
South Dakota State University South Dakota State University 

Open PRAIRIE: Open Public Research Access Institutional Open PRAIRIE: Open Public Research Access Institutional 

Repository and Information Exchange Repository and Information Exchange 

Electronic Theses and Dissertations 

2019 

Improvement of Dried Distillers’ Grains with Solubles Utilizing Improvement of Dried Distillers’ Grains with Solubles Utilizing 

Pretreatments and Fungal Fermentation Pretreatments and Fungal Fermentation 

Burgandy Zschetzsche 
South Dakota State University 

Follow this and additional works at: https://openprairie.sdstate.edu/etd 

 Part of the Aquaculture and Fisheries Commons, and the Microbiology Commons 

Recommended Citation Recommended Citation 

Zschetzsche, Burgandy, "Improvement of Dried Distillers’ Grains with Solubles Utilizing Pretreatments and 

Fungal Fermentation" (2019). Electronic Theses and Dissertations. 3651. 

https://openprairie.sdstate.edu/etd/3651 

This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research 
Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses 
and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional 
Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu. 

https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/etd
https://openprairie.sdstate.edu/etd?utm_source=openprairie.sdstate.edu%2Fetd%2F3651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/78?utm_source=openprairie.sdstate.edu%2Fetd%2F3651&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/48?utm_source=openprairie.sdstate.edu%2Fetd%2F3651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openprairie.sdstate.edu/etd/3651?utm_source=openprairie.sdstate.edu%2Fetd%2F3651&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:michael.biondo@sdstate.edu


 

 

IMPROVEMENT OF DRIED DISTILLERS’ GRAINS WITH SOLUBLES UTILIZING 

PRETREATMENTS AND FUNGAL FERMENTATION 

 

 

 

 

 

 

BY 

BURGANDY ZSCHETZSCHE 

 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the  

Master of Science 

Major in Biological Science 

Specialization in Microbiology 

South Dakota State University 

2019 



ii 

THESIS ACCEPTANCE PAGE  

 

 

This thesis is approved as a creditable and independent investigation by a candidate for 

the master’s degree and is acceptable for meeting the thesis requirements for this degree.  

Acceptance of this does not imply that the conclusions reached by the candidate are 

necessarily the conclusions of the major department. 

 

      
 
      
 
 

 

   
 
      Advisor       Date 
 
 

   
   
   

    
     
     Department Head      Date 

 
 
    
    

Dean, Graduate School     Date 
 

DocuSign Envelope ID: B6A71C2F-C284-46B4-9CAB-8C453E5A0862

Burgandy Zschetzsche

William Gibbons

Volker Brozel



iii 

 

 

 

I would like to dedicate this thesis to my family for their support and encouragement. 

Mom- you never let me anything quit when you knew it was for my best interest. To my 

husband Kevin – for supporting me in all the late nights and long weekends spent in the 

lab. And finally, to my Grandmothers Dorothy and Marguerite - for being role models 

and pushing me to follow my dreams. 



iv 

 

ACKNOWLEDGEMENTS 

I would like to thank the following people for their support in obtaining this 

degree. Drs. Bishnu Karki and William Gibbons for the opportunity to continue my 

education and their wisdom and patience in guiding me to completion.  To my graduate 

committee members Dr. Brown, Dr. Woyengo, and Dr. Isaccson. To my lab mates 

Stephanie Wootton, Jacob Zahler, Andrea Zavadil, Camille Massmann for their patience 

and being a sounding board for my ideas. To the many undergrads who spent hours 

preparing samples: Allison Braun, Sha’teal Pearman, Blake Wolters, and Ben Johnson. 

To the many other graduate student on our floor for making the experience unforgettable. 

To the Department of Biology/Microbiology secretaries and Dr. Volker Brozel for 

finding answers to all my questions and fixing issues when they arose. And finally, to the 

South Dakota Corn Council whose funding made this thesis and graduate school possible.  



 

 

TABLE OF CONTENTS 

ABBREVIATIONS ......................................................................................................... viii 

LIST OF FIGURES ........................................................................................................... ix 

LIST OF TABLES ............................................................................................................. xi 

ABSTRACT ...................................................................................................................... xii 

 - Literature Review ......................................................................................... 1 

1.1 Fishmeal: gold standard for high protein, highly digestible feedstuffs for a 

broad range of animals and fish ...................................................................................1 

1.1.1 Fishmeal .................................................................................................... 1 

1.1.2 Types and sources ..................................................................................... 1 

1.1.3 Composition .............................................................................................. 2 

1.1.4 Feed applications ....................................................................................... 3 

1.1.5 Supply and demand ................................................................................... 4 

1.2 Alternatives to fishmeal .................................................................................5 

1.2.1 Need for Alternatives ................................................................................ 5 

1.2.2 Cost............................................................................................................ 5 

1.2.3 Algae ......................................................................................................... 6 

1.2.4 Insect larvae............................................................................................. 13 

1.2.5 Oilseeds and oilseed meals ...................................................................... 16 

1.3 Distillers dried grains with solubles (DDGS) ..............................................19 

1.3.1 Production ............................................................................................... 20 



vi 

 

1.3.2 Composition ............................................................................................ 21 

1.3.3 Cost.......................................................................................................... 24 

1.3.4 Current supply and uses .......................................................................... 24 

1.3.5 Limitations as a fish meal replacer .......................................................... 24 

1.4 Approaches to improve DDGS ....................................................................26 

1.4.1 Pretreatment ............................................................................................ 26 

1.4.2 Enzymatic ................................................................................................ 33 

1.4.3 Microbial ................................................................................................. 40 

1.4.4 Combinations .......................................................................................... 43 

 -Introduction ................................................................................................. 44 

 – Fungal Fermentation of DDGS at varied solid loading rates .................... 48 

3.1 Introduction: .................................................................................................49 

3.2 Materials and Methodology: ........................................................................51 

3.3 Results and Discussion: ...............................................................................54 

3.4 Conclusion ...................................................................................................65 

 – Evaluating efficiency of commercial enzymes in improving the 

composition of DDGS for feed application .................................................................. 67 

4.1 Introduction ..................................................................................................67 

4.2 Methodology: ...............................................................................................70 

4.3 Results and Discussion: ...............................................................................74 

4.4 Conclusion ...................................................................................................89 



vii 

 

 – Extruded DDGS treated with fungal fermentation and enzymatic 

hydrolysis ...................................................................................................................... 90 

5.1 Introduction: .................................................................................................90 

5.2 Methodology: ...............................................................................................92 

5.3 Results and Discussion ................................................................................97 

5.4 Conclusion .................................................................................................109 

 -Summary and Conclusion ......................................................................... 110 

 Literature Cited .......................................................................................... 114 

  

 



 

 

ABBREVIATIONS 

ADF = Acid Detergent Fiber 

ADL = Acid Detergent Lignin 

AFEX = Ammonia-fiber expansion 

ANF = Anti-nutritional factor 

CHO = Carbohydrate 

db = Dry basis 

DDGS = Dried distillers’ grains with solubles 

DHA = Docoshexaenoic acid 

EPA = Eicosapentoaenoic acid 

GRAS = Generally recognized as safe 

ISR = Intra species recycling 

NDF = Neutral Detergent Fiber 

NSP = Non-starch polysaccharides 

NSPase = Non-starch polysaccharide enzymes 

OTA = Ochratoxin A 

PUFA = Polyunsaturated fatty acid 

SCP = Single cell protein 

WDDGS-PC = Wet dried distillers’ grains with solubles -protein concentrate 

  



ix 

 

LIST OF FIGURES 

Figure 1.1: Growth of the aquaculture industry versus capture fishing .............................. 4 

Figure 1.2: Lignocellulose structure ................................................................................. 19 

Figure 1.3: Phytic acid structure ....................................................................................... 36 

Figure 3.1 Mean values for uninoculated protein titer at each sampling point................. 55 

Figure 3.2: Mean values for T. reesei protein titers at each sampling point. .................... 56 

Figure 3.3: Mean values for N. crassa protein titers at each sampling point. .................. 57 

Figure 3.4: Mean values for R. oligosporus protein titers at each sampling point. .......... 58 

Figure 3.5: Mean values for A. pullulans 2311 protein titers at each sampling point. ..... 59 

Figure 3.6: Mean values of phytic acid content at 120 h of incubation ............................ 60 

Figure 4.1 A:Mean values of phytic acid results for cellulase dosage trials after 24 h of 

saccharification. B: Mean values of crude fiber, NDF, and ADF at 4 and 24 h of 

saccharification with cellulase. ......................................................................................... 79 

Figure 4.2 A: Mean values of phytic acid results for xylanase dosage trials after 24 h of 

saccharification. B: Mean values of crude fiber, NDF, and ADF. .................................... 80 

Figure 4.3 A: Mean values of phytic acid results for pectinase dosage trials after 24 h of 

saccharification. B: Mean values of crude fiber, NDF, and ADF at 4 and 24 h of 

saccharification with pectinase ......................................................................................... 81 

Figure 4.4 : Mean values of phytic acid results for phytase dosage trials after 24 h of 

saccharification. B: Mean values of crude fiber, NDF, and ADF at 4 and 24 h of 

saccharification with phytase. ........................................................................................... 82 

Figure 4.5 A: Mean values of  phytic acid content for combinations at 24 h of 

saccharification. B: Mean values of crude fiber for the combination at 4 and 24 h. C: 

https://d.docs.live.net/ef8ffb56497cab10/Desktop/Research/Defense/BZschetzsche%20Thesis%2011.26.19.docx#_Toc26122991
https://d.docs.live.net/ef8ffb56497cab10/Desktop/Research/Defense/BZschetzsche%20Thesis%2011.26.19.docx#_Toc26122991


x 

 

Mean value of NDF for the combination at 4 and 24 h. D: Mean value of ADF for the 

combinations at 4 and 24 h. .............................................................................................. 85 

Figure 5.1 Mean values of protein content in pellet after fungal fermentation ................ 99 

Figure 5.2 Supernatant protein content after fungal fermentation .................................. 100 

Figure 5.3 Phytic acid at 120 h fermentation. ................................................................. 102 

Figure 5.4 Enzymatic hydrolysis of extruded DDGS ..................................................... 103 

Figure 5.5 Phytic acid content of extruded DDGS after enzymatic hydrolysis .............. 104 

Figure 5.6 Protein content of pellet after enzymatic hydrolysis and fungal fermentation

......................................................................................................................................... 106 

Figure 5.7 Protein content of supernatant after enzymatic hydrolysis and fungal 

fermentation .................................................................................................................... 106 

Figure 5.8 Fiber content of DDGS at 120h after enzymatic hydrolysis and fungal 

fermentation .................................................................................................................... 107 

Figure 5.9 Phytic acid content of DDGS pellet and supernatant after enzymatic hydrolysis 

and 120 h fungal fermentation ........................................................................................ 108 

 

 

  



xi 

 

LIST OF TABLES 

Table 1.1: Proximate composition of some of the commercial fishmeal products taken 

from Cruz (1997) ................................................................................................................ 3 

Table 1.2:Proximate composition of reference diets feed to rainbow trout ........................ 3 

Table 1.3: Composition of different algae (% db) .............................................................. 8 

Table 1.4: Proximate composition of corn DDGS ............................................................ 22 

Table 1.5: Amino acid composition of Corn DDGS and Soybean Meal .......................... 23 

Table 1.6: Commercially available enzymes .................................................................... 35 

Table 3.1 Proximate analysis of Dakota Ethanol (Wentworth, SD) DDGS ..................... 54 

Table 3.2: Fiber content of combination after 120h of submerged fungal fermentation. . 65 

Table 4.1 Enzyme utilized ................................................................................................ 70 

Table 4.2 Enzyme combinations with corresponding denotation (mg of protein/ g of .... 72 

Table 4.3 Proximate analysis of DDGS ............................................................................ 75 

Table 4.4: Glucose and total sugar concentration of DDGS pretreated with four different 

enzymes at four different level of dosages ....................................................................... 87 

Table 4.5: Glucose and total sugar concentration of the DDGS treated with different 

enzymes combination at various level of dosages ............................................................ 88 

Table 5.1 Enzymes utilized ............................................................................................... 93 

Table 5.2 Enzyme dosages with combination abbreviation (mg of protein/ g of solid) ... 95 

Table 5.3 Proximate composition of DDGS before and after extrusion ........................... 98 

Table 5.4 Fiber content of extruded DDGS with 120h fungal fermentation .................. 101 

 



xii 

 

ABSTRACT 

IMPROVEMENT OF DRIED DISTILLERS’ GRAINS WITH SOLUBLES UTILIZING 

PRETREATMENTS AND FUNGAL FERMENTATION 

BURGANDY ZSCHETZSCHE 

2019 

Limited inclusion of distillers’ grains in animal feed is primarily due to low 

protein and high fiber content. Other elements, such as phytate phosphorus levels in 

DDGS are still an issue for monogastric animals such as swine, poultry, and fish. 

Furthermore, unabsorbed phytic acid in manure poses a high risk for environmental 

pollution, because bacteria can hydrolyze phytic acid into free phosphorus that can result 

in algal blooms and eutrophication of surface or ground water. The objective of this 

thesis was to improve the nutritional value of corn dried distillers’ grains with solubles 

(DDGS). This was done utilizing submerged fungal fermentation, enzymatic hydrolysis, 

and a combination of extrusion pretreatment and fungal fermentation/enzymatic 

hydrolysis. All treatments served as a means of degrading fiber and phytic acid while 

improving protein content for animal feed applications. 

Initially, fungal fermentations at 5, 10, and 20% solid loading rates (SLR, dry 

weight basis) were used to assess four fungal strains (T. reesei, N. crassa, R. oligosporus, 

and A. pullulans). Flask trials were incubated for 120 h at 30℃ and 150 rpm. Un-

inoculated control flasks were also included. Flasks were sampled at 24 h intervals, with 

solids recovered by centrifugation. A solubilization effect was observed at the 0 h 

sampling for all SLRs, as DDGS solubles fractionated into the centrate stream, while 

insoluble fractions such as protein and fiber were concentrated in the pellet. An increase 
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in protein content ~5% and crude fiber ~1.5% is seen at the 5% SLR in the uninoculated 

control; at higher SLR the increase in protein drops to ~3% and crude fiber increases 

about 0.5-1%.  After fermentation N. crassa (NRRL-2332) at a SLR of 20% resulted in 

the greatest reduction in fiber (-0.5% equal to original grain), while increasing protein 

(+5%) and lowering phytic acid levels (~0.3g/100g).  An increase in fiber was seen in all 

other fungal and SLR combinations. Higher SLR resulted in better protein content for 

each of the fungi.  

Enzymatic hydrolysis under submerged conditions (10% SLR) was also tested to 

determine if fibrous components of the DDGS could be degraded into simple sugars. 

Trials were conducted in 250 ml flasks incubated for 24 h at 55℃ and 150 rpm. Four 

commercially available enzymes (cellulase, xylanase, phytase, pectinase) at four dosages 

were tested at the recommended pH levels for individual testing. Trials were also 

conducted to assess synergistic effects of various enzyme combinations. The greatest 

reduction in crude fiber for the individual enzyme was seen in the cellulase 1 and 2 mg/g 

dosages while the greatest reduction in NDF and ADF seen in all four dosages of 

pectinase. When all four enzymes were combined the greatest reduction in all fibers 

(crude, NDF, and ADF) was achieved. The combination of 1mg/g of xylanase, phytase, 

and pectinase had the most effective releases of glucose and total sugars of all individual 

enzymes and combinations. Overall the most effective treatments were 1m/g of cellulase, 

xylanase, phytase, and pectinase and 1m/g of xylanase, phytase, and pectinase.    

To increase the fiber hydrolysis, the use of extrusion pretreatment prior to fungal 

fermentation was examined. Extrusion was conducted using DDGS at a 12% moisture 

content, with a barrel compression ratio of 3:1 and length to diameter of 20:1 at 90-100℃ 
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Extruded DDGS was then blended with water to a 15% SLR, autoclaved, and inoculated 

with T. reesei, N. crassa, R. oligosporus, or A. pullulans. Extrusion reduced crude fiber 

content and increased protein concentration. However, after the addition of water to 

create the submerged fermentation the fibers were increased. After 120h of fermentation 

crude fiber was significantly increased in N. crassa and A. pullulans trials. Protein was 

concentrated during fermentation by removal of the soluble fraction, but N. crassa was 

able to increase the protein ~10% from the original grain and ~5% from the un-inoculated 

control at 48 h. A. pullulans was also able to increase the protein significantly while T. 

ressei and R. oligosporus were not significantly different from the control.  

