

 
Figure 1: Two typical types of variation of the subgrid length-scale (4) across the plane channel 

/H
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2.2 RANS-LES hybridization 

Here the model couples the two approaches via introduction of a hybrid turbulent length-

scale based on the following blending of the RANS and LES length-scales: 

Ψ∆−+Ψ+= DEShybRANSrestorehyb Cflffl )1()1(
~

, (5)

where ∆  is the subgrid length-scale defined by (4) and DESC  is the empirical constant of the 

LES branch of DES
6, 8)

. 

In accordance with the general DES concept
6, 9, 10)

, in order to create a hybrid model, the 

hybrid length-scale l
~

defined by (5) will be substituted into the background RANS model in 

place of the RANS length scale, RANSl , explicitly or implicitly involved in any such model. 

For instance, for the Spalart-Allmaras model
11)

 (SA model), the length scale is equal to the 

distance to the wall wRANS dl =  while for the ω−k  SST model of Menter
12)

 (MSST model), 

)/(2/1 ωµCklRANS = . 

Let us now consider the ingredients of the hybrid length scale (5) in more detail. 

The hybrid function hybf  includes DDES and WMLES branches and reads as: 

}),1max{( stepdhyb fff −= , (6)

Here the function df  is the delay function of DDES
5)

 

])8tanh[(1 3
dd rf −= , 

}10,)]/)(/max{[(

1
102/122 −∂∂∂∂

⋅=
jiji

t

w

d
xuxud

r
ν

κ
 

 

(7)

and the function stepf , which is active only when the model operates in WMLES mode, 

provides a rapid switch from RANS to LES deep inside the boundary layer. This function is 

designed as follows: 

}0.1),9exp(2min{ 2α−=stepf  

(8)

 
Figure: 2. Profiles of the functions stepf  and hillf  in the plane channel 
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With the parameter α  set equal to ( max/25.0 hdw− ), stepf  as defined by (8) provides a 

fast switching of the model from pure RANS to pure LES mode within the range of 

wall-distance maxmax5.0 hdh w <<  (see the solid blue line in Fig.2). 

The positive function restoref  involved in the definition of the hybrid length scale (5) is 

aimed at preventing an excessive damping of the RANS Reynolds stresses as could be caused 

by the interaction of the RANS and LES regions in the vicinity of their interface. Similar to 

the function stepf , this function must be active only when the hybrid model operates in 

WMLES mode, i.e., it has to be close to zero in two limits: 

1) if the grid used in the simulation is sufficient for a well-resolved LES (a switch to 

LES mode occurs at 2015 ÷<+y );  

2) if the hybrid model effectively performs as the background RANS model (otherwise, 

the activation of the function would corrupt the correct RANS behaviour).  

The function built to satisfy these demands reads as: 

amphillrestore fff }0),1(max{ −= . (9)

Here the function hillf  shown by the dashed red line in Fig.2 together with the function 

stepf  (8) reads as 

⎩
⎨
⎧

<−
≥−=

0)0.9exp(2
0)09.11exp(2

2

2

αα
αα

if
iffhill . 

(10)

and, as seen in Fig.2, coincides with stepf  when 1<stepf , i.e. in the transitional, RANS-LES, 

region. 

The second function, ampf , involved in (9) is defined as follows: 

},max{0.1 ltamp fff −= , (11)

where 

])tanh[( 32
dtt rcf = , ])tanh[( 102

dlll rcf = , 
(12)

the quantity 

}10,)]/)(/max{[(

1
102/122 −∂∂∂∂

⋅=
jijiw

dl
xuxud

r
ν

κ
 

(13)

is a laminar analogue of the parameter dr  in (7), and lc  and tc  are additional model 

constants. 

As seen from (10) and Fig.2, the function hillf  provides a “predefined” (depending on the 

grid but not on the solution) “restoring” device for the RANS branch of the hybrid model 
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length-scale (5). In contrast, the “amplitude” function ampf  (11) controls the “restoring 

intensity” through the parameters dr  and dlr  which depend on the solution. Such distinctions 

have become familiar starting with DDES. The constants lc  and tc  depend on the 

background RANS turbulence model and are adjusted so that the function is virtually zero 

when either dlr  or dr  is close to 1. Considering that dlr  is close to 1 in the laminar sublayer 

and dr  is close to 1 in the logarithmic part of the turbulent boundary layer computed by 

RANS
11)

, the function ampf  and, therefore, restoref  is made close to zero in these two 

situations. As a result, both demands 1) and 2) formulated above are satisfied. Based on the 

simulations of channel flow considered in the next section, the values of the constants lc  and 

tc  are set equal to 3.55 and 1.63 for the SA-based hybrid model and 5.0 and 1.87 for the 

MSST-based one. 

The last function involved in the hybrid length-scale definition (5) is the low-Reynolds 

number correction Ψ  from the DDES model which is introduced there in order to 

compensate the activation of the low-Reynolds number terms of the background RANS model 

in the LES mode (see Spalart et al.
5)

 for detail). In the considered hybrid model (5), in 

addition to that, the function Ψ  provides also an amplification of the effect of restoref  in the 

RANS region. Just as the constants lc  and tc , the function Ψ  depends on the background 

RANS model. In particular, it is equal to 1.0 for the MSST-based model which does not 

include any low-Reynolds number terms and for the SA-based model it is defined as 

follows
5)

: 

[ ]

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−+−
=Ψ − )1,10max(

)1(1

,10min
2

10
1

222*2
1

1

22

tv

vtt

ww

b

ff

fff
fc

c

κ
, 

(14)

where all the notations, except for the quantity *
wf  are the same as in the SA RANS model 

and 424.0* =wf
5)

. 

3 MODEL TESTS 

3.1 Overview 

In this section we present results of the new hybrid model testing. 

First, an example is given of the application of the new subgrid length-scale (4) for a 

well-resolved LES of the developed flow in a plane channel with the use of the Smagorinsky 

subgrid model. This example is aimed at supporting the claim that with this length-scale there 

is no need to change the Smagorinsky constant value calibrated based on the DIHT flow, 

when carrying out LES of wall-bounded flows. 
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Then a series of tests is presented aimed at demonstrating the capabilities of the hybrid 

RANS-LES models based on the hybrid length-scale (5) and SA and MSST RANS models as 

the background ones. In order to demonstrate the WMLES capabilities of these models, they 

are applied to the developed plane channel flow, which is a conventional test case for any 

WMLES approach. Then, the backward-facing step flow of Vogel and Eaton
13)

 is considered, 

which permits to evaluate the models’ performance in a mixed, DDES-WMLES, mode. 

Finally, the models are applied to the flow past the NACA 0021 airfoil at 60 degrees angle of 

attack studied experimentally by Swalwell
14)

. This is an example of the “natural DES flows”, 

i.e., those with massive separation, DES97 and DDES are designed for. The goal of this test is 

to make sure that for such flows the new hybrid models are at least not less accurate than the 

corresponding DDES models. 

All the simulations are carried out with the use of the incompressible branch of the NTS 

code
10)

. It uses the Rogers-Kwak
15)

 implicit scheme. Time-derivatives are approximated with 

2
nd

-order backward differences (three-layer scheme) with dual time-stepping (infinite default 

pseudo-time step) and subiterations. The number of subiterations at each time step depends on 

the problem being solved but usually is within the range from 5 to 20 (this ensures the 

reduction of the maximum residual by 3-4 orders of magnitude). Time integration is 

performed with the use of Gauss-Seidel relaxation by planes. For the spatial approximation of 

the inviscid fluxes, the code provides different options. In this work we used 4
th

-order centred 

approximation for the channel flow and hybrid, weighted 5
th

 order upwind/4
th

 order centred, 

scheme with a blending function dependent on the solution
10, 16)

 in all the other cases. The 

viscous terms in the equations are approximated with the 2
nd

-order centred scheme. 

3.2 Well-resolved LES of plane channel flow 

 
Figure 3: Resolved and modeled stresses (a), (b) and mean velocity profiles (c) from well-resolved Smagorinsky 

LES of developed channel flow with subgrid length-scale defined by (4) and as a cube root of the cell volume 

(blue curve in frame c) 

Figure 3 shows results of LES of channel flow at Reτ=400 performed with use of the 

Smagorinsky model with the wall-damping function
17)

: 

SyCSMAGt ]})25/(exp[1{)( 32 +−−∆=ν , 
(15)

where S is the magnitude of the strain tensor, ∆  is defined by (4), and SMAGC =0.2 (this value 

was established based on LES of DIHT flow with the use of NTS code, with the objective of 
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maintaining a -5/3 spectral slope near the cut-off). The grid used in the simulation is as 

follows: 1.0/ =∆ Hx , 05.0/ =∆ Hz , ( 40=∆+x , 20=∆+z ), the near-wall y -step is 

3
1 102/ −×=∆ Hy  ( +∆ 1y =0.8), and the stretching factor of the wall-normal step is 14.1=k . 