 Lastly, the use of fungal fermentation was conducted on DDGS that was 

pretreated via extrusion (12% moisture, barrel temperature 90-100℃, compression ratio 

3:1, barrel length to diameter 20:1) and hydrolyzed via the combination of cellulase, 

xylanase, pectinase, and phytase, each at dosage of 1 mg protein/dry gram of DDGS and 

fermented using N. crassa using sequential (4h of hydrolysis then N. crassa) or 

simultaneous addition. Irrespective of extrusion the use of simultaneous addition of 

enzyme and fungi had the greatest reduction in fiber.  
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 - Literature Review 

1.1 Fishmeal: gold standard for high protein, highly digestible feedstuffs for a 

broad range of animals and fish 

1.1.1 Fishmeal 

Of all the fish caught in the world, approximately 30% are turned into fishmeal 

and fish oil to be used in the animal feed industry (Barroso et al., 2014). Originally, 

fishmeal was the by-product of the extraction of fish oil which was extracted for 

production of margarine (A. Jackson & Shepherd, 2010; Yasufuku, Okafuji, Hasegawa, 

& Haga, 1988). A variety of portions of the fish are included in the fishmeal such as: 

viscera, heads, frames, skins, trimmings, blood, and belly flaps (Stevens, Newton, Tlusty, 

& Little, 2018). Initially fishmeal was primarily used as feed for poultry and swine due to 

its rich amino acid content, and high level of trace minerals (Stickney & McVey, 2002). 

Over the past 20 years, an increasing amount of fishmeal has been used in aquaculture 

diets due to the global growth of aquaculture. 

   

1.1.2 Types and sources 

Fishmeal can be derived from a multitude of sources such as whole pelagic fish, by-

products of canning or surumi production (Hardy & Tacon, 2002). In 2011, almost 23 Mt 

of fish were destined to undirect human consumption (anchovy, herring, mackerel, and 

sardines) (Bene et al., 2015). Of the 23 Mt, 17 Mt were utilized for fishmeal and fish oil 

that were incorporated in poultry, aquaculture, and other livestock feeds (Bene et al., 

2015). Currently, the world’s largest producers of fishmeal are Peru and Chile supplying 

Peruvian anchoveta (Cashion, Manach, Zeller, & Pauly, 2017). The world’s top 
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consumer of fishmeal is China, which also ranks number one in aquaculture production 

(FAO, 2018). The United States ranks 15th in total production of farmed fish and this is 

comprised of mainly finfish (channel catfish and rainbow trout) and shellfish (Moffitt & 

Cajas-Cano, 2014).  

 

1.1.3 Composition 

The fishmeal is an attractive source of animal nutrition due to its oil content, high 

protein content, properly balanced essential amino acid profile and lack of antinutritional 

factors (ANF).  Table 1.1 lists the proximate composition of most commonly used 

commercial fishmeal (Cruz, 1997). Based upon the various parts of fish that are 

processed into fishmeal, protein concentration and quality can vary. Connective tissues 

and bone are commonly lower in protein. Because of this, fishmeal derived from  by-

products are about 10% lower in protein than fishmeal derived from whole fish such as 

anchovy (Cruz, 1997). Along with the high protein content, fishmeal is highly digestible 

by most animals with no negative side effects (Daniel, 2018; A. Jackson & Shepherd, 

2010). Fishmeal therefore has become the major protein source used in aquaculture diets 

(Daniel, 2018). Fishmeal accounts for approximately 62% of the fish feed, with 20% 

wheat flour, 20% fish oil, 3.4% milk whey 2.1% vitamins and minerals, and 0.5% choline 

chloride (Delgado & Reyes-Jaquez, 2018). However, depending upon the species protein 

requirements can vary. Omnivores and herbivores protein content requirements are lower, 

whereas carnivorous species require higher protein content (Craig, Helfrich, Kuhn, & 

Schwarz, 2017). Example diets feed to rainbow trout are shown in Table 1.2.  
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Table 1.1: Proximate composition of some of the commercial fishmeal products 

taken from Cruz (1997) 

 

Table 1.2:Proximate composition of reference diets feed to rainbow trout 

 Kasiga and Brown (2019) Voorhees, Barnes, Chipps, 
and Brown (2019) 

Crude Protein (%) 44.3 43.18 
Lipid (%) 16.9 15.91 
Ash (%) 9.7 2.42 
NFE (%) 25.9 20.48 
Gross Energy (kJ/g) 22.1 16.5 
Protein: Energy (g/MJ) 19.1 26.2 

 

1.1.4 Feed applications 

During the early years in the use of fishmeal as a feed additive, the poultry and pork 

industries consumed almost all this by-product (Asche, Oglend, & Tveteras, 2013). For 

instance, in 1988, 80% of the fishmeal produced globally, was fed to poultry and pork, 

while aquaculture only consumed 10% (Olsen & Hasan, 2012).  From 1985 to 2006 the 

poultry and pork industry saw an annual growth of 4.9% and 2.8% respectively. 

However, during the same period, aquaculture industry grew rapidly with annual growth 

rate of 10.3% (Tveterås & Tveterås, 2010). Because of this substantial increase in 

growth, the aquaculture industry has become the leading consumer of fishmeal (Asche et 

Fishmeal 
Types 

Dry 
matter 
(%) 

Crude 
protein 
(%) 

Crude 
fat 
(%) 

Crude 
fiber 
(%) 

Ash 
(%) 

NFE 
(%) 

Ca 
(%) 

P (%) 
 

Alaskan 
Pollack 

91.53 71.94 9.58 0.10 5.32 13.10 - - 

Local mixed 
species 

91.12 52.89 5.78 3.11 21.90 16.32 - - 

Peruvian 92.83 67.39 6.97 0.89 18.84 5.65 - - 
Tuna 93.24 52.04 10.37 1.56 24.15 7.81 3.30 2.44 
White 93.63 68.68 6.78 1.46 20.16 3.73 4.40 3.3 
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al., 2013). As of 2010, aquaculture consumed 73% of the fishmeal, followed by pork and 

poultry with 20% and 5%, respectively, and 2% utilized by others (Bene et al., 2015). 

 

1.1.5 Supply and demand 

Prior to 1980’s, global wild caught fishmeal production was under 5 Mt per year, but 

after 1985 production increased to ~6 or 7 Mt per year, except for El Niño years of 1987 

and 1998 which had a significant decrease in production (Deutsch et al., 2007). 

Corresponding with increased fishmeal production, there was a significant increase in 

fishmeal use by the aquaculture industry, which ranged from 10 to 45% from 1988 to 

2002 (Barroso et al., 2014). By 2008, 57% of fishmeal was being used in aquaculture 

production (Tveterås & Tveterås, 2010). Since then demand for fishmeal has continued to 

increase and hence the price of fishmeal has also increased substantially.  Figure 1.1 

displays the growth of the aquaculture industry vs the wild capture industry. The sharp 

increase in the amount of aquaculture production compared to the wild caught industry 

started after 1980. 

Figure 1.1: Growth of the aquaculture industry versus capture fishing  

taken from Ababouch (2016) 
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1.2 Alternatives to fishmeal 

1.2.1 Need for alternatives 

There are several reasons why alternatives to fishmeal are needed. Although the major 

consumer of fishmeal was not always aquaculture, the proportion of fishmeal in 

aquaculture feeds is much higher than the average 2-3% content in poultry and pork diets 

(Naylor et al., 2000). Due to the increasing demand for fish as a source of animal protein, 

the global aquaculture industry is expanding rapidly. In 2010 fish demand was twice as 

large as poultry and three times bigger than cattle (Bene et al., 2015). This rapid growth 

has resulted in progressively higher use of fishmeal causing a rise in prices  

Another issue that has arisen is the avoidance of intra species recycling (ISR). ISR 

is when a species is feed back into its species. This practice is avoided to prevent the 

spread of disease or environmental contaminate (Tacon & Metian, 2008). Although it is 

not regulated for aquaculture, it is regulated in livestock to prevent the spread of 

transmissible diseases such as mad cow, it is highly considered for the health of the fish 

(Turchini, Torstensen, & Ng, 2009). A third reason that needs to be considered is the lack 

of wild caught fish. Currently, species harvested for fishmeal production are harvest at or 

above sustainable levels (A. Oliva-Teles, Enes, & Peres, 2015). 

 

1.2.2 Cost 

Feed cost in aquaculture accounts for 30 - 60% of the production cost (Shipton & 

Hasan, 2013). This is due to the rise in fish meal prices over the past several decades 

(Naylor et al., 2000). Although the price continued to increase, the inclusion levels were 

left unaffected until 2005. After 2006, the price of fishmeal rose from $400-900 per 



6 

 

metric ton, to over $1500 per metric ton (Hardy, 2010). This price surge was due to the El 

Niño of the 2006 season. Currently the market for fishmeal is continuing to grow. An 

increase in seafood consumption is requiring more fish be produced which in return 

requires more fishmeal for feed (Abhishek, 2019). 

 

1.2.2.1 Lack of sustainability 

Eighty percent of all fish stocks are characterized as fully exploited or 

overexploited (FAO, 2009). This has been caused by the rapid and long-term growth in 

aquaculture production, which has caused increasing demand for fishmeal and 

corresponding increase in fishmeal prices.  

unbalanced ratio of fish meal in: fish meal out. On average, 1.9 kg of fishmeal is 

fed for every kilogram of fishmeal produced. There is a wide variation of what ratio is 

needed for each of the species. Catfish, milkfish, and common carp require less input 

than produced versus the carnivorous species that may require 2.5 to 5 kg of feed for the 

1 kg produced (Naylor et al., 2000).  

The aquaculture industry saw a growth of over 115-fold production in tons from 1950 

to 2006 which equates to an 8.5% increase per year (Tacon & Metian, 2008). For the 

industry to be sustainable the feed input also needs to grow at a similar rate (Tacon & 

Metian, 2008).   

 

1.2.3 Algae 

 In ancient times, the Aztecs of Mexico used various algae species as sources of 

food due to their availability (Suman, Nupur, Anuradha, & Pradeep, 2015).  For years 
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microalgae have been utilized as a feed in aquaculture (Patil, Källqvist, Olsen, Vogt, & 

Gislerød, 2007). Current estimates are that 30% of the worlds algal production is sold for 

feeds (E. W. Becker, 2007). Today, microalgae are recognized as a safe feed ingredient 

with a high nutrient value, and are included in diets of larval crustaceans, rotifers, and 

brine shrimp (Patil et al., 2007; Perez-Velazquez, Gatlin, González-Félix, & García-

Ortega, 2018).    

 

1.2.3.1 Advantages  

 One advantage of algal biomass as a fishmeal replacement is it’s a low cost, since 

it is a by-product of the biofuel industry which allows for a lower cost (Mussgnug, 

Klassen, Schlüter, & Kruse, 2010). Microalgae could also be produced in arid lands, 

allowing for year- round production (Kovač, Simeunović, Babić, Mišan, & Milovanović, 

2013). However, evaporation can cause an issue in open air ponds (Wen & Johnson, 

2009). Microalgae are known to produce several beneficial compound that can increase 

the overall nutrition of the feed (Yaakob, Ali, Zainal, Mohamad, & Takriff, 2014).  

 

1.2.3.1.1 Protein 

 Algae proteins are highly comparable to high protein meals of oilseed and cereal 

grains (E. W. Becker, 2007; Nasseri, Rasoul-Amini, Morowvat, & Ghasemi, 2011). The 

high protein content is connected to the ability of the algae to fix nitrogen under certain 

circumstances as shown in Table 1.3 (E. W. Becker, 2007). Algae contain lower levels of 

nucleic acids than other single cell protein sources (Ravindra, 2000), thus limiting the 

production of uric acids occurs during nucleic acid metabolism. 
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Table 1.3: Composition of different algae (% db)  

Alga Protein Carbohydrate Lipids 
Anabaena cylindrica 43-56 25-30 4-7 
Aphanizomenon flos-aquae 62 23 3 
Arthrospira maxima 60-71 13-16 6-7 
Chlamydomonas rheinhardii 48 17 21 
Chlorella pyrenoidosa 57 26 2 
Chlorella vulgaris 51-58 12-17 14-22 
Dunaliella salina 57 32 6 
Euglena gracilis 39-61 14-18 14-20 
Porphyridum cruentum 28-39 40-57 9-14 
Scenedesmus obliquus 50-56 10-17 12-14 
Spirogyra sp 6-20 33-64 11-21 
Spirulina platensis 46-63 8-14 4-9 
Synechococcus sp. 63 15 11 

Taken from E. W. Becker, 2007 

1.2.3.1.2 Vitamins and minerals 

 Some genera of algae offer high concentrations of vitamins and minerals. The 

genus Spirulina contains 10 time more β-carotene than most carrots and higher levels of 

vitamin B12 when compared to all fresh plants sources (Mohammed & Mohd, 2011), 

However, vitamin B12 can be unstable under certain drying conditions (W. Becker, 

2004). Other vitamins that are present in microalgae include vitamins K and isomers of 

vitamin E (tocopherols) (W. Becker, 2004). Additional microalgae species should be 

assess for their potential to supply vitamins and minerals for feed purposes (Shields & 

Lupatsch, 2012). 

 

1.2.3.1.3 Omega-3 fatty acid composition 

 In the natural food chain, fish consume algae that containe fatty acid chains 

(Kovač et al., 2013). The natural ability of the microalgae to produce omega-3 fatty acids 

such as eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) 
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directly aids in the health of the fish (Shields & Lupatsch, 2012). Fish fed higher levels of 

Scenedesmus microalgae were higher in the long chain omega-3 fatty acids (EPA and 

DHA) as compared to the control feed (Gong et al., 2019). Some species under nitrogen 

deprivation showed an increase in lipid content to compensate (W. Becker, 2004). 

However the use of algal lipids cannot compete with conventional sources of fish oils 

(W. Becker, 2004). 

 

1.2.3.2 Disadvantages/limitations 

When feeding microalgae, diets with live microalgae tend to result in higher fish 

growth rates and lower mortalities when compared to fish fed with non-living microalgae 

(Ponis, Robert, & Parisi, 2003). Due to the high heat required to produce some types of 

pelleted feeds, it may be necessary to incorporate the microalgae after pelleting. Another 

concern with microalgae is the high production cost to grow microalgae (Olsen & Hasan, 

2012). Yarnold, Karan, Oey, and Hankamer (2019) reported the price of Spirulina or 

Chlorella microalgae meals were 10 to 15 times more expensive than fishmeal between 

September and December of 2018. 

 

1.2.3.2.1 Amino acid balance 

 The essential amino acids tryptophan, methionine, and histidine were found to be 

low 16 microalgae species evaluated (MR  Brown, 1991). These microalgae were also 

low in the non-essential amino acids cystine and ornithine (MR  Brown, 1991).  It is 

important to note that the sulfur containing amino acids are among the lowest 

concentrations in microalgae (W. Becker, 2004).  
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1.2.3.2.2 Anti-nutritional factors 

Currently, no known ANF’s can be found within the microalgae biomass. However, 

some studies have shown that a low level of intake and inflammation of the 

gastrointestinal tract could be the result of an unknown ANF (Perez-Velazquez et al., 

2018).  

 

1.2.3.2.3 Low digestibility 

 Due to the cellulosic structure of the microalgae, digestibility can be low unless 

the cell is ruptured to allow for access to the nutrients (Ravindra, 2000). Disruption may 

be caused by sonic vibration or enzymatic digestion (E. W. Becker, 2007). A decrease in 

digestibility of the dry matter, lipid, and energy was observed when inclusion of  

Scenedesmus sp. in Atlantic salmon (Salmo salar) diets was increased (Gong et al., 

2019). However, authors reported no difference in protein digestibility at lower inclusion 

levels. Additionally it was reported that overall digestibility is dependent upon the 

microalgae species (Gong et al., 2019).    

 

1.2.3.3 Single celled protein 

In 1968, Mateles and Tannebaum coined the phrase “single-cell protein” or SCP 

to refer to cells of microorganisms grown in large quantities and then dried for the use as 

a protein source for humans or animals. Microorganisms that can be used as SCP can be 

placed into four categories: bacteria, yeast, fungi and algae (Kuhad, Singh, Tripathi, 
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Saxena, & Eriksson, 1997; Richard Mateles & SE Tannenbaum, 1968; Suman et al., 

2015).  

 

1.2.3.3.1 Advantages  

With the relative ease of growth and fast reproduction of microbes, SCP started to 

emerge as a top contender for non-conventional protein sources (Olsen & Hasan, 2012). 

The use of low-cost substrates or industrial waste products as media for production SCP 

has improved its cost competiveness (Suman et al., 2015). 

 Yeast are commonly thought of as the most important microorganism for SCP 

production (Tacon, 1995). Yeast strains used for SCP are believed to have an 

immunostimulatory property according to Anderson, Siwicki, and Rumsey (1995). 

Marine yeast have stood out for aquaculture feed because of their high content of 

essential amino acids (Nasseri et al., 2011). An additional benefit of some types of SCP is 

the production hydrolytic enzymes that improve the digestibility of other feed 

components (Ravindra, 2000). 

 

1.2.3.3.2 Composition 

 Single cell protein is composed of 60-82% protein on dry basis (Suman et al., 

2015). The fungus, Kluvyeromyces. fragilis, was cultured on whole whey yielded a high 

crude protein content that was high in sulfur containing amino acids, but low in ash 

(Gálvez, Ramírez, & García-Garibay, 1990).  Bacterial SCP also offers a high crude 

protein content, however the high nucleic acid content (15-16%) may be a negative 

factor, as upon metabolism in the fish results in uric acid (Ravindra, 2000). Fungal SCP 
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contains low concentrations of methionine and cysteine (Ebrahim & Abou-Seif, 2008; 

Suman et al., 2015), but bacteria tend to be rich in the essential amino acid methionine 

(Ravindra, 2000). 

 Single cell protein enriched feed can supply B-complex vitamins and minerals 

along with several other components that encourage disease resistance in marine animals 

(Zhenming Chi et al., 2006). Yeast represent one of the richest sources of vitamins B12 

(MR Brown et al., 1996; Ebrahim & Abou-Seif, 2008) along with thiamine, riboflavin, 

biotin, niacin and many other nutrients (Ravindra, 2000). 

 

1.2.3.3.3 Disadvantages/limitations 

Although all strains used for SCP production are thoroughly screened prior to use, 

the potential of contamination by a pathogenic microorganism is a continuous risk 

(Kuhad et al., 1997). Other disadvantages that arise from the use of microorganisms 

include the colors and flavors present may be unpalatable. Furthermore, consumption of 

foreign proteins may result in unfavorable immune responses (Adedayo, Ajiboye, 

Akintunde, & Odaibo, 2011; Suman et al., 2015).  

 

1.2.3.3.4 Anti-nutritional factors 

 The production of mycotoxins by certain fungi can preclude their use for SCP 

(Ravindra, 2000). Ochratoxin A (OTA) is an important metabolite produced by certain 

species of fungi. OTA can cause a reduction in weight gain, low survival, and tissue 

lesions to the liver and kidneys of fish (El-Sayed, Khalil, & Saad, 2009). Aflatoxins are 

also known to damage the liver in various ways (Ravindra, 2000). 
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1.2.3.3.5 Low digestibility 

The cell wall represents up to 10% of a microbial cell’s dry matter, and can 

reduce digestibility (Kuhad et al., 1997). The cell wall is designed to keep native 

structures inside while preventing foreign invaders outside (RI Mateles & SE 

Tannenbaum, 1968). Although the digestibility is an issue, the cell wall components of 

yeast such as glucans and mannans, have an added benefit of stimulating an immune 

response (Kuhad et al., 1997; Portnoy, Williams, & Barnes, 2016). 

 

1.2.4 Insect larvae 

1.2.4.1 Advantages 

 Naturally found in the diets of fish, insects and their larvae make for an easy 

transition for an alternative to fish meal. They are rich in amino acids, vitamins, and 

minerals (Van Huis, 2013). They do not require much for land, energy, or water because 

they grow in organic waste or manure piles (Oonincx & De Boer, 2012). An added 

advantage is the reduction of the nitrogen and phosphorus waste (Diener, Zurbrügg, & 

Tockner, 2009; Newton et al., 2005; Van Huis, 2013). Lastly, the price of insect larvae 

varies greatly between species, but maggot meal was competitive with fishmeal. The 

price is still much higher when compared to soymeal, but would require lower amounts 

due to the nutritional composition (Veldkamp & Bosch, 2015).  
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1.2.4.1.1 Minerals and nutrients 

 Collection of edible insects for consumption has been conducted for millennia 

(Rumpold & Schlüter, 2013). This is driven by the high nutrient values they contain. For 

example, 100g of caterpillars (C. forda and B. alcinoe) can provide almost 100% of the 

daily vitamin requirements for humans while three silkworm pupae can be as nutrient 

rich as one chicken egg (Rumpold & Schlüter, 2013).   

 

1.2.4.1.2 Protein titer 

 The same 100g of caterpillars as discussed above can provide 76% of daily 

protein required for humans, furthermore the silkworm pupae contain up to 50% protein 

(Rumpold & Schlüter, 2013). Other insects’ protein content may vary from 50 to 82% on 

dry basis (Rumpold & Schlüter, 2013).  

 

1.2.4.2 Disadvantages/limitations 

1.2.4.2.1 Amino acid balance 

Generally the amino acid composition is dependent upon the taxon to which the 

insect belongs (Henry, Gasco, Piccolo, & Fountoulaki, 2015). However trends do appear, 

with some insects containing high contents of  phenylalanine and tyrosine, but low levels 

of methionine (Rumpold & Schlüter, 2013).  

 

1.2.4.2.2 Anti-nutritional factors 

Plants consumed by the insects may have an effect on the components of the 

insect larvae which may include unpalatable characteristics (Finke, 2002). According to 
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Sánchez-Muros, Barroso, and Manzano-Agugliaro (2014) medium to large sized chitin 

particles can induce asthma and allergies in humans, but smaller sized particles can 

induce an anti-inflammatory effect.  

 

1.2.4.2.3 Low digestibility 

 Chitin, a polysaccharide present in the exoskeleton of arthropods, is a crude fiber 

that is indigestible by most monogastric animals (Sánchez-Muros et al., 2014). 

Interference by chitin can limit the usability of the insect protein, (Longvah, Mangthya, & 

Ramulu, 2011), but several studies have shown that some fish have the capability to 

produce a endogenous chitinase to break down the chitin in the feed (Sánchez-Muros et 

al., 2014). Nevertheless, it has been reported that chitin can stimulate a beneficial 

immune response in fish (Sánchez-Muros et al., 2014).  

 

1.2.4.2.4 Lack of critical elements such as omega 3 fatty acids 

Reducing the fishmeal content of an aquafeed by 9% via replacement with black 

soldier fly larvae reduce the natural fish oil content of the feed by 5% (St‐Hilaire et al., 

2007) One way to counter act this reduction is to grow the insect prepupae in  manure 

enriched with fish offal (entrails) (St‐Hilaire et al., 2007).  The insects can absorb poly-

unsaturated fatty acids (PUFA) from their growth medium and incorporate it into the 

insect cell mass (Sealey et al., 2011). It is important to note that insect lipid levels can be 

higher than fishmeal and soymeal, but are extremely variable (Henry et al., 2015).  

  



16 

 

1.2.5 Oilseeds and oilseed meals 

 Several different plant-based meals have been evaluated for their potential to 

replace fishmeal. One major contender for a partial replacement is soybean meal 

(Gibbons & Brown, 2016). A few requirements for the use of the plant-based meals is a 

low fiber and ANF components, while having a high protein content with an acceptable 

amino acid profile, high digestibility, and a favorable palatability (Naylor et al., 2009). 

Other oilseed such as canola and sunflower seed (Aslaksen et al., 2007), and cereal grain 

byproducts such as corn distillers’ grains and barley fractions (ML Brown, Schaeffer, 

Rosentrater, Barnes, & Muthukumarappan, 2012; Jabeen, Salim, & Akhtar, 2004)  

 

1.2.5.1 Advantages  

1.2.5.1.1 Omega 3 fatty acids 

 Terrestrial oilseeds known to contain omega-3 fatty acids include: Sunflower, 

linseed, canola, soybean, olive, and palm oils. However, vegetable oils do not contain 

long chain omega-3 fatty acids such as EPA and DHA needed in fish nutrition (Naylor et 

al., 2009). However, replacement with 75% vegetable oil while maintaining long chain 

fatty acid requirements did not hinder fish health or growth (Naylor et al., 2009)  

 

1.2.5.2 Disadvantages/limitations 

Detrimental factors for the use of plant proteins as fishmeal replacers include the 

plant protein having low digestibility, deficiency of several essential amino acids, 

palatability, or the presence of ANFs (Daniel, 2018).  
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1.2.5.2.1 Anti-nutritional factors 

Several different ANF’s are present in meals but are dependent upon the oilseed 

(Soetan & Oyewole, 2009). They can be divided into four broad groups: 1) affecting 

protein utilization and digestion; 2) affecting mineral utilization; 3) anti-vitamins; 4) 

other miscellaneous compounds (Francis, Makkar, & Becker, 2001). Soybean meal is 

known to contain all four groups with protease inhibitors, saponins, antivitamins and 

many more (Francis, Makkar, and Becker 2001). Other potential replacements for 

fishmeal include canola or rapeseed meal (Hardy, 2010). Canola contains a high amount 

of glucosinolates which when hydrolyzed release isothiocyanate, nitrile, and thiocyanate 

that can affect thyroid function (Gatlin III et al., 2007). Phytate or phytic acid are found 

in most meals,  providing phosphorus storage system (Cao et al., 2007). Phytates chelate 

with mineral ions (Ca2+, Mg2+, Zn2+, Cu3+, or Fe3+) or complex with proteins and vitamins 

rendering them unusable by the animal eating the feed (Francis, Makkar, and Becker 

2001).  

 

1.2.5.2.2 Protein titer 

According to Olsen and Hasan (2012), plant proteins have been a primary choice 

in the replacement of fishmeal for aquaculture diets. However, the protein composition is 

not always favorable to carnivorous fish species (Hardy, 2010). The protein efficiency 

ratio (PER) of soybean meal is relatively low when compared to fishmeal (1.6 and 3.4 

respectively) (Friedman, 1996). Soybean meal is considered highly antigenic due to the 

presence of what which this causes intestinal enteritis (Drew, Borgeson, & Thiessen, 

2007)  
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1.2.5.2.3 Amino acid balance 

Some current feed ingredients, such as soybean protein concentrate, wheat, or 

corn gluten meals, require supplementation with essential amino acids (Olsen & Hasan, 

2012). Corn protein is highly digestible to fish, but due to the lysine deficiency 

supplementation is required (Hardy, 2010). Supplementation of methionine greatly 

improves the protein efficiency ratio (Drew et al., 2007). Treatment to remove the 

enzyme that cleaves glucosinolates requires degrees exceeding 110℃, that can affect the 

amino acid digestibility. (Bell, 1984).  

 

1.2.5.2.4 Low digestibility  

 The lignocellulosic components of the plant-based meals limit the digestibility of 

the feed for non-ruminant animals (MR  Bedford, 1995). Lignocellulose is the main 

support system of plant cell walls and is composed of lignin, cellulose, and hemicellulose 

as shown in Figure 1.2 (P. Kumar, Barrett, Delwiche, & Stroeve, 2009). Cellulose is a 

linear glucose polymer joined by β-1,4-glycosidic bonds (Bledzki & Gassan, 1999). 

Through hydrogen and vander Waals bonds, the cellulose is packed tightly together 

making it resistant to hydrolysis (Kumar et al. 2009). Hemicellulose components vary in 

composition between species (Nevell & Zeronian, 1985), and provide for branching that 

strengthens cell wall (Bledzki & Gassan, 1999).  Lignin is a large cross-linked structure 

composed of phenolic monomers. It provides support and protection to the cell wall 

microbial attack (Pérez, Munoz-Dorado, De la Rubia, & Martinez, 2002). Grasses 

typically have a lower content of lignin compared to softwoods (Kumar et al. 2009).  
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Figure 1.2: Lignocellulose structure  

taken from Kumar et al. 2009  

While the plant needs all these components to survive, they greatly affects 

digestability by animals. The nutrients stored with in the cells are encapuslated by 

lignocellulose which prevents digestion and absorbsion by monogastric animals. 

However, the use of early vegetation aid in digestiblity due to low lignocellulose 

componets (George & Bell, 2001).  

 

1.3 Distillers dried grains with solubles (DDGS) 

DDGS has been an alternative to fish meal since the late 1940’s. Inclusion levels of 

the DDGS were low; several plant-based material were mixed together with the beef liver 

or spleen (Phillips, 1949). This had led to the incorporation of more DDGS in alternative 

fish meal (Lim & Yildirim-Aksoy, 2008). Benefits of including DDGS in fish meal 

indicate that a 5.7% reduction in feeding cost per kg of fish produced Diógenes et al. 

2019).  
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1.3.1 Production 

DDGS is a corn-based co-product from the ethanol industry (Liu & Rosentrater, 

2012). Several co-products are available from the ethanol industry, but the most common 

co-product is DDGS which contains distillers grains with +70% of the solubles 

condensed from post fermentation (Stein, 2008).  

Once corn is dried in the field and harvested, it is transported to an ethanol plant. 

After cleaning the corn by removing the broken kernels, fines, and foreign material, the 

corn is ground to reduce the particle size which increases surface area for later 

saccharification and fermentation (Rosentrater, Ileleji, & Johnston, 2012). Subsequently, 

the ground corn flour is transferred to the cooking step. This is conducted by mixing the 

corn flour with water to form a 30% solids slurry. Next, the slurry is pH adjusted to 5.5 – 

6, and an α-amylase is added to being breaking up the starch molecules, while the slurry 

is heated to 120 to 140℃. This temperature increase begins to gelatinize the starch 

allowing for better saccharification. The slurry is then cooled to ~80℃. More α-amylase 

is added along with nutrients need for fermentation (Rosentrater et al., 2012).  

The α-amylase is used to break the α-1,4 glucosidic linkages, but after cooking a 

gluco-amylase is added to cleave the α-1,6 glucosidic bond to which starts the 

saccharification process (Ingledew, Kelsall, Austin, & Kluhspies, 2009). This reaction is 

conducted at 55 to 65℃ and 4.0 -4.5 pH which is optimal conditions for the enzyme. The 

slurry is then cooled to 30℃ for the fermentation process to being. Fermentation is 

conducted at ~30℃ and pH of ~4.0 with Saccharomyces cerevisiae.  Using the simple 

sugars produced during the saccharification, the yeast converts glucose into ethanol, CO2, 

and heat as secondary products (Rosentrater et al., 2012).  
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 After fermentation and distillation of the ethanol, the unfermentable portion of the 

slurry is considered the whole stillage. At a solid content of between 5 and 15%, the 

whole stillage is centrifuged to separate the solids (wet cake) and the liquid portions (thin 

stillage). Thin stillage contains mostly water with the soluble solids from the whole 

stillage. The thin stillage is condensed by removing the water creating a highly viscous 

liquid called syrup. The syrup can be mixed with the wet cake and dried. This final 

product is known as dried distillers’ grains with solubles. The wet cake can be sold prior 

to drying but is not stable for long.  A third option available at some facilities is dried 

distillers’ grains which are the DDGS without the addition of solubles prior to drying 

(Rosentrater et al., 2012).  