The size of the computational domain is HLx 8= , HLz 3= . The time step is 0.57, in wall 

units. 

One can see that with the subgrid length-scale (4), results of LES agree with the DNS data 

of Moser et al.
18)

 very well. Thus, the test confirms that the subgrid length-scale definition (4) 

gives quite an accurate prediction of channel flow with the value of the Smagorinsky constant 

defined based on the DIHT flow. In contrast to this, with the traditional definitions via the 

cubic root of the cell volume or maximum grid-spacing, this results in a completely wrong 

solution (see blue curve in Fig.3c). 

3.3 Hybrid models testing in plane channel flow 

This test is, in fact, the key one, since it is aimed at the evaluation of the new models’ 

performance as applied to attached flows, i.e., those which neither the original DES97 nor 

DDES, in a derivative use as wall model in LES, is capable of predicting to the level of 

accuracy expected in simple flows nowadays. 

The series of simulations performed includes a Reτ variation in the range from 400 up to 

18000, with the use of the SA- and MSST-based versions of the hybrid model (5). The 

computational domain and the grid in the wall-parallel directions used in these simulations are 

the same as those used for the well-resolved Smagorinsky LES at Reτ=400 considered in the 

previous section. Thus, the series allows an assessment of the WMLES capability of the 

models on grids unlimited in the sense of wall-parallel grid steps in wall units, +∆x  and +∆z . 

The wall-normal grid is built in a conventional manner. In particular, the near-wall step is 

adjusted to the Reynolds number, to provide a value of +
1y  below 1.0. Then, the grid step 

increases with the stretch-factor 1.14. In accordance with (4), with this wall-normal step 

distribution, the first type of variation of the subgrid length-scale ∆  across the channel (the 

solid line in Fig.1) takes place. The simulations are carried out with the use of the central-

difference fourth order approximation of the inviscid fluxes. 

Below we first present results of the simulations obtained with the use of the MSST- and 

then with the SA-based versions of the hybrid model (5). 

MSST-based version of the hybrid model. As already mentioned, for attached flows, the 

outcome of simulations with the proposed hybrid models depends on whether the flow does or 

does not have turbulent content, which may be introduced by the initial conditions or 

“generated” somehow upstream of the region of interest. Let us first consider the first (with 

turbulent content) scenario which has been implemented via initialisation of the simulations 

by prescribing the flow-fields obtained from LES of the DIHT flow with the use of the 

subgrid version of the MSST model
10, 16)

 as described in
19)

. 

Figure 4 shows profiles of the functions hybf , )1( df− , and stepf  obtained in this case at 

different Reτ (in this figure and thereafter y  denotes the wall-normal coordinate normalised 
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with H ). One can see that at the low and moderate Reτ, )1( dstep ff −>  and therefore in 

accordance with (6) the stepf -branch of hybf  controls the switch of the hybrid model from the 

RANS mode, RANSresore lfl )1(
~

+= , to the LES mode, ∆= DESCl
~

 (as mentioned in Section 

2.2, for the MSST-based version of the model, the function Ψ  is equal to 1). At Reτ=18000, 

both branches of hybf  are active, the )1( df− -branch prevailing near the wall and the stepf -

one dominating in the outer part of the RANS region. 

 
Figure 4: Profiles of the functions hybf , )1( df− , and stepf  in the developed channel flow at different Reτ from 

the simulations with the use of the MSST-based hybrid model (5) and presence of initial turbulence content 

As far as the behaviour of the restoring function restoref  is concerned, as seen in Fig.5a, it 

deviates from zero only in the pure RANS region, the deviation being most pronounced at 

moderate Reτ. Thus, exactly at these conditions, a strengthening of the RANS mode of the 

model is ensured. This is seen from Fig.5b, where profiles are plotted of the ratio of the 

hybrid and RANS turbulent lengths-scales, RANSll /
~

. Consistently with the behaviour of 

restoref , the ratio is higher than 1.0 in the outer part of the RANS region (see Fig.4) and is 

maximal at Reτ=1100. This means a decreased level of turbulence dissipation relative to the 

original RANS model, which prevents too strong a decrease of the eddy viscosity in this 

region. In turn, this helps prevent the unwanted rise of the modelled logarithmic layer
4)

 which 

prompted the present effort. Then, in the LES region, the ratio drops rather abruptly, reaches a 

local minimum, and after that stays nearly constant equal to 0.6. This fast drop of the hybrid 

length-scale is a characteristic feature of the proposed hybrid model (in DES97 and DDES it 

decreases more slowly), which makes its performance in WMLES mode quite different from 

these models. In particular, this results in a fast decrease of the eddy viscosity which, in turn, 

helps to unlock the flow instabilities. 