 

1.3.2 Composition 

 After saccharification and fermentation, roughly a third of the corn remains in the 

wet cake (Liu, 2012). An increase is seen in protein, oil, and ash, as fermentation has 

concentrated the non-starch fractions as shown in Table 1.4. The starch has been 

drastically reduced along with the total carbohydrates. These number however, vary 

greatly between different batches, production facility, and year (Belyea, Rausch, & 

Tumbleson, 2004). Other components that are specifically important in DDGS is the  

total phosphorus content at 2 to 3 times more than the original corn (Widyaratne & 

Zijlstra, 2007). 
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Table 1.4: Proximate composition of corn DDGS 

 Corn* DDGS⸸ 
Protein 10.2 31.4 
Oil 4.6 10.9 
Starch 69.5 5.3 
Ash 1.3 4.6 
Total CHO 83.9 52.1 

CHO= carbohydrate 
*(Liu and Rosentrater 2012) 

⸸(Belyea et al., 2004) 
 

1.3.2.1 Protein and amino acid composition 

A three-fold increase is typically seen in the conversion from corn to DDGS. However, 

an improvement of the quality of the protein regarding amino acid composition is not 

seen. This effect is because fermentation process does not add any new proteins or amino 

acids, little to no change is found in the product (Liu, 2012).  Several essential amino 

acids are required due to animals’ inability to produced them. Caused by the drying 

process above 300˚C, the amino acid availability is diminished (Lumpkins & Batal, 

2005). One of the biggest limiting amino acids is L-lysine (Pfefferle, Möckel, Bathe, & 

Marx, 2003). DDGS is deficient in lysine, methionine and cystine as shown in Table 1.5 

 At low inclusion rates of DDGS the lack of these amino acids can be compensated for 

(Welker, Lim, Barrows, & Liu, 2014). When the inclusion of DDGS is increased the 

difficulty becomes the insufficiency. To compensate for the low lysine, the addition of 

crystalline lysine can improve the amino acid profile (Diógenes et al., 2019). 
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Table 1.5: Amino acid composition of Corn DDGS and Soybean Meal 

Amino acid Corn DDGS Soybean Meal 
Arginine 1.19 4.09 
Histidine 0.68 1.48 
Isoleucine 1.09 2.95 
Lysine 0.87 3.43 
Methionine 0.55 0.80 
Phenylalanine 1.30 3.07 
Threonine 1.0 2.27 
Tryptophan 0.22 0.80 
Valine 1.45 3.07 

Values are expressed as percent dry basis (Taken form Lim, Li, and Klesius (2011)) 
 

1.3.2.2 Minerals 

Within the highly variable composition of DDGS the mineral composition can 

vary as well. This can have a major impact of the animals during consumption. Too much 

sulfur in the diet can lead to thymine deficiencies (Niles, Morgan, Edwards, & Lalman, 

2002). High nitrogen levels have been associated with increased odor from manure, and 

high phosphorus levels cause land and waterway pollution (Spiehs & Varel, 2009). The 

phosphorus content of DDGS can be 2 to 3 times higher than the original corn 

(Widyaratne & Zijlstra, 2007). The means of pH adjustment during saccharification and 

fermentation can lead to a high sulfur, sodium, and calcium content (Liu, 2012). This 

high variation is limiting the inclusion of the DDGS in feed.  

 

1.3.2.3 Fiber and digestibility 

Fiber portion of the meal is composed mainly of lignin, cellulose, and 

hemicellulose. These can be broken down in to three categories of fiber analysis: neutral 

detergent fiber, acid detergent fiber, and acid detergent lignin. These components are 

what form the cell wall of the corn and are not easily broken down. Because of the 
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removal of most of the starch this fiber fraction becomes concentrated. The high level of 

structural fiber that is found in DDGS limits its digestibility (Liu, 2012; Welker et al., 

2014). 

 

1.3.3 Cost 

 According to the Renewable Fuels Association 2019 Ethanol Industry Outlook, 

the average cost per bushel of corn in 2018 was $3.35 US dollars. However, the same 

bushel could sell for $5.19 after ethanol fermentation with the collection of ethanol, 

distillers’ grains, and the corn distillers’ oils. As of June 5th, 2019, the cost of a metric ton 

of DDGS was $140.24 while at the same time fishmeal cost ~$1500/ton and soymeal at 

$356/ton (Council, 2019; Mundi, 2019). 

 

1.3.4 Current supply and uses 

In 2018, the US produced 60.8 billion L (16.06 billion gal) of corn ethanol which 

equates to 56% of the world production (Association, 2019b). With that 23,627,456 

metric tons of DDGS was produced (Association, 2018). A large portion of this was used 

for livestock feed due to the economics of DDGS verse soybean meal (Swiatkiewicz, 

Swiatkiewicz, Arczewska‐Wlosek, & Jozefiak, 2016). 

 

1.3.5 Limitations as a fish meal replacer 

Several essential amino acids are needed for the fish. The essential amino acids are 

not produced by the fish itself so it needs to have them supplied by the nutrition (Enes, 

Panserat, Kaushik, & Oliva-Teles, 2009). One of these such amino acid is lysine, but due 
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to the production process of the DDGS the lysine get eliminated making it a limiting 

essential amino acid for the fish (Lim & Yildirim-Aksoy, 2008). This is especially 

important for carnivorous fish species which have specific amino acid requirements as 

well as poor digestibility (Naylor et al., 2000). However, unlike many other alternative 

fish feed substrate DDGS does not contain anti-nutritional factors such as trypsin 

inhibitors and glucosinolates commonly found in  soy and canola meals respectively (J. 

Becker & Wittmann, 2012).  

 

1.3.5.1 Protein and amino acid concentrations 

The highest concentration of protein found in DDGS is ~34%, as compared to 

fishmeal at ~65% protein (ML Brown et al., 2012). This difference causes more DDGS to 

be added which reduces the amount of other ingredients that can be added to obtain 

proper nutrition ratios. The drying process of the DDGS causes the digestibility of lysine 

to decrease which also affects the digestibility of the protein (Magalhães et al., 2015). 

Furthermore, the inclusion of DDGS in aquaculture diets has been shown to decrease the 

livers ability to absorb the peptide chains due to the limited digestibility (Diógenes et al., 

2019).  

 

1.3.5.2 Lack of omega 3 fatty acids 

As previously mentioned, terrestrial crops are lacking in long chain fatty acids 

such as EPA and DHA required for use in fish diets. With the original grain being corn 

based DDGS is lacking in the omega 3 fatty acids. Although the digestibility of the lipids 

from DDGS (82-89%; Magalhães et al. 2015) falls within recommended ranges for some 
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species (Rainbow Trout, 79-89%; Cheng and Hardy, 2004), the fish digestive system 

struggles to process vegetable oils the same way it processes fish oil resulting in lower 

digestibility due to the shorter and highly varied fatty acid chain composition (Magalhães 

et al., 2015). In carnivorous fish this can decrease absorption of protein and lower growth 

performance (Santigosa et al., 2011).   

 

1.3.5.3 High fiber and low digestibility  

Fiber in is often correlated with better digestion. However, there are different 

types of fiber such as soluble and insoluble. The cell wall components are considered 

insoluble and can encapsulate nutrients preventing the absorption in the small intestine 

(Buxton & Redfearn, 1997). After ethanol fermentation, the insoluble fibers are 

concentrated at almost three times higher than the original grain. Because of this, 

inclusion of DDGS in diets of carnivorous fish is limited. Species of cold water and 

marine aquaculture can tolerate slightly higher levels (Diógenes et al., 2019).  

 

1.4 Approaches to improve DDGS 

1.4.1 Pretreatment 

Pretreatment is used to break up the lignocellulosic structure by physical or chemical 

means as shown in Figure 1.2 (Ezeji & Blaschek, 2008). Effective pretreatment includes 

improvement of sugar ability to be hydrolyzed, avoid loss of carbohydrate and formation 

of inhibitory compounds for hydrolysis while being cost effective (Sun & Cheng, 2002). 
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1.4.1.1 Dilute acid pretreatment 

Dilute acid pretreatment is one of the most studied pretreatments for enhancing 

biomass digestibility. The dilute acid causes the breakage of the rigid lignocellulosic 

structures. Typically, a strong acid such as hydrochloric, nitric or sulfuric acid are used. 

The sulfuric acid has been shown to have the best success (Mosier et al., 2005).   

Originally, the use of sulfuric acid on cellulosic material had been conducted to 

manufacture furfural, a high value renewable organic compound  (Anthonia & Philip, 

2015; Mosier et al., 2005). The process hydrolyzes the hemicellulose to pentoses such as 

xylose and arabinose can be further processed into the furfural (Anthonia & Philip, 

2015). After the hemicellulose is removed the digestibility of the cellulose is improved 

(Mosier et al., 2005). Therefore, the process provides two positive products. Lower 

loading rates of solids have been shown to be preferred for hydrolysis of the 

hemicellulose, but an increased acid concentration decreases the time needed for the 

hydrolysis to take place (P. Kumar et al., 2009). 

Inhibitors produced using this method tend to inhibit fermentation (Ezeji & 

Blaschek, 2008) or enzymatic hydrolysis (Chatzifragkou et al., 2015). If all furfural is not 

removed it negatively impacts fermentation by microorganism (Palmqvist, Almeida, & 

Hahn‐Hägerdal, 1999). Regulation of temperature has been shown to aid in the 

degradation of sugars to the unwanted products (Noureddini & Byun, 2010).  Dilute acid 

requires special precautions to be taken to limit the risk of corrosion or environmental 

damage (Mosier et al., 2005). It also requires a second step of neutralization prior to 

fermentations which increases the cost of the process (Agbor, Cicek, Sparling, Berlin, & 

Levin, 2011).  
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1.4.1.2 Ammonia-fiber expansion (AFEX) pretreatment 

AFEX pretreatment uses heated biomass and dilute ammonia. The ammonia 

reacts with the lignin to break the lignin-carbohydrate bond (Mosier et al., 2005). When 

the temperature and pressure is increased the cellulose swells, then the pressure is quickly 

dropped which decrystallizes the cellulose (Sun & Cheng, 2002). This also causes the 

ligand structure to be altered which allows for its susceptibility (Agbor et al., 2011). After 

this, the ammonia can be recovered (Bals, Dale, & Balan, 2006).  Moderate conditions 

for processing limit the formation of inhibitors for microbial and enzymatic treatments 

(Dale, Henk, & Shiang, 1984). Finally, the process does not require further grinding to 

improve efficiency (MT Holtzapple, Jun, Ashok, Patibandla, & Dale, 1990).   

 AFEX is unable to solubilize hemicellulose efficiently as compared to other 

pretreatments (Sun & Cheng, 2002) this in return requires that addition of enzyme 

hydrolysis step with a hemicellulase such as a xylanase (Chatzifragkou et al., 2015). A 

second problem with the AFEX system is the use of ammonium which is recovered after 

treatment to be reused and avoid the potential ecological effects. This is done by heating 

the meal to high temperatures (200℃) which vaporizes the ammonia removing it from 

the pretreated meal. The vaporized ammonia is then condensed and reused for future 

pretreatments (Mark Holtzapple, Davison, & Stuart, 1992).  

 Pretreatment with ammonia can be used on a wide range of substrates including 

wheat, barley and rice straw, switchgrass, aspen chips, and bagasse (Sun & Cheng, 2002). 

According to Dien et al. 2008, the released sugars are fermentable suggesting that there 

are no negative inhibitors created during the process. AFEX treatment has that added 
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benefit of the yield only decreasing slightly at higher moisture content which reduces the 

cost of drying (Bals et al., 2006).  

 

1.4.1.3 Liquid Hot water treatment 

The liquid hot water pretreatment keeps water at a liquid state at higher 

temperature by use of pressure (Mosier et al., 2005). This process forces the partial 

dissolving of the biomass. The process uses the hot water to weaken the hydrogen bonds 

which causes the breakdown of the material (Chatzifragkou et al., 2015). The production 

of a hydronium ion from the hot water acts to catalyze glyosidic bonds. The cleavage of 

an O-acetyl group and uronic acid substitution on glucuronoarabinoxylan allows for 

further catalyzation of hemicellulose into mono- and oligosaccharides (Chatzifragkou et 

al., 2015; Mosier et al., 2005).  The liquid hot water treatment is a favorable choice due to 

the lack of chemicals and catalyst required.  

The high volume of water, energy input, and the requirement of an enzyme 

hydrolysis post-treatment limits the effectiveness of the treatment by itself 

(Chatzifragkou et al., 2015). The liquid hot water pretreatment does not saccharify xylan 

sugars, instead hemicellulase are required for improved processing of DDGS (Ximenes et 

al., 2007). 

Wang, Yuan, Wang, Cui, and Dai (2012) found that the use of liquid hot water 

pretreatment at a temperature over 200℃ broke down acid soluble lignin. They suspect 

that the high temperature was able liberate acids from the solids facilitating the 

degradation (Antal Jr, 1996).   
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1.4.1.4 Steam explosion 

Steam explosion uses the physics of releasing steam pressure at high temperatures 

to break down the lignocellulosic components of the meal (P. Kumar et al., 2009). This 

breaks down the hemicellulose and lignin exposing the cellulose. After the cellulose is 

exposed an enzymatic hydrolysis can hydrolyze the cellulose in to cellobiose for 

fermentation (Sun & Cheng, 2002).  The process can also be optimized for hemicellulose 

reduction by holding the pressure for a longer hold time and at lower temperature 

(Wright, 1988).  Currently steam explosion pretreatment is most effectively used for the 

pretreatment of hardwoods and agricultural residue (Sun & Cheng, 2002). 

The energy requirements for steam explosion are greatly reduced when compare 

to the other mechanical methods (P. Kumar et al., 2009). Other advantages include the 

lack of need for recycling due to no harsh chemical, this also benefits the environment 

(Sun & Cheng, 2002). The high recovery rate of hemicellulose and lignin in a usable for 

hydrolysis adds to its benefits (Chandra et al., 2007). 

 The process of steam explosion cannot always complete disruption of the 

lignocellulose matrix. This can also generate inhibitory compounds that can prevent 

enzymatic hydrolysis or microorganism’s growth for subsequent fermentations such as 

acetic and formic acid production (Chandra et al., 2007). The biomass then needs to wash 

to remove these compounds, with the removal of the inhibitory compounds the 

hemicellulose is removed by solubilization. This water wash removes up to 25% of the 

original mass make the process less economically efficient (Sun & Cheng, 2002).  
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1.4.1.5 Dry fractionation 

Dry fractionation of corn DDGS is the process of reducing particle size then 

separating components (Liu, 2009; Srinivasan, To, & Columbus, 2009). Particle size 

reduction can be accomplished by either milling or grinding to smaller particles for easier 

separation. Following the grinding process, the DDGS is separated based on size, shape, 

and density. The first process is sieving which separate particles based upon size. The 

second and third techniques for separation commonly used are winnowing and air 

classifying; both use the difference in density to separate particles. Fiber particles are 

separated based upon their lower density which would allow them to be carried further.  

Often these methods are combined to improve results (Liu, 2009; Welker et al., 2014). A 

technique of first grinding, then sieving the DDGS by size then air classifying helps to 

reduce fiber while increasing protein. The air classifying can also be used to help enrich 

the product for protein, oil, carbohydrate or ash depending upon the desired traits of the 

meal (Liu, 2009). Due to this processing a more controlled and consistent quality product 

can be achieved.  

 

1.4.1.6 Wet fractionation 

Wet fractionation has shown to be effective in increasing the protein content 

while decreasing the ADF content of the DDGS. The process involves soaking the corn 

for a short time before milling and ethanol fermentation. This process has been shown to 

recover endosperm, pericarp and/or germ fiber (Welker et al., 2014). By preventing the 

fiber from entering the fermentation process a more efficient outcome is gained. 

However, the use of the wet fractionated DDGS has only been seen in small scale and has 
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not been applied in fish feed trial (Singh et al., 2005; Welker et al., 2014). Instead a 

modified procedure post fermentation has been shown to improve DDGS quality for fish 

trials. DDGS is first mixed with water for 60 min then filtered through a 10-µM screen. 

Autoclaving is used to precipitate the proteins which can be collected using 

centrifugation and dried for addition to meals creating wet dried distiller’s grains with 

soluble- protein concentrate (WDDGS-PC).  Several positives were found such as 

increase crude protein levels, reduced structural fiber levels, as well as energy 

digestibility increase. It was also found that up to 300g/kg of the WDDGS-PC could be 

added to the diets without negative effects on the growth of the fish (Reveco, Collins, 

Randal, & Drew, 2012; Welker et al., 2014). 

 

1.4.1.7 Extrusion 

 High-temperature, short time cooking combined with pressure, and mechanical 

shear are the basic principles behind extrusion (Stone, Hardy, Barrows, & Cheng, 2005). 

The final product is achieved through the use of heat and shearing when forced through a 

barrel (Kokini, Chang, & Lai, 1992). After exiting the barrel through a die, the product 

expands due to the loss of pressure and moisture evaporation (ML Brown et al., 2012). 

Other effect of extrusion may include reduction of microbial counts, gelatinization of 

starches, and denaturation of proteins due to the heat (Harper, 1989). Two different types 

of extruders are available, single screw and twin-screw. A single screw extruder is best 

used for low fat/ processed materials, while a twin-screw extruder is more equipped to 

handle the high fat/ raw materials. The fat content can reduce the shear strength 
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preventing the shear energy from being trans formed into heat (Castells, Marín, Sanchis, 

& Ramos, 2005) 

There are several benefits to the used of extrusion in food production.  The 

continuous movement of the material encourages high output while the use of relatively 

dry materials such as grains and flours increase energy efficiency (ML Brown et al., 

2012). The high temperature can improve the texture and flavor of the food, while the 

temperature can also allow for the use of unconventional ingredient and reduce 

mycotoxins levels. Finally, the extrusion process deters high production of waste water 

due to low moisture, and high temperature evaporations (Castells et al., 2005). When 

properly done, the nutrient composition can be preserved while the feeding value is 

enhanced (Kannadhason, Rosentrater, Muthukumarappan, & Brown, 2010). Through all 

this, the structural fiber is solubilized which leads to an increase in the digestible energy. 

If the process is improperly done several issues could arise. Incorrect heating or pressure 

could lead to Maillard reactions between the protein and fiber leaving the fiber 

inaccessible, the mechanical force has the possibility for the loss of vitamins and amino 

acids (Ilo & Berghofer, 2003). 

 

1.4.2 Enzymatic 

The use of enzymes for the purpose of breaking undesirable components of plant-

based biomass has been widely studied. One of the leading field in the use of enzymatic 

hydrolysis is the biofuels industry (García-Aparicio et al., 2007; Wright, 1988). In order 

to improve the efficiency of the ethanol production the degradation of lignocellulose has 

considered to be significant importance (Sun & Cheng, 2002). Several studies have 
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shown that the use of accessory enzymes, such as xylanases, β-galactosidase, or phytase, 

can help to improve the yield by limiting cellulase inhibitors (Hu, Arantes, Pribowo, & 

Saddler, 2013; Hu, Arantes, & Saddler, 2011; Luangthongkam, Fang, Noomhorm, & 

Lamsal, 2015).  

 

1.4.2.1 Commercial enzymes 

Industrial use of enzyme has become a widely used feature to improve digestibility 

of feed in a targeted approach. Currently, most enzyme used for industrial application use 

hydrolysis to degrade various fractions of the substrate (Kirk, Borchert, & Fuglsang, 

2002). Several enzymes are commercially available for DDGS and all approved for the 

use in feed (Table 1.6Table 1.6). The enzyme can be utilized as a form of pretreatment or 

mixed with the feed for use in the digestive system. When enzymes were originally used 

for the degradation of cellulose, costs could exceed $2000 for one mg of purified 

cellulase (Walker & Wilson, 1991). With the advancements in genetic engineering 

microbes and targeted selection, today the cost is slightly reduced; however; enzyme cost 

is still considered to be one of the expensive process variables. Therefore, several studies 

have been conducted in assessing the effect of various enzyme dosages and types in 

degrading the lignocellulosic structure during the cellulosic ethanol production (Dien et 

al., 2008; Pryor, Karki, & Nahar, 2012). Some studies have studied how the extent of 

hydrolysis is related to the reaction time and enzyme dosages.  Sattler, Esterbauer, 

Glatter, and Steiner (1989) reported that extension of hydrolysis at fixed time can be 

increased with increase in enzyme dosages. 
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Table 1.6: Commercially available enzymes 

Commercially available 

enzyme 

Enzymes contained Source 

Agri-King REAP (Agri-
King) 

Beta-glucanase, cellulase, 
and protease 

(Świątkiewicz & 
Koreleski, 2006) 

Allzyme (Alltech) Protease, amylase, 
xylanase, beta-glucanase, 
pectinase, cellulase, and 
phytase 

(Świątkiewicz & 
Koreleski, 2006) 

Beta-glucosidase 
(Novozyme) 

Beta-glucosidase (Bals et al., 2006) 

Easyzyme Mixer 1 (ADM) Galactomannanase, beta-
glucanase, xylanase, 

(Jones et al., 2010) 

Enspira (Enzyvia) NSPase (Campasino et al., 2015) 
Hemicell (CehmGen 
Corp.) 

Beta-mannase (Jones et al., 2010; 
Świątkiewicz & Koreleski, 
2006) 

Multifect® CX (DuPont) Cellulase (Lamsal, Pathirapong, & 
Rakshit, 2012) 

Multifect® GA10L 
(DuPont) 

Glycol-amylase (Lamsal et al., 2012) 

Multifect® P-3000 
(DuPont) 

Endo-1,4-beta-xylanase, 
XylA, XylB, XylC, XylD  

(Pedersen et al., 2015) 

Multifect® Pectinase FE 
(DuPont) 

Pectinase (Lamsal et al., 2012) 

Multifect® Xylanase 
(DuPont) 

Xylanase (Bals et al., 2006) 

Natugrain TS (BASF) Endo-1,4-beta-xylanase and 
endo- 1,4-beta-glucanase 

(Diógenes et al., 2019) 

Natuphos (BASF Phytase (Cao et al., 2007) 
Protext 89L (DuPont) Protease (Lamsal et al., 2012) 
Prozyme (Danisco) Xylanase (Jones et al., 2010) 
Ronozyme P (Novozymes) Microbial phytase (Cheng & Hardy, 2004) 
Spezyme CP (Genencor) Cellulase (Bals et al., 2006) 
Stargen (Genencor) Amylase (Bals et al., 2006) 
Viscozyme L 
(Novozymes) 

Hemicellulase, arabinose, 
cellulase, β-glucanase, 
xylanase 

(E. Baldwin, Karki, Iten, & 
Gibbons, 2018) 

Ronozyme VP (DSM) Multizyme complex, 
carbohydrase  

(E. Baldwin et al., 2018) 

Superzyme L (Canadian 
Biostems Inc.) 

Multienzyme complex, 
carbohyderase, 

(E. Baldwin et al., 2018) 
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1.4.2.2 Enzymatic hydrolysis pretreatment 

In order to conduct an enzymatic pretreatment parameters of dosage loading must 

be established. The two most common dosage loading forms are activity unit/g of solid or 

mg of protein/g of solid. Use of the activity unit/g of solid quantifies activity of one 

enzyme, such as filter paper units for cellulase enzymes. Determination of protein for the 

protein/g of solid can be done by either BCA (bicinchonicic acid) kit or by nitrogen 

determination (Berlin, Maximenko, Gilkes, & Saddler, 2007; Krishnan et al., 2010). This 

method accounts for all proteins within the enzyme complex.    

 

1.4.2.3 Use of phytase  

Phytic acid is an organic form of phosphate composed of a 6-carbon ring with 

phosphates attached to each of the 6 carbons as seen in Figure 1.3. Due to phytic acids 

ability to hold on to six different phosphates in one molecule makes this one of the major 

forms of storage phosphorus in plants (Raboy, 1997). Phytases can cleave one of the 

phosphates off the phytic acid transforming it into myo-inositol (phosphaten) and 

phosphoric acid.  

 

Figure 1.3: Phytic acid structure  

take from Wyss et al. (1999) 

 Phytates (phytic acid salts) reduce the digestibility of proteins, starch and lipids. 

This is done by phytates complexing with the molecules making them less soluble or 
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resist proteolysis (Selle, Ravindran, Caldwell, & Bryden, 2000). Other enzymes can also 

be affected by the phytic acid, such as amylase and trypsin, which has been shown to 

inhibit there functions (Harland & Morris, 1995). By using the phytase these negative 

reactions could be limited. According to Papatryphon and Soares (2001), the addition of 

phytase increases the apparent digestibility of protein. Only about half of the DDGS 

phosphorus is in the form of phytate. This is because the yeast hydrolyze phytate during 

the ethanol fermentation process (Welker et al., 2014). 

Using phytase can cause a reduction in the digestibility of the phosphorus (Yáñez, 

Beltranena, Cervantes, & Zijlstra, 2011). A limited effect has been shown for use of 

phytase just as an additive to the DDGS (Rojas, Liu, & Stein, 2013). This is due to the 

different processing factors that go into the production of the feed. A high temperature 

can be used in the extrusion of pellets for feed which can denature the phytase (Selle et 

al., 2000). The long-term storage of the feed with the phytase included can reduce the 

successfulness of the enzyme. Also, the environmental conditions of the animal’s 

digestive system can decrease the productivity in of the enzyme.   

Phytic acid and phytate are significant causes of water pollution because of 

excretion of undigested phytic acid in water systems (Turner, Papházy, Haygarth, & 

McKelvie, 2002). Phytase aids in the adoption of phosphorus release in to the 

environment standards (Kirk et al., 2002). Studies have also shown that supplementation 

of phytase could decrease the levels of trace mineral addition needed in the feed without 

affecting the nutrient retention or the body composition of fish because of the freeing of 

bound calcium and magnesium (Cheng & Hardy, 2004; V. Kumar, Sinha, Makkar, & 

Becker, 2010). Luangthongkam et al. (2015) found that using a phytase in combination 
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with a mixture of hemicellulases and a protease improved the efficiency of ethanol 

production. This reaction could be due to the inability of the phytic acid to bind with ions 

needed for the hemicellulose hydrolysis (Hruby, 2012).  

  

1.4.2.4 Use of cellulase and hemicellulase 

Cellulose, xylose, and lignin’s make up the majority of the corn cell wall 

(Kulkarni, Shendye, & Rao, 1999). These are collectively termed non-starch 

polysaccharides (NSP). Non-starch polysaccharide enzymes (NSPase) are the second 

most effective enzyme used to enhance the nutritional quality of DDGS (MR Bedford & 

Cowieson, 2012). These enzymes include cellulases, xylanases, beta-glucanases etc. The 

NSP content contributes to the viscosity of the feed and the hydration properties, this in 

return influences intestinal transit time along with the bulking properties and the 

microbiota activity of the gut (Knudsen, Jensen, & Hansen, 1993). These properties of 

the DDGS make it hard for the digestion of the plant by some monogastric animals 

(Campasino et al., 2015). 

The use of NSPase has been shown to improve the growth performance in low 

energy diets while increasing the nutrient digestibility in DDGS incorporated diets 

(Campasino et al., 2015). Xylanases has demonstrated an increase in the gut microbiota 

while stimulating intestinal enzyme activities of carp species (Jiang et al., 2014). It is also 

important to note that the use of a xylanase has no effect on the energy and amino acid 

digestibility of the DDGS (Yáñez et al., 2011).   

Several factors of the use of the enzyme need to be evaluated prior to use. Such as 

the use of a pretreatment on the DDGS can limit the ability of the xylose release using the 
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a xylanase (Dien et al., 2008). Other aspect of the use of the enzyme hydrolysis are the 

reaction conditions such as the pH, environmental temperature, as well as the substrate to 

be hydrolyzed (Sun & Cheng, 2002). Due to the lignocellulosic structure being degraded, 

the lignin can act as an inhibitor during the cellulase reaction (Chandra et al., 2007).  

The microbial flora present in the intestinal tract of the monogastric animals can 

ferment the NSPs only partially, which adversely affects the nutrient availability in the 

monogastrics, primarily young animals(Swiatkiewicz et al., 2016). Diógenes et al. (2019) 

found that inclusion of a NSPase reduced the cost of feeding by 16.6% per kg of fish 

produced. When this is combined with replacing DDGS (5.7% reduction/kg) equates to 

~21.4% reduction in cost per kg. This can be attributed to the higher efficiency of the 

feed requiring less feed.  

 

1.4.2.5 Use of pectinase 

In many fruits, pectin is a component of the neutral detergent fiber, however 

pectin is not a component of corn neutral detergent fiber, but a pectinase has shown to 

improve the quantity of the NDF (Dien et al., 2008). This is due to the pectinases ability 

to break down the matrix joining the cell wall, but not the cell wall itself (M. Jackson, 

2010). Addition of a pectinase and feruloyl esterase has been shown to increase the 

release of xylose and arabinose from the xylan (Dien et al., 2008).  And up to 90% of the 

theoretical value after AFEX pretreatment has been seen (Bals et al., 2006).   
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1.4.3 Microbial 

1.4.3.1 Probiotic support 

Inclusion of probiotics in food has seen an increasing trend (Shields & Lupatsch, 

2012). Probiotics are defined by the FAO/WHO as “live microorganisms which 

administered in adequate amounts confer a health benefit on the host” (Araya et al., 

2002).  Abd El‐Hack, Mahgoub, Alagawany, and Ashour (2017) determined that a 

dietary inclusion of 100g/kg of DDGS and the probiotic Bacillus substillis increase the 

performance of laying hens while lowering harmful emissions of nitrogen and 

phosphorus. In order for a bacterial species to be considered for probiotic it must not 

harm the host, survive harsh conditions of the digestive system, reproduce within the gut 

of the host, and include no virulent or antibiotic resistant genes (Tan, Chan, Lee, & Goh, 

2016). 

The modification of DDGS with probiotic bacteria has been shown to lower 

phytic acid content (Lamsal et al., 2012). Supplementation with B. subtillus produced a 

decrease of 14.4 and 5.14% for nitrogen and phosphorus respectively in manure excretion 

in laying hens (Abd El‐Hack et al., 2017). Other studies have shown the use of probiotics 

can reduced the need for amino acid and crude protein supplementation, which in return 

reduces the feed costs (Zaghari, Zahroojian, Riahi, & Parhizkar, 2015).   

Some of the identified species of bacteria that have been identified include 

Streptomyces (Tan et al., 2016). The species had been known to produce terpenoid 

compounds that give an earthy or musty taste when consumed which reduces palatability 

(Auffret et al., 2011)  
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Typical probiotics are a combination of many different bacteria and fungi 

(Alagawany et al., 2018). Through this a multitude of mechanism are present to aid in the 

digestion and immune systems of the animal. Depending on the species organic acids or 

antibacterial substances maybe produced, host T cell stimulation, or blocking the 

adhesion of pathogens to the intestinal epithelial are a few ways that the probiotic can 

support the animal (Alagawany et al., 2018).   

 

1.4.3.2 Fungal 

Unlike the physical and chemical pretreatments mentioned previously the use of 

microbial pretreatment is more environmentally friendly because of the lack of chemicals 

and waste (Mood et al., 2013). In general, three classes of fungi have been identified in 

the use of degrading lignocellulose: white-, soft-, and brown rot (Shi, Sharma-Shivappa, 

Chinn, & Howell, 2009). To be used in feed the species must comply with the FDA 

Generally Recognized As Safe (GRAS) list (Administration, 1997). Some of the 

filamentous Ascomycota species that comply with the GRAS status include: Aspergillus 

spp, Fusarium spp., and Neurospora spp. (Ferreira, Mahboubi, Lennartsson, & 

Taherzadeh, 2016). Marine yeast and brewers’ yeast also show potential due to their 

palatability and high protein content (Z. Chi, Liu, Lu, Jiang, & Chi, 2016; A Oliva-Teles 

& Goncalves, 2001) 

After addition of the fungi, the organism survives by feeding off the unwanted 

components. The production of the secondary metabolites such as enzymes add the 

benefit of digesting the fibers (Capolupo & Faraco, 2016).   The degradation of fibers 

frees sugars allowing for the continued survival of the fungi. Using biotechnological 
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advances, increased production and efficiency of the enzymes has been achieved 

(Capolupo & Faraco, 2016). In addition to the enzyme production, the lack of chemicals 

helps to create an eco-friendly product.   

A limit number of species of fungi has been approved for the use in feed. Proper 

selection of the most adequate species for each new meal becomes difficult (Capolupo & 

Faraco, 2016). Other limitation that occur is the slow growth rate with the need for sterile 

setting. This takes a lot of time and space for desired outcome (Capolupo & Faraco, 

2016). Lastly, the time needed for complete degradation takes days to weeks making it 

not always economically efficient (Mood et al., 2013) 

As discussed earlier, plant-based meals are strong contenders for the replacement 

of fishmeal in fish diets, presuming nutritional improvement be made. SCP is one way to 

improve the nutritional quality of plant-based meals. Kasiga and Brown (2019) showed 

that the use of aerobically converted carinata meal with A. pullulans was able to replace 

25% of the fishmeal before feed consumption was diminished. However, the author did 

note that the limitation of lysine in the replacement meal could have caused the reduction 

in feed consumption.  