 
Figure 5: Profiles of function restoref  (a) and ratio of length scales of MSST-based hybrid model (5) and MSST 

RANS model (b) in the channel flow at different Reτ 
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Figure 6: YZ-cuts of instantaneous vorticity magnitude, eddy viscosity, and hybrid function from the simulation 

of the developed channel flow with the MSST-based hybrid model at two Reynolds numbers 

 
Figure 7: XZ-cuts of vorticity magnitude at different wall-distances from the simulation of channel flow with the 

MSST-based hybrid model at two Reynolds numbers 

This is supported by Figs. 6, 7, where we present flow visualisations from the simulations 

at the lowest and highest of the considered Reτ. The visualisations show that the hybrid model 

does capture the major known features of the turbulence in the channel reasonably well. In 

particular, the model provided a good use of the 80-by-60 grid (see the XZ cuts in Fig.7) and 

does not cause formation of smooth nearly one-dimensional eddies and excessive damping of 

turbulence at the RANS-LES interface, the way DES97 or DDES do
20)

. These advantages of 

the new model are clearly seen in a direct comparison of the flow visualizations from the 

simulations with the use of this model and standard MSST DDES presented in Figs.8, 9. The 

latter model fails, specifically, near the wall, whereas the two behave very similarly near the 

centre of the channel. Note also that the YZ-cuts of the eddy viscosity obtained with a hybrid 

model (Figs.6, 8) reveal its steep gradients, which create vorticity and excite the near-wall 

layer. 
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Figure 8: Comparison of YZ-cuts of instantaneous vorticity magnitude, eddy viscosity, and hybrid function from 

the simulation of the developed channel flow with the MSST-based version of the hybrid model (5) and 

MSST-based DDES at Reτ=2400 

 

 
Figure 9: Comparison of XZ-cuts of instantaneous vorticity magnitude from the simulation of  channel flow with 

the MSST-based version of the hybrid model (5) and MSST-based DDES at Reτ=2400 

 

Finally, the fields of the hybrid function shown in Figs.6, 8 are consistent with its profiles 

presented in Fig.4. In particular, they confirm that at Reτ=400 the switch from RANS to LES 

mode is controlled solely by the function stepf  and so depends only on the grid (the 
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RANS-LES interface is straight), while at Reτ=18000, the solution-dependent )1( df−  branch 

of the hybrid function is also active (the interface is wavy). 

A quantitative assessment of the MSST-based hybrid model performance can be done 

based on Fig.10, where we present the mean velocity profiles and resolved and modelled parts 

of the Reynolds stresses at different Reτ predicted by this model. The velocity profiles are 

compared with the Reichardt correlation
21) 
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which achieves fairly good agreement with the DNS data
18)

 and so may be used as a 

benchmark. Note that the hybrid model performs well not only at the large Reτ, which is 

arguably an easier case for WMLES
17)

, but also at moderate and even low (corresponding to 

well-resolved LES) Reτ. 

 

 
Figure 10: Profiles of mean velocity (a), total (b) and resolved and modeled shear stresses (c) from the 

simulations of d channel flow at different Reτ with the use of MSST-based version of the hybrid model (5) and 

comparison of the total shear stresses predicted by this model with those of MSST RANS (d) 

 

 
Figure 11: Comparison of predictions of channel flow at Reτ=2400 provided by the MSST-based version of the 

hybrid model (5) and MSST-based DDES 
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Finally, Fig.11 presents a direct comparison of the mean flow velocity and Reynolds 

stresses predicted by the MSST-based version of the hybrid model (5) with MSST-based 

DDES at Reτ=2400. It shows that the hybrid model leads to a significant increase of the 

resolved part of the stress, and to a complete elimination of the LLM typical of DES97 and 

DDES. 