 

1.4.3.3 Co-culturing  

In order to continuously improve the nutrient quality of single cell protein the 

application of co-culturing is used. When two or more species are applied such as T. 

reesei and A. niger a synergy occurs in the production of lignocellulosic enzymes 

(Ximenes et al., 2007). When applied individually A. niger had a higher xylan 

saccharification (64%) than T. reesei (48%), while T. reesei had a higher cellulose 
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saccharification (84%) compared to 77% with A. niger. However, when added together 

an expected result of 99% glucose from cellulose and 71% xylose were yielded (Ximenes 

et al., 2007). 

Others have found T. reesei and K. marxianus grown on beet pulp, which has a poor 

amino acid profile normally, had an essential amino acid content comparable to soymeal 

and the FAO reference composition (Ghanem, 1992). Co-culturing of A. flavus with other 

microorganisms has been shown to reduce the fungi production of the mycotoxin 

aflatoxin (Ravindra, 2000). Another benefit of co-culturing is the improved biomass 

yields when compared to their monoculture counterparts (Tesfaw & Assefa, 2014).  

 

1.4.4 Combinations 

With the long list of plant-based biomass substrates available for feed or biofuel 

use, a multitude of combinations are available. The use of physical or chemical 

pretreatment and enzymatic hydrolysis is a popular form of degrading the biomass 

(Suman et al., 2015). A more increasing trend is the use of pretreatment prior to SCP. 
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 -Introduction 

Currently, the projected world population is 9 billion by the year 2050 (Bene et 

al., 2015). With this continuing population growth an increase demand for nutrient rich 

feed source follows. To feed the growing population creative and alternative feed stuffs 

are needed. Fish is widely known to be an important source of protein as well as long 

chain fatty acids that aid in adolescent development and adult health (Larsen, Eilertsen, & 

Elvevoll, 2011). In 2010, the use of fish as a protein source was two times higher than 

poultry and three times higher than cattle (Bene et al., 2015). 

 Due to unsustainable practices many fish stocks are over-exploited or depleted 

(Bene et al., 2015). This finite supply of wild caught fish has led to rapid growth of the 

aquaculture industry as an alternative (Tidwell & Allan, 2001). The rapid expansion of 

the industry has resulted in an increasing need for feed ingredients. The primary protein 

source being fishmeal, which is the by-product left over from fish processing (bones, 

blood, trimmings, etc.) (Stevens et al., 2018). With a high protein content and favorable 

amino acid profile it is widely used for its growth performance (Tidwell & Allan, 2001). 

However, this need for fishmeal has expedited the collapse of the fisheries stock as 

typically wild fish is used to feed farmed stock (Naylor et al., 2000).   

 In order to correct these unsustainable practices, alternatives to wild caught 

fishmeal are required. Several alternatives such as soymeal, insect meal, or algae have 

been suggested (Cummins et al., 2017; Shields & Lupatsch, 2012; Voorhees et al., 2019). 

However, all of these have deficiencies. Insect meal contains a high content of chitin that 

is difficult for the fish to digest (Barroso et al., 2014); when algae is dried and ground it 

becomes very expensive (Borowitzka, 1997). Soymeal is higher in protein than most 
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plant-based meals, but it contains trypsin protease which is classified as an anti-

nutritional factor that is harmful to the animals digestive system (Soetan & Oyewole, 

2009). Many other alternative plant-based meals such as canola meal, sorghum hominy, 

carinata meal have been evaluated for their potential application as protein ingredients 

(Jason R Croat, Berhow, Karki, Muthukumarappan, & Gibbons, 2016; Kasiga & Brown, 

2019; J. D. Zahler, Karki, & Gibbons, 2018).   

 Single cell protein (SCP) is another viable option in the replacement of fishmeal. 

Derived from microorganisms, SCP is a low cost and quickly produced feed (Suman et 

al., 2015). Many added bonuses such as natural sources of vitamins and minerals as well 

as immune boosting cellular components support the high protein content (Ebrahim & 

Abou-Seif, 2008; Portnoy et al., 2016; Suman et al., 2015). Unfortunately, a lack of 

omega-3 fatty acids and low digestibility of the cell wall hinder the stand alone use 

(Richard Mateles & SE Tannenbaum, 1968).  

 As a co-product of the ethanol industry, corn distillers’ grains offer a low-cost 

option for fishmeal replacement. Depending on the processes being used for processing 

the corn grains by ethanol industries, wide range of DDGS is available in the market. 

Based on the level of processing, distillers’ grains can be dried down to remove excess 

water or left wet depending on customer preference. The liquid fraction left over after 

distillation can be dried to create the solubles fraction that is typically added back to the 

meal to create distillers’ grains with solubles (Liu & Rosentrater, 2012). An added benefit 

of the distillers’ grains is the low content of anti-nutritional factors as compared to other 

agricultural commodities such as oilseed meals. The fermentation with yeast and the high 



46 

 

heat used during processing helps in reducing several anti-nutritional factors that the corn 

contains ("Anti-nutitional factors within feed ingredients,"). 

Unfortunately, the usage of DDGS in feed is limited.  The relatively low protein 

content and high fiber as compared to soymeal detract from its value (Diógenes et al., 

2019). The drying step of the process helps to inactivate most of the anti-nutritional 

factors that affect the animal, but the drying process also degrades the essential amino 

acid lysine making it a limiting factor for feed (Liu, 2012). The low lysine can limit 

growth performance in animals (Lumpkins & Batal, 2005). By increasing the protein 

content and decreasing the fiber content the usability of the distillers’ grains can be 

improved. 

Through the combination of both single cell protein and plant-based meals, 

hopefully an alternative feed can be produced. Currently, Gibbons and Brown (2016) 

have successfully been able to produce a commercially available microbially enhanced 

soy-based high protein product for the use in fish feed. Utilizing the same principles, it is 

hoped that the same can be done for distillers’ grains.  

 In order to improve the nutritional quality of the distillers’ grains several 

treatments were attempted. First a fungal fermentation utilizing four types of fungi at a 

varied solid loading rate was tested. All fungal strains used  are generally recognized as 

safe (GRAS)  from the FDA and is known to improve the nutritional quality of other 

meals. The use of multiple solid loading rates during fermentation helped to address the 

economic aspect of large-scale production. Typically, at lower solid loading rate more 

drastic differences are seen in protein and fiber values, but economics of processing does 
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not match. A higher solid loading rate does not see as beneficial of values on the content 

but is more economically efficient. This work is discussed in detail in chapter III. 

     Second, an enzyme saccharifications with cellulase, xylanase, phytase, and 

pectinase was tested. Enzyme saccharification is done to hydrolyze various unwanted 

components. In this case, cellulose, hemicellulose, and phytic acids were targeted. As the 

major component of the cellular structure of the corn, cellulose is high in content and not 

easily digested by monogastric animals who lack the ability to produce a cellulase. 

Hemicellulose that surrounds the cellulose can prevent the cellulose from being degraded, 

but if a hemicellulase is added hydrolysis of the cellulose can be enhanced. Although 

DDGS is not high in phytic acid content, the trace amounts can affect the animal and 

pollute the water. Therefore, our study focused on identifying the optimal enzyme 

dosages and enzyme types by conducting series of experiments using enzymes 

individually and in combination. These results can be found in chapter IV.  

 Based upon the previously mentioned work, down selecting for use with extruded 

DDGS was tested using four fungal fermentations at higher solid loading rates and six 

enzymatic hydrolysis treatments separately. Finally, the combined use of N. crassa and 

enzyme mixture was tested on unextruded and extruded DDGS. All these results can be 

found in chapter V.  
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 – Fungal Fermentation of DDGS at varied solid loading rates 

Abstract 

With the increasing demand for renewable energy, corn ethanol had been 

developed to fill the need. As a result of corn ethanol production, dried distillers’ grains 

with solubles (DDGS) has become an inexpensive feed for several animal species. 

However, due to the presence of high amount of fibers and low protein content of DDGS, 

it’s use in the animal diet is limited to less than 30% on dry basis. In this study, fungal 

metabolic process was used to determine if nutritional composition of DDGS could be 

improved by increasing the protein levels and reducing the fibers and phytic acid content 

in the DDGS. Four different fungal strains [T. reesei (NRRL-3653), N. crassa (NRRL-

2332), R. oligosporus (NRRL-2710), and A. pullulans (NRRL-Y- 2311-1)] at three solid 

loading rates (SLR) (5%, 10%, and 20%) were tested. The protein titers ranged from 35 

to 37% irrespective of the microbes used. As expected, protein titers were slightly 

decreasing with the increase in SLR. The crude fiber content was increased as compared 

to that of the un-inoculated control due to the concentration effect. Whereas phytic acid 

level was decreased in the fermented DDGS as compared to that of the control. Among 

all the strains evaluated, the N. crassa at 20% SLR and A. pullulans at all levels of SLRs 

were effective in reducing the level of fibers and phytic acid respectively. The study 

showed that fungal fermentation at higher SLRs (20%) can be conducted without having 

any adverse effect on the overall composition of DDGS.    
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3.1 Introduction: 

The ever-growing demand for renewable energy sources has led to corn ethanol 

becoming one of the most important alternatives to gasoline (Liu, 2011). This increase in 

ethanol production has also resulted in an increase production of distillers’ grains, which 

have become a major feed additive for many different livestock species (Magalhães et al., 

2015). Dried distillers’ grains with solubles (DDGS) is primarily composed of cellulosic 

fibers (cellulose, hemicellulose), proteins, residual oil, and essential minerals (Belyea et 

al., 2004). Despite being nutrient rich byproduct its usage in the animal feed is limited to 

only ~30% (Stein, 2008). The monogastric animals such as pig, poultry, and fish lack the 

fiber degrading enzymes necessary for digesting the fiber present in DDGS (Choct, 

2015). Another factor limiting the use of DDGS for animal diet, is the presence of phytic 

acid. Phytic acid is an organic salt containing a 6-carbon ring with phosphates attached to 

each carbon, this structure leaves the phosphate in an unusable form (Yao et al., 2012). 

Although phytic acid is present in DDGS at low concentrations, it reduces the nutrient 

availability in animal diet (Cheng & Hardy, 2004). Additionally, due to the lack of 

phytase enzyme in the monogastric animals, phytic acid is not fully digested, hence its 

excreted in the environment (Fox & Tao, 1989). The high amount of residual phosphorus 

in the water system leads to the water pollution causing algae blooms (Cheng & Hardy, 

2004; Ketola & Harland, 1993).  

Fungal fermentation has been used for centuries for many different processes 

(Pandey, Soccol, & Larroche, 2008). Currently, several investigators are using fungal 

fermentation to enhance the value of agricultural byproducts such as canola meal, 

soybean meal, wheat straw, food waste, and industrial waste water (J. R. Croat et al., 
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2017; Gibbons & Brown, 2016; Pensupa, Jin, Kokolski, Archer, & Du, 2013; Pleissner, 

Kwan, & Lin, 2014; J. Zahler, Karki, Isaac, & Gibbons, 2018).  Byproducts of 

agricultural processing tend to have variable composition; therefore, it is critical to 

optimize processing conditions for each feedstock. Two important factors are the 

microorganism and solid loading rate used in the process. A screening process can be 

used to select the best performing microorganism for a specific feedstock (Sandhya, 

Sumantha, Szakacs, & Pandey, 2005; Subramaniyam & Vimala, 2012). Similarly, one 

should also determine the optimum solid loading rate for the process to be commercially 

viable. Solid loading rate is the ratio of substrate to water in the conversion process. 

Higher solid loading rates can minimize production costs, but may adversely impact 

microbial performance (Sandhya et al., 2005).   

In this study the effect of four fungi on DDGS was accessed; crossed with three 

different solid loading rates for the concentration of protein, fiber, and phytic acid. 

Combinations of fungi and SLR were tested daily for 120-hour trials. The goal is to be 

able to determine the optimum loading rate along with the optimum fungal strain for the 

most efficient product. Using biological methods such as microbes which produce 

enzymes, DDGS’s fiber and phytic acid content should be reduced. In reducing negative 

factors of the meal, efficiency of the animals’ digestion should improve helping the 

overall nutrition of the animal.   

 



51 

 

3.2 Materials and Methodology: 

3.2.1 Distillers dried grains with solubles (DDGS): 

DDGS was obtained from the Dakota Ethanol plant (Wentworth, SD). The DDGS 

samples were then stored in a plastic container at room temperature until use. 

 

3.2.2 Submerged fermentation: 

3.2.2.1. Microorganisms tested: T. reesei (NRRL-3653) (pH 5), N. crassa (NRRL-2332) 

(pH 5), R. oligosporus (NRRL-2710) (pH 5), and A. pullulans (NRRL- 2311-1) (pH 3). 

All strains were obtained from the culture collection at USDA ARS. 

 

3.2.2.2. Inoculum preparation: Cultures on PDA plates were transferred to GYE and 

incubated 48 h at 150 rpm and 30°C in a shaker (New Brunswick Scientific Excella, E24 

rotary shaker, Edison, NJ, USA) 

 

3.2.2.3. DDGS slurry preparation: Dried DDGS (from Dakota Ethanol Wentworth, SD) 

was ground through a 1 mm screen. The ground DDGS was mixed with DI water to 

achieve 5%, 10%, and 20% w/v solid loading rate (SLR) on a dry matter basis, and 100 

ml volumes were placed in 250 ml flasks. The pH was adjusted with 3.6M H2SO4 to the 

optimal level for each fungus. Flasks were foam stoppered and autoclaved at 121°C for 

20 min. 

 

3.2.2.4. Inoculation and incubation: Eighteen flasks were inoculated with 1 ml of fungal 

broth for each fungal strain. Flasks were incubated at 30°C and 150 rpm for 120 h. 
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3.2.2.5. Sampling: At 0, 24, 48, 72, 96, and 120 h, three random flasks were withdrawn 

from the shaker for each fungus. The complete flask contents were quantitatively 

transferred into 250 ml centrifuge tubes, which were then centrifuged for 10 min at 20°C 

and 4,000xg.    

 

3.2.2.6. Sample processing: The supernatant was checked for pH, volume measured, and 

then dried to a constant weight in an 80°C oven. These solids were subjected to protein 

analysis.  

 

The solids were dried to a constant weight in an 80°C oven before being subjected to 

protein, fiber, and phytic acid analysis.  

 

3.2.3 Analytical assays: 

3.2.3.1.Protein determination using a LECO FP-528 instrument (LECO Corp., St. 

Joseph, MI, USA). This method uses the Dumas Method according to the official method 

approved by AOAC international. A sample is started by weighing out 0.25 ± 0.001g. 

The sample is then dropped in to a 900˚C furnace causing the sample to combust 

releasing the nitric oxide from the amino acids which is then pushed through a reduction 

tube filled with copper. The reduction then produced the nitrogen gas which is then sent 

to a gas chromatograph where the nitrogen content is quantified. The conversion factor of 

6.25 is used. Finally, proteins are displayed using dry basis after moisture correction 
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(Sweeney & Rexroad, 1987). Pellet fraction samples were run in duplicate for each of the 

replicates. Supernatant fractions were run individually for each of the replicates.  

 

3.2.3.2. Phytic acid analysis using Megazyme kit. Analysis begins with an extraction on 

one gram of solid using a 0.66M HCl stirring for overnight, after neutralization with 

0.75M NaOH, a phytase and alkaline phosphatase with supplied buffers are added to 

cleave the phosphorus from the phytic acid and myo-inositol phosphate. Incubation for 

the individual enzymes is conducted at 37˚C for 10 and 15 minutes respectively. The 

enzymatic reactions are stopped by the addition of 50% w/v trichloroacetic acid. The 

freed phosphorus is then used in a color determination with ammonium molybdate and 

sulfuric acid/ ascorbic acid mixed at a 1 to 5 ratio. Samples are then incubated for one 

hour at 37˚C before reactions are read on a microplate reader at 655nm (Megazyme, 

2017). Replicates were run individually.  

 

3.2.3.4. Fiber Analysis was conducted at the Agricultural Experiment Station Chemical 

Laboratories at the University of Missouri-Columbia. Due to limited quantity of solids in 

the 5% all combinations were pooled for analysis and conducted in duplicate. Crude fiber 

was conducted according to the AOAC official method 978.10 2006. Neutral detergent 

fiber (NDF) test for the cellulose, lignin, and hemicellulose in the sample while acid 

detergent fiber (ADF) test for cellulose and lignin. Analysis were conducted according to 

JAOAC v. 56, 1352-1356, 1973 for NDF and AOAC official method 973.18 (A-D), 2006 

for ADF. 
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3.2.4 Statistical analysis: 

Data were analyzed using a combination of Microsoft Excel® and R studio 3.5.0 

(Vienna, Austria) with downloadable packages.  

 

3.3 Results and Discussion: 

Four fungal strains were grown on three different solid loading rates under 

submerged incubation conditions. Each replicate was done in 250 ml Erlenmeyer flasks 

while being shaken. These trials were meant to aid in down-selecting for optimal fungus 

and solid loading rate. Total protein, fiber (crude, NDF, and ADF), and phytic acid 

content was tested for each of the trials. 

 

3.3.1 Proximate composition of the DDGS 

Proximate composition of the DDGS prior to any experimental test are listed in 

Table 3.1. DDGS is moderately low in crude protein at 29.98%, with higher crude fiber at 

7.8%.  The NDF and ADF were 24.21% and 10.85% respectively. Crude fat was 10.89% 

with ash at 4.43%. Overall composition of the DDGS is very similar to that of reported in 

the literature by (Belyea et al., 2004) 

Table 3.1 Proximate analysis of Dakota Ethanol (Wentworth, SD) DDGS 

Component Percentage (%) (db) 

Dry Matter 89.80 
Moisture 10.20 
Crude Protein 29.98 
Crude Fiber 7.80 
NDF 24.21 
ADF 10.85 
Crude Fat 10.89 
Ash 4.43 
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3.3.2. Protein content of the DDGS after fungal fermentation 

 Figure 3.1 represents the protein content of the uninoculated control. Since two 

fractions were obtained from the process, line and bar diagram respectively represents the 

protein titers of the liquid and solid fractions. The protein titers of the solid fractions are 

increased due to removal of the soluble components presents, primarily small 

carbohydrates. During the submerged fermentation, mixing the solids in water followed 

by the autoclaving and further mixing for several days helps in concentrating the protein 

and fibers in the solids. 

In each of the sampling times the 5% SLR had significantly higher content. This 

is because high degree of mixing can be achieved at lower SLRs. A lower ratio of solids 

to liquids will result in more kinetic energy removing the solubles. Therefore the 5% and 

the 20% were significantly different at each time point. Protein content of the supernatant 

protein stayed relatively steady. The small particles unable to hold in the pellet account 

for the protein content of the supernatant. 

 

Figure 3.1 Mean values for uninoculated protein titer at each sampling point.  
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Groups of bars for each sampling point with same letter above are not significantly different at p<0.05. 

T. reesei inoculated flasks are shown in Figure 3.2. The same solubilization effect 

can be seen in the 0h samples when compared to the 0h control in Figure 3.1. However, 

by the 24h the protein was beginning to appear in the supernatant. This increase in 

protein content of the liquid fraction is attributed to the metabolization of the proteins by 

the fungal strains. The decrease in the 5% is most likely due to freeing of protein into the 

supernatant. This is reciprocated in the supernatant protein. This trend continued until the 

72h samples. In the 48h protein the 5% becomes the lowest, although not statistically 

significant, but at 72h the difference between 5% 10 and 20% becomes significant. At 

96h there is no difference but there is an increase from 0h to 96h protein in the 20% 

pellet. Finally, at 120h the 5% was lowest with the highest supernatant protein, followed 

by the 20%. Whereas the 10% have the highest protein. 

 
Figure 3.2: Mean values for T. reesei protein titers at each sampling point.  

Groups of bars for each sampling point with same letter above are not significantly different at p<0.05. 
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Figure 3.3 shows the pellet and supernatant protein of the N. crassa trials. The 

solubilization effect is seen in the 0h and 24h samples with the 20% being the lowest at 

those times. After 48h the protein begins to increase in the 20% while the 5 and 10% 

decrease. At 120h, the 5% decreased more making it the lowest protein content; 10% 

began to increase, but 20% was the highest. For the supernatant the 0h points were more 

spread out than any other species; this could be due to sticky supernatant composition. 

The values begin to group together at 24h but diverge at 48h. Lowest protein content for 

all samples after 48h was the 20% which reinforces the solubilization effect. The 10% 

showed a steady increase in protein up to 120h which ended at a higher content than the 

pellet. This is due to some of the fungus not being held in the pellet after centrifugation, 

the mycelium of the fungi did not pellet well which resulted in it being removed with the 

supernatant.  

Figure 3.3: Mean values for N. crassa protein titers at each sampling point.  

Groups of bars for each sampling point with same letter above are not significantly different at p<0.05. 
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R. oligosporus trials are shown in Figure 3.4. The solubilization effect is seen in 

the 0h and 24h samples. At 48h, the 5 and 10% decreased from the 0h while the 20% was 

increasing. The same trend follows in the 72h. At 96 hour all samples were equal 

independent of SLR. In 120h, the 5% was higher than the 96 h, but lower than the 0h, 10 

and 20% increase in comparison to every hour. The supernatant was well grouped  

together at the 0h but began to split by the 24h samples. The lower the SLR the higher the 

protein level in the supernatant. This could be due to the fungus freeing protein.   

 

Figure 3.4: Mean values for R. oligosporus protein titers at each sampling point.  

Groups of bars for each sampling point with same letter above are not significantly different at p<0.05. 
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The trend continued at 96h and 120h with the 5% decreasing and the 10 and 20% staying 

the same.  

 

Figure 3.5: Mean values for A. pullulans 2311 protein titers at each sampling point.  

Groups of bars for each sampling point with same letter above are not significantly different at p<0.05. 
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acid content as compared to T. reesei and R. oligosporus.  N. crassa and A. pullulans 

2311 showed no significant difference in phytic acid levels. According to Johnson and 

Tate (1970), N. crassa has been known to produce phytase which would result in the 

reduction of phytic acid irrespective of the solid loading rate. When comparing the A. 

pullulans to the N. crassa a similar patterned occurred which may suggest a phytase 

production in the A. pullulans strain. T. reesei showed increasing levels of phytic acid 

respective of the solid loading rate at the 120h time point. Currently, there is no research 

stating T. reesei produces a phytase which would result in this build up. R. oligosporus 

was significantly different at each loading rate. R. oligosporus however is known to 

produce a phytase according to Fardiaz and Markakis (1981). They showed a 60-65% 

hydrolysis of the phytic acid into inositol and inorganic phosphorus at 72h of 

fermentation. A significant increase in the amount of inositol is seen between the 

uninoculated and the R. oligosporus peaks after fermentation.  

 

Figure 3.6: Mean values of phytic acid content at 120 h of incubation   

Groups of bars for each sampling point with same letter above are not significantly different at p<0.05. 
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One explanation for the difference between these samples and the Fradiaz and 

Markakis may be the detection of the inositol in the sample. If the R. oligosporus is 

breaking down the phytic acid into myo-inositol we may be seeing this in our grain. The 

Megazyme assay is designed to test for phytic acid, but also can detect the amount of 

myo-inositol. In order to test this hypothesis. The samples were rerun using the alkaline 

phosphatase in both the free and the total tube as suggested on the kits FAQs link 

(Megazyme, 2016). This would allow for only the phytic acid to be detected in the 

sample. When the samples were rerun according to manufacture recommendations the 

5% SLR showed no phytic acid in the sample. The 10 and 20% SLR showed 0.1609±0.05 

and 0.0593±0.03 phytic acid respectively. The difference between the original value and 

the new value would equal the myo-inositol in the sample.  

 Although a lower phytic acid level is seen in the R. oligosporus samples, 

alternative forms of phosphorus storage do not limit concerns of water pollution (Turner 

et al., 2002). When down selecting for fungal strains to limit eutrophication selecting a 

strain able to process many forms of phosphate storage is important. 

 

3.3.4 Change in fiber composition due to fungal fermentation  

The crude fiber, NDF, and ADF after 120 h fermentation are shown in Table 3.2. 

The initial SLR content had significant impact on the crude fiber and NDF content of 120 

h fermented solids. For example, the crude fiber content of A. pullulans treated DDGS at 

5% SLR was 13.47 whereas at 20% SLR it was 9.11% (Table 3.2). This was likely due to 

the solubilization effect seen in the protein and phytic acid analysis. Whereas, with ADF 
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content there was no significant correlation observed between the SLR and ADF content 

of fermented DDGS. 

 Due to the necessity for the fungi to survive, smaller components of the slurry are 

broken down first which results in the concentration of the fiber components in some 

cases. This is seen in the crude fiber comparisons of corresponding SLR of uninoculated 

to each of the fungi. This correlates to what have been previously published in fungal 

fermentation of meals (J. R. Croat et al., 2017).  All crude fiber increased significantly 

except for the N. crassa at all three solid loading rates. Furthermore, an intra species 

significance for N. crassa and R. oligosporus at three different SLR can be seen, while 

the other two species and uninoculated control were only different at the 5% SLR. This 

shows that the SLR can affect the ability of the fungi to concentrate or degrade the crude 

fiber components. Concentration effect is least at high SLRs.  

Depending on what enzyme the fungi can produce, the different components of 

the DDGS will be degraded. The hemicellulase producing fungi will have lower NDF 

concentration whereas the cellulase producers will have lower NDF and ADF 

concentrations (2018). It is known that T. reesei is a strong producer of the cellulase 

enzyme (Nevalainen, Suominen, & Taimisto, 1994) however it was not significantly 

different from the control in the NDF or ADF fibers for all SLRs; suggesting no or 

minimal production of cellulases by the T. reesei on DDGS. 

N. crassa was not significantly different at the varied SLR in the NDF 

concentration, but it was significantly different when the respective SLR are compared to 

the uninoculated control. According to Znameroski et. al, (2012) most of the species of N. 

crassa produce a hemicellulose that is upregulated when grown in the presence of 
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lignocellulosic material such as DDGS (Znameroski et al., 2012). This would cause an 

insignificant difference independent from the hemicellulose concentration but allow for 

the difference after fermentation. A significant difference is also seen within varied SLR 

in the ADF concentration, but not with the respective SLR uninoculated control. Most 

likely explanation for this is the N. crassa is producing a cellulase, which causes the 

difference with in the varied SLR, however with the fermentation a concentration effect 

of all the materials is happening. The least soluble fractions are being left behind which 

would include the cellulose and the lignin structure. It is important to note that crude 

fiber, NDF, and ADF of the 20% N. crassa fermentation are statistically the lowest 

concentration of each respective form.   

R. oligosporus was the only fungi to have an intra species significance at the 

varied SLRs with NDF concentrations but is not significantly different from the 

uninoculated control. In fact, the 5% is higher in concentration than the 5% control. This 

would suggest a concentration effect again. Absolutely, no significance was seen in the 

ADF R. oligosporus fermentation in comparison to the varied solid loading rate or 

fermentation by another fungi. R. oligosporus species are known to produce several 

enzymes, but hemicellulase and cellulases have not been observed.   

The A. pullulans strain used within this study is known to produce several 

hemicellulases such as xylananses (Christov, Myburgh, O'Neill, Van Tonder, & Prior, 

1999) and arabinosidase (Myburgh, Prior, & Kilian, 1991). No significant difference was 

seen at the varied SLR within the species for the NDF fractions. This suggest a 

production of the hemicellulase is independent of the hemicellulose concentration. T.D 

Leathers saw an overproduction of xylanase in the Y-2311-1 strain of A. pullulans 
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(Leathers, 1986) which is consistent with the results. Furthermore, a significant reduction 

in the hemicellulose between the uninoculated and the A. pullulans fermented DDGS is 

seen. This is more evident of the production of hemicellulases by A. pullulans. One 

reason for the over production of xylanases could be to free the sugars from the xylose to 

be utilized for the production of pullulans (Duan, Chi, Wang, & Wang, 2008). 

The 5 and 20% SLR were significantly different in the ADF concentration within 

the species, with the 5% being lower in concentration. This could be the result of the 

cellulose being freed during the hemicellulose hydrolysis which would result in the 

cellulose being washed away with the supernatant removal. A concentration of the non-

soluble cellulose would account for the higher content in the higher SLRs. Several studies 

have lacked evidence of the natural production of a cellulase by A. pullulans and this 

strain in particular (Zhenming Chi et al., 2009). This is also further supported by the 

significant difference in the ADF concentration of the uninoculated vs the A. pullulans 

fermented DDGS. 
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Table 3.2: Fiber content of combination after 120h of submerged fungal 

fermentation. 

 SLR Crude Fiber NDF ADF 

Control 5 9.37 ± 0.05 b, DE 39.24 ± 0.00 a, JK 19.75 ± 0.00 a, ABCDE 

Control 10 8.52 ± 0.25 a, AB 39.30 ± 0.54 a, GHI 19.45 ± 1.14 a, ABC 

Control 20 8.12 ± 0.11 a, A 38.56 ± 1.22 a, DEFGHI 19.22 ± 0.06 a, ABCD 

T. reesei 5 12.92 ± 0.36 b, FG 41.97 ± 0.38 b, IK 24.66 ± 0.21 b, DEF 

T. reesei 10 9.44 ± 0.24 a, CDE 35.77 ± 0.09 a, CGHJ 23.48 ± 0.20 b, BCDEF 

T. reesei 20 8.76 ± 0.12 a, BCD 37.35 ± 0.93 a, DEFGH 20.65 ±0.66 a, CDEF 

N. crassa 5 11.42 ± 0.06 c, EFG 36.52 ± 2.14 a, BCFGH 17.84 ± 0.44 ab, AB 

N. crassa 10 9.85 ± 0.13 b, BCD 34.16 ± 1.13 a, ADE 15.22 ± 0.32 a, A 

N. crassa 20 7.80 ± 0.16 a, ABC 30.37 ± 2.33 a, A 19.82 ± 1.29 b, A 

R. oligosporus 5 13.03 ± 0.72 c, G 42.15 ± 0.15 c, HIJK 22.60 ± 1.43 a, ABCDEF 

R. oligosporus 10 10.80 ± 0.14 b, DEF 35.72 ± 0.12 b, ABCDEFG 19.66 ± 0.40 a, ABCDEF 

R. oligosporus 20 8.84 ± 0.08 a, BCE 33.68 ± 0.19 a, ABCDEFG 19.66 ± 0.24 a, ABCDEF 

A. pullulans 5 13.47 ± 0.21 b, G 38.97 ± 4.57 a, EGH 22.08 ± 0.98 a, F 

A. pullulans 10 9.80 ± 0.06 a, DE 31.81 ± 1.11 a, ABDF 23.46 ± 0.17 ab, DEF 

A. pullulans 20 9.11 ± 0.03 a, BCD 33.37 ± 0.38 a, ABC 25.13 ± 0.18 b, EF 
Mean value of fiber percentage sharing same superscript letter within the column are not significantly 
different at α < 0.05. Lower case letters are comparing effect between solid loading rate for same fungi, 
whereas, the capital letters are comparing all treatments for respective fiber analysis. 
 

3.4 Conclusion 

Fungal fermentation when performed at optimal solid loading rates can help in 

fine tuning the overall process for maximum yield and efficiency. In this study, fungal 

fermentations using four strains, each at three levels of solid loading rates resulted in the 

solid fractions with concentrated level of proteins and fibers. However, maximum 

solubilization effect was observed at the low SLRs, irrespective of the fungal strains 

used. Effectiveness of fungal strains in improving the overall composition of the DDGS 

varied depending on the parameter tested. For example, all strains performed equally on 

protein levels; while maximal fiber and phytic reduction was achieved with N. crass and 
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A. pullulans respectively. The results obtained indicated that further fiber degradation 

could be achieved by pretreating the DDGS prior to fungal fermentation and/or co-

culturing the DDGS with two or three different fungal strains may improve the degree of 

fiber reduction. 
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 – Evaluating efficiency of commercial enzymes in improving the 

composition of DDGS for feed application 

Abstract 

 The goal of this study was to determine the optimal dosage of enzyme to degrade 

the various fractions of the distillers’ grain such as cellulose, hemicellulose and phytic 

acid. Utilizing a submerged state condition, enzymes were added to the DDGS to 

hydrolyze targets. Trials were conducted using 10% solid loading rate for the ground 

meal with BIO-CAT cellulase, xylanase, phytase, and pectinase enzymes. Although only 

phytase is designed to target phytic acid, all four enzymes had some effect on the level of 

phytic acid, showing that by degrading fibers, the phytic acid can be removed. Utilizing 

the synergistic effect of the xylanase to the cellulase aided in the reduction of fibers. 