To conclude the discussion of simulations of channel flow with the use of the MSST-based 

version of the hybrid model (5) operating in WMLES mode, it should be noted that all the 

results presented above were obtained on grids with the streamwise step, x∆ , twice as large 

as the spanwise step, z∆ . Although this is common LES practice motivated by the knowledge 

of the turbulence structure in the channel, it is of interest to evaluate the reaction of the model 

to an alteration of the zx ∆∆ /  value. It is illustrated by Fig.12, where the results of the 

simulations at zx ∆∆ / =2 are compared with those at zx ∆∆ / =1 and 4, ∆z being kept constant. 

The value 1 is much more likely in engineering practice, since the direction of the flow, 

especially very near the wall, is not known at the grid-design stage. One can see that, as 

expected, an increase of zx ∆∆ /  results in a growth of the modelled and decrease of the 

resolved parts of the shear stresses. However, in the considered range of zx ∆∆ /  this does not 

cause a significant alteration of the total shear stress and the mean velocity profile. Therefore, 

the dependence chosen on ∆x and ∆z individually appears quite successful. 

 

 
Figure 12: Effect of streamwise grid step on prediction of developed channel flow at Reτ  =2400 provided by 

MSST-based version of the hybrid model (5) 

Let us now consider the model performance in the case without initial turbulent content. 

This situation has been implemented by starting the simulations from a steady MSST RANS 

solution. In this case, independently of the Reynolds number, the solution returned by the 

hybrid model is identical to the initial RANS solution, which is exactly what was expected. 

Indeed, as seen in Fig.13, in this case, one of the two functions defining restoref  (either lf  or 

tf ) is equal to 1.0, which results in the zeroing of ampf  (see (11)) and, therefore, of restoref  as 

well (see (9)). Considering that the hybrid function computed by the RANS solution is equal 

to (1- df ), this means that the hybrid model effectively performs as DDES does in this 

situation, i.e., results in the RANS solution
5)

. This is also seen in Fig.13, where the velocity 

profiles obtained with the use of the hybrid model are plotted by dashed lines. Recall that this 

preservation of RANS was introduced in DDES in order to avoid the inaccuracies that result 

from the activation of the DES limiter in grids that are not fine enough to support a quality 

LES. 
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Figure 13: Profiles of the functions tf  and lf  defined by (12) and mean velocity in the channel computed with 

the use of MSST-based version of the hybrid model (5) initialised by the SST-RANS solution (dashed line) 

SA-based version of the hybrid model. In general, the performance of this version of the 

hybrid model (5) is quite similar to that of the MSST-based counterpart considered above. 

The only difference between these two versions is that with MSST, the function Ψ  is equal to 

1.0, while for the SA it is defined by the relation (14). As already mentioned, the function 

expresses the so-called low-Reynolds number correction aimed at compensating the non-

justified activation of the low-Re number terms of the SA RANS model in the LES mode of 

the SA-based DES (the need for its introduction and the derivation of the correction (14) are 

discussed in detail in
5)

). However the introduction of the same function in the RANS branch 

of the hybrid model, as done in the present work (see relation (5)), is purely empirical, and a 

better function could probably be suggested for this purpose. Nonetheless, even with this 

function, the model performance turns out quite satisfactory, so that a search for another 

function does not seem to be crucial. This is supported by Fig.14, where we present profiles 

of the quantity Ψrestoref  involved in the formulation of the model (5) and show plots of the 

profiles of the ratio of the hybrid and RANS turbulent lengths-scales wdl /
~

 across the 

channel. One can see that qualitatively the variation of these functions across the channel is 

similar to that observed for the corresponding functions in the MSST-based version of the 

hybrid model. The only difference is that at the lower Reynolds numbers, the SA-based 

version needs more “assistance” in the RANS region than the MSST-based version does 

(compare Fig.14 with Fig.5). 

 
Figure 14: Profiles of the quantity Ψrestoref  (a) and ratio of length-scales of SA-based version of the hybrid 

model (5) and SA RANS model (b) in channel flow 
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As a result, the performance of the SA-based version of the hybrid model in WMLES 

mode, i.e., in the case of the simulations with turbulent content (initialised by the DIHT LES 

solution) turns out to be virtually the same as that of the MSST model considered above. This 

is seen in Fig.15, where we present the mean velocity profiles and shear stresses from the 

simulations of the channel flow at different Reτ carried out with the use of this model. This 

weak dependence is viewed as a strength for DES. 

 

 

 
Figure 15: Profiles of mean velocity (a), total (b) and resolved and modeled shear stresses (c) from the 

simulations of channel flow at different Reτ with the use of SA-based version of the hybrid model (5) and 

comparison of the total shear stresses predicted by this model with those of SA RANS (d) 

 
Figure 16: Profiles of the functions tf  and lf  defined by (10) and mean velocity in the channel computed with 

the use of SA-based version of the hybrid model (5) initialised by the SA-RANS solution (dashed line) 

 

As for the case without turbulent content, due to the non-perfection of the function Ψ  in 

the RANS branch of the model mentioned above, the performance of the SA-based hybrid 

model turns out to be a bit worse than that of the MSST-based model. The reason is clear in 

Fig.16, where we present plots of the functions lf  and tf  which define the amplitude of the 
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restoring function ampf . The figure shows that there is a region where both lf  and tf  deviate 

from the value of 1.0, which results in a non-zero restoref  and, consequently, in some 

deviation of the solution provided by the hybrid model from that of the background SA 

RANS model. However, as also seen in Fig.16, this deviation is very weak. 

Thus, summarising, we can conclude that both versions of the hybrid model (5) have 

passed the channel-flow test equally well. 

3.4 Backward-facing step flow 

This flow is a rather severe test for the new model, since in this case it must automatically 

provide three different types of behaviour depending on the flow region. Namely, it should 

function as a RANS model in the attached boundary layers upstream of the step and on the 

upper wall of the channel which do not have any “turbulent content”, as LES in the separation 

zone, and, finally, as WMLES in the reattached boundary layer on the step-wall, which 

inherits a “turbulent content” from the upstream separation zone. 

 

 
Figure 17: Computational grid in XY plane of BFS flow of Vogel and Eaton13) 

As mentioned in Section 3.1, the specific flow we have considered is that studied 

experimentally by Vogel and Eaton
13)

. It is a flow in a plane channel with the step on the 

lower wall. The Reynolds number based on the step height, H, is equal to 28,000 and the 

channel expansion ratio is 5/4. The incoming boundary-layer thickness is 1.07H. The 

computational domain and the XY-plane grid used in the simulations are shown in Fig.17. The 

grid contains 1.5 million nodes. It is uniform in the spanwise direction (the span size of the 

domain is equal to 2 step heights, and the non-dimensional step z∆  is equal 1/30). 

Results of the simulations suggest that both the SA- and MSST-based versions of the 

hybrid model (5) satisfy the demands formulated above. As an example, in the left column of 

Fig.18 we show XY-cuts of the instantaneous fields of vorticity magnitude, eddy viscosity, 

and hybrid function and then a snapshot of vorticity on the lower wall of the channel 

downstream of the step from the simulation with the use of the MSST-based version of the 

model. It shows, in particular, that in the attached boundary layers approaching the step and in 

the boundary layer at the upper wall, the ( df−1 ) branch of the models is active, while at the 

step-side the stepf  branch prevails (results of the simulation with the use of the SA-based 

hybrid model (not shown) are virtually the same). Moreover, a comparison of the results 

obtained with the use of the MSST-based hybrid model with those predicted by the MSST 

DDES (right column in Fig.18) reveals noticeable advantages for the new model. In 
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particular, in the vicinity of the step-wall, where the hybrid model operates in the WMLES 

mode, it returns a lower level of eddy viscosity than that of DDES operating in RANS mode. 

As a result, the hybrid model provides a better resolution of the fine turbulent structures, 

which is especially important for the region of recovery of the reattached boundary layer, 

which remains the most challenging for both RANS and DDES. This leads to a more accurate 

prediction of the mean flow characteristics by both SA- and MSST-based versions of the 

hybrid model not only versus the corresponding background RANS models but, what is more 

important, versus the corresponding DDES versions as well. 

 

 
 

Figure 18: XY-cuts of the instantaneous fields of vorticity magnitude, eddy viscosity and hybrid function, and 

snapshots of the vorticity magnitude on the step wall from simulations of Vogel & Eaton BFS flow13) with the 

use of MSST-based hybrid model (left) and MSST-based DDES (right) 

 
Figure 19: Comparison of the mean friction coefficient distributions in the BFS flow predicted by RANS, DDES 

and hybrid models with the data of Vogel & Eaton13) 

This is seen in Figs.19, 20, where we compare the skin friction distributions over the 

straight and step-walls of the channel and mean velocity profiles computed with all these 

models with the experimental data of Vogel & Eaton. Note that, consistently with the better 

representation of turbulence, the superiority of the new hybrid models over DDES shows up 

not only with regard to the prediction of the flow in the recirculation zone downstream of the 

step, but also in the region of flow recovery after reattachment. The skin friction remains 

under-predicted past x  = 12, which appears like a failure to fully repair LLM; we speculate 
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that the spanwise domain (2 H ) may be too narrow, and also note that the flow is far from 

having settle again into a normal zero-pressure-gradient boundary layer. A finer grid may 

simply be needed for such a flow. 

 

Figure 20: Comparison of the mean velocity profiles in the recovery region of the BFS flow predicted by RANS, 

DDES and hybrid models with the data of Vogel & Eaton13) 

3.5 NACA0021 airfoil at 60 degrees angle of attack 

The flow has been studied in experiments
14) 

at Reynolds number Rec=2.70× 10
5
, based on 

the free-stream velocity and the airfoil chord. Simulations are performed with the use of the 

SA-based versions of the hybrid model (5) and DDES and, also, with the original DES97 

model. These run in fully turbulent mode; the inflow eddy viscosity is specified equal to the 

molecular viscosity, which leads to its immediate growth when fluid enters a boundary layer. 

The same grid is used in all the simulations. In the XY-planes it is of O-type and has 141× 101 

nodes in the streamwise and wall-normal directions respectively. The near-wall y-step is equal 

5× 10
-5

c (which provides +
1y  less than 1.0) and rises with a stretching factor less than or equal 

to 1.3. The outer boundary of the domain is a circle with a radius of 15c, and the span-size of 

the domain is 1c, with periodic boundary condition. The spanwise grid is uniform with 

033.0/ =∆ cz . 

Figure 21 shows snapshots of the vorticity magnitude and hybrid function together with a 

fragment of the grid. It suggests that in this flow, just as in the BFS flow considered in the 

previous section, both branches of the hybrid function (6) are active. The )1( df− -branch 

prevails over the upper surface of the airfoil, where massive separation takes place, while the 

stepf -branch is active near the lower surface with attached flow and no turbulent content. As a 

result, consistently with the idea the hybrid model (5) is based on, the mean flow 

characteristics predicted by this model turn out to be very close to those obtained with DES97 

and DDES. This is seen from a comparison of the mean pressure and friction coefficients 
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distributions computed with the use of all the considered models, presented in Fig.22 (a minor 

difference between the different curves is explained mostly by the different time samples in 

different simulations).  

Thus, the test confirms that for massively separated flows, the hybrid model (5) performs 

quite the same as the original DES97 and DDES. 

 
Figure 21: Snapshots of vorticity magnitude and hybrid function (6) and a fragment of the grid from simulation 

of NACA 0021 airfoil at 60o angle of attack with the use of SA-based version of the hybrid model (5) 

 
Figure 22: Mean pressure and friction coefficients distributions over NACA 0021 airfoil at 60o

 angle of attack 

predicted by the hybrid model (5), DES97, and DDES based on the SA RANS model. Symbols - experimental 

data14) at two span-sections of the airfoil 

4 CONCLUSIONS  

The mismatch between the modeled log layer and the resolved log layer, discovered in 

2000 when either DES97 or DDES is used for wall modeling in an LES, can be resolved by 

modifications which are relatively simple and cost-free, and appear robust based on the fair 

set of test cases presented here.  Modifications have been presented for either DES97 or 

DDES, and either the S-A or the SST base RANS model.  The method still works in its 

natural mode, aimed at external flows, and is more attractive for internal flows and other cases 

which justify activating LES inside the boundary layer.  On the other hand, it has not been 

demonstrated for unstructured grids, and a higher degree of simplicity may be desired in such 

applications.  However, Wall-Modeled LES on unstructured grids is far from common, if it 

has even been achieved at all.  The behavior of the new versions also needs to be verified in 

grids that are not distributed as smoothly as the present ones, although the backward-facing 

step shown here does contains needlessly fine regions, linked to the structured character of the 

grid.  In general, prudent modifications such as the one which creates DDES and the ones 

developed here appear to preserve and even broaden the basis of DES, namely the ability to 

activate RANS and LES in different flow regions, giving a well-balanced and powerful 

numerical approach to complex turbulent flows at high Reynolds numbers. 
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