However, when hydrolysis was extended for too long, a solubilization effect was seen 

that increased the insoluble fibers.  

 

4.1 Introduction 

 Corn dried distillers’ grain with solubles (DDGS) has become a feed component 

in several animal’s diets. As a by-product of the plant-based ethanol industry, certain 

unwanted residues are a part of the feed (Lim & Yildirim-Aksoy, 2008). Some of these 

include, a high fiber content, lack of essential amino acid, and lower protein levels. The 

high fiber content can reduce digestibility and prevent availability of essential nutrients 

when included in the animal diet (Stein, 2008). Several  different methods have been 

developed in an attempt  to reduce the level of  unwanted residues. Some studies have 

previously reported the use of physical, chemical and biological pretreatment methods to 
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enhance the nutritional profile of DDGS (E. L. Baldwin, 2017; Bals et al., 2006; Dien et 

al., 2008; Nghiem, Montanti, & Kim, 2016). Among these pretreatment methods, adding 

enzyme directly in to the feed the digestion process is commonly used practice by the 

animal feed industry (Diógenes et al., 2019; Ndou et al., 2015; Tsai et al., 2017). 

However, this process is limited by the several factors and therefore, not completely 

effective. For example,  following factors may influence the enzymatic hydrolysis 

process; i) if the enzymes were to be added into a pelletized form, the heat from the 

extrusion process may inactivate the enzymes; ii) secondly, enzyme activity may be 

reduced during the extended feed storage period; iii) animal digestive system may not be 

appropriate to achieve the optimal enzyme activity (pH, temperature) (Eeckhout & De 

Paepe, 1994; Yang, Beauchemin, & Rode, 1999) .  

 Cellulose and xylan are two major components of the DDGS. Since the yeast used 

during corn-ethanol fermentation lacks cellulases enzyme complex, thus these 

components are concentrated in the DDGS (Liu, 2011; Zijlstra, Owusu-Asiedu, & 

Simmins, 2010). Using a cellulase and xylanase for hydrolysis prior to feed can help to 

reduce the level of  these components (Zijlstra et al., 2010). Other studies have shown 

that the inclusion of a pectinase can help solubilize other residual components (Dien et 

al., 2008). Also included in this experiment is a phytase. Although it is known that the 

yeast reduces the amount of phytic acid in the meal, the further reduction can help in 

reducing water eutrophication by phosphorus due to excretion by animals (Andlid, Veide, 

& Sandberg, 2004; Turner et al., 2002). Li and Robinson found that the cost associated 

with the addition of a phytase compared to the supplementation with inorganic 

phosphorus were almost equal (1997) 
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 Currently, several feeds utilize the enzyme during the digestion process of the 

animal however several inefficiencies have been identified. Typically feed is prepared 

with the enzyme premixed, but due to the instability of the enzymes at high temperatures 

the process of addition becomes complex and costly (Velmurugu Ravindran & Son, 

2011). Environmental conditions such as optimal temperature and pH of the digestive 

system can result in varied efficiencies of the enzyme among animals (Hardy, 2000).  

To minimize the loss of activity or inefficiency, enzymes are being used as a type 

of pretreatment. Some methods have looked at individual enzymes while others look at 

the combinations. Berlin et al. (2005), saw a heavy dependence on the amount of 

cellulose broken down based upon the addition of a β-glucosidase, which also contained 

xylanase help to improve the cellulase hydrolytic ability on soft and hard wood with 

steam pretreatment. Others look at the effect of adding the enzyme at the same time 

versus adding at staggered times (Hu et al., 2011). They saw that when a cellulase and a 

xylanase were added at the same time to pretreated corn stover a synergistic effect that 

amplified the breakdown of the cellulose within the substrate.  A third consideration of 

enzyme pretreatment is the dosage rate at which the enzymes are used. Although a higher 

dosage of enzyme will produce a higher yield, an economical approach must also be 

evaluated (E. Baldwin et al., 2018).    

In this study different enzymes types (cellulase, xylanase, pectinase, and 

phytases) were tested for their ability to reduce unwanted components of the meal. The 

enzymes were first test individually at different dosage rates followed by in combination. 

Testing dosages will help to determine the most efficient yet economical method for 
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improvement. Through this we hope to gain insight into the ways to improve the DDGS 

prior to feed applications. 

 

4.2 Methodology: 

4.2.1 Feedstock: 

DDGS was received from Dakota Ethanol (Wentworth, SD) and was ground through a 1 

mm screen using Knife mill (Retsch; Haan, Germany). The ground DDGS was then 

stored in air-tight bucket at room temperature until use. 

 

4.2.2 Enzymes:  

The enzymes used in this study Cellulase 200,000 FPU/g (pH 5.0), Pectinase 1,000 PG/g 

(Ph 3.5), Phytase 1,000 FTU/g (pH 5.5), and Xylanase 100,000 XU/g (pH 5) were 

purchased from BIO-CAT (Troy, VA). All enzymes were received as a powder and 

sealed to prevent contamination by moisture and air. The protein content of the enzymes 

as tested using a LECO (FP-528 instrument, LECO Corp., St. Joseph, MI, USA) were 

42.52%, 1.75%, 1.67%, and 8.86% on dry basis respectively for cellulase, pectinase, 

phytase, and xylanase. The enzymes were loaded based on the protein content of the 

enzymes per dry gram of biomass (mg protein/dry gram of DDGS). All the enzymes were 

stored at room temperature. 

Table 4.1 Enzyme utilized 

Enzyme Activity Optimal pH Protein Content (%, db) 
Cellulase 200,000 FPU/g 5 42.52 
Xylanase 100,000 XU/g 5 8.86 
Pectinase 1,000 PG/g 3.5 1.75 
Phytase 1,000 FTU/g 5.5 1.67 
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4.2.3 Enzymatic saccharification of DDGS slurry: 

4.2.3a Enzyme saccharification using individual enzymes  

For the saccharification trials, 250 ml Erlenmeyer flask with 100 ml working volume and 

10% solid loading rate (SLR) on a dry matter basis was used. The pH was adjusted with 

3.6M H2SO4 and 10M NaOH to the optimal level for ach enzyme. Flasks were foam 

stoppered and autoclaved at 121°C for 20 min. The enzymatic saccharification was 

conducted at various enzyme levels (0.5, 0.75, 1, and 2 mg of protein/g of solids). 

Enzyme dosages are based on the total protein content of the enzymes. Since the BIO-

CAT enzymes are in the powder form, calculated amount of the enzymes was first 

dissolved into the sterilized water and 1 ml of each was added to the DDGS slurry using 

sterile pipette. Flasks were incubated at 55°C and 200 rpm for up to 24 h.  At 0, 2, 4, 6, 8, 

20, and 24 h, three random flasks were withdrawn from the shaker for each sampling 

point. The complete flask contents were quantitatively transferred into 250 ml centrifuge 

bottles, which were then centrifuged for 10 min at 20°C and 10,000 rpm.    

 

4.2.3b Enzyme saccharification using enzyme combinations  

As mentioned in the section 2.3a; series of saccharification trials were conducted using 

the enzyme mixtures. Where two or more enzymes were added at different dosages. The 

list of the enzyme combinations used in this study is presented in Table 4.2. 
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Table 4.2 Enzyme combinations with corresponding denotation (mg of protein/ g of  

Solid) 

 

 

Cellulase 

dosage 

Xylanase 

dosage 

Phytase 

dosage 

Pectinase 

dosage 

A 1 1 - - 
B 1 1 1 - 
C 0.5 1 - - 
D 0.5 0.5 0.5 - 
E 0.5 1 0.5 - 
F 0.5 0.5 0.5 0.5 
G 1 1 1 1 
H - 1 1 1 
I - 0.5 0.5 0.5 
J 1 - - 1 
K 0.5 - - 0.5 
L 1 - 1 - 
M 0.5 - 0.5 - 
N 0.5 0.5 - - 

 

4.2.4 Sample processing:  

The supernatant volume was measured, 10 ml for HPLC sample removed, and 

then dried to a constant weight in an 80°C oven. Samples were boiled for 10 min to 

ensure inactivation of enzyme. Tubes were then transferred for centrifugation at 10, 000 x 

g for 10 min and frozen. After freezing, samples were thawed and centrifuged again at 

10,000 x g for 10min, then transferred to a 2 ml microcentrifuge tube and refrozen. 

Samples were rethawed and filtered through a 0.2-micron syringe filter and stored frozen 

until analysis 

 

The solids were dried to a constant weight in an 80°C oven. The solids were then 

subjected to fiber and phytic acid analysis. 
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4.2.5 Analytical Assays: 

4.2.5a) Phytic acid analysis using Megazyme kit.  

Analysis begins with an extraction using 0.66M HCl and one gram of sample 

stirring overnight. Neutralization with 0.75M NaOH is used after the overnight spin. Two 

simultaneous reaction were conducted labeled a free and total phosphorus with the 

difference being the addition of enzymes to the total phosphorus reaction. Phytase and 

alkaline phosphatase with supplied buffers are added separately to cleave the phosphorus 

from the phytic acid and myo-inositol phosphate. Incubation in a water bath for the 

individual enzymes is conducted at 37˚C for 10 and 15 minutes respectively. 

Trichloroacetic acid 50% w/v is added to stop the enzymatic reaction. Quantification of 

the phosphorus is done by colorimetric determination with ascorbic acid/sulfuric acid and 

ammonium molybdate in a 5 to 1 ratio. One ml of sample is mixed with 0.5 ml of color 

reagent and incubate for one hour at 37˚C, then read at 655nm on microplate reader 

(Megazyme, 2017). Replicates for each combination at 24 hours were ran individually. 

 

4.2.5b: Fiber analysis  

Fiber analysis was conducted by the University of Missouri Columbia 

Agricultural Experiment Station Chemical Laboratory (Columbia, MO) using standard 

protocol. Fiber analysis included, crude fiber, acid detergent fiber (ADF) and neutral 

detergent fiber (NDF). 
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4.2.5c: Carbohydrate analysis using HPLC 

HPLC analysis was used to measure residual sugars. Analysis was conducted on 

an Aminex HPX-87P column (Bio-Rad, Hercules, CA, USA) on a HPLC system (Agilent 

Technologies, Santa Calara, CA) equipped with refractive index detector (Model 

G1362A). Deionized water (18.2Ωm) was used as mobile phase at flow rate of 0.6 

ml/min and column temperature of 85 °C. Sugars such as cellobiose, glucose, xylose, 

galactose, arabinose, and mannose were quantified using HPLC system. 

 

4.2.6 Statistical analysis: 

Statistical analysis was conducted using a combination of Microsoft Excel® and 

R studio 3.5.0 (Vienna, Austria) with downloadable packages. 

 

4.3 Results and Discussion: 

DDGS was treated with one or more enzymes either individually (16 trials) or in 

combination (14 trials) to test their effectiveness. All trials were conducted in 250 ml 

Erlenmeyer flasks while being shaken at optimal temperatures for optimal enzyme 

activity. Trials were designed in order to aid in identification of optimal dosage levels 

and enzyme synergy. Fiber (crude, NDF, ADF), phytic acid, and total sugars were tested 

for each of individual dosages and combinations.   

Proximate analysis was conducted prior to experimental trials as shown in Table 4.3. The 

meal was moderately low protein (29.98%) and high crude fiber (7.8%) when compared 

to soymeal (52.6% and 3.86% respectively) (Long & Gibbons, 2012). NDF of 24.21% 
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and ADF of 10.85% was present; while a crude fat and ash were found to be 10.89% and 

4.43% respectively. 

Table 4.3 Proximate analysis of DDGS 

Component Percentage (%) (db) 

Dry Matter 89.80 
Moisture 10.20 
Crude Protein 29.98 
Crude Fiber 7.80 
NDF 24.21 
ADF 10.85 
Crude Fat 10.89 
Ash 4.43 

 

4.3.1 Individual enzyme effect on phytic acid and fiber 

Cellulose is a major component of the cellular structure. Addition of cellulase can 

break down the β-1,4 linkages of the cellulose. As cellulose is a tightly packed structure 

that can hold on to extra cellular components such as phytic acid (Steadman, Burgoon, 

Lewis, Edwardson, & Obendorf, 2001). When the cellulose is degraded the phytic acid is 

released which can lower its content. At higher dosages of cellulase, a significant 

reduction of phytic acid is seen when compared to the control as shown in Figure 4.1A. 

Figure 4.1B displays the fiber results for the four dosages of cellulase at 4 and 24 h of 

saccharification. Crude fiber utilizes the Weende method to determine its value. The 

moisture, ash, protein, and fat are first subtracted from the cell contents leaving behind 

the carbohydrate portion. The carbohydrate fraction is determined by extraction that 

removes the free sugars, starch, protein, and saccharides using an acid and base. This 

extraction also removes up to 80% of the hemicellulose and 50 to 90% of the lignin. This 

value then becomes underestimated as to the total indigestible fiber (Foss, 2018). Crude 

fiber showed little difference between the 4 and 24 h sampling.  The crude fiber value is 
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mostly consisting of cellulose. Because the cellulase is degrading most of the cellulose 

prior to the 4 h time point the values do not differ. However, when compared to the 

control, a reduction in crude fiber was seen for all dosages.   

NDF and ADF are calculated using the Van Soest method. The extraction then 

begins with the use of an amylase to remove starch, sodium lauryl sulfate (detergent) to 

remove protein, trietheylene glycol removed non-fiberous soluble material, and EDTA 

dissolves the pectin; the reaction is kept at a neutral pH to prevent hemicellulose 

hydrolysis. The remaining fraction is classified as the NDF fraction which contains 

hemicellulose, cellulose, and lignin. In order to determine the ADF content a acidic 

detergent is added which hydrolyzes the hemicellulose leaving behind the cellulose and 

lignin content (Foss, 2018). This explains the higher NDF content as compared to the 

ADF. As all dosages show, an increase in content from 4 to 24 h of saccharification 

occurred. The likely explanation for this phenomenon is the solubilization of the soluble 

fraction. After four hours the enzymes had degraded all that they could, however the 

continuous shaking of the flasks allowed for better mixing which allowed for the 

solubilization effect to occur in much the same manner seen in the fungal fermentation 

trials.  

Figure 4.2A shows the phytic acid values at 24 h of saccharification with 

xylanase. A significant decrease was seen in all dosages when compared to the control. 

As discussed earlier, phytic acid is held within the lignocellulosic structure of the cell. 

This in part contains the hemicellulose which would be degraded by the xylanase. During 

degradation of xylan the phytic acid was most likely released into the supernatant for 

removal.  
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The fiber result for xylanase hydrolysis are shown in Figure 4.2B. No significant 

difference is seen within the crude fiber values for an of the dosages, however they are 

higher for xylanase than cellulase due to the methods fraction selection as outlined above. 

An insignificant decrease between the 4 and 24 h NDF values. The xylanase had a lower 

activity which would result in a lower hydrolysis rate. Therefore, at 4 h of 

saccharification, the enzymatic digestion was incomplete, very little additional time could 

have been needed to complete the digestion. The ADF value did not show much 

difference independent of the dosage due to the lack of targeted fraction in the value. 

Pectinase results for phytic acid and fiber analysis are shown in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 

 

 

 

 

 

 

Figure 4.3. Figure 4.3A displays the phytic acid results. Again, a significant 

decrease in phytic acid levels is seen from the control. Two possibilities could be 

occurring. The pectinase is freeing the phytic acid from the cellular components or, the 

continuous shaking is solubilizing the phytic acid. Based upon the fiber results for the 

pectinase dosages showing the solubilization effect from 4 to 24h the later possible.  

The NDF values shown in figure 4.3B are much lower than those of the xylanase 

trials. An insignificant decrease is seen in the NDF concentration at four hours of 

saccharification. According to Dien et al. (2008) An increase in xylose release was found 

with increasing pectinase and feruloyl esterase dosages. As xylose is classified as a 

hemicellulose monosaccharide which would fit with the observations of Dien et al. 

(2008).   

As the primary target of phytase, phytic acid was significantly reduced at all 

dosages of addition (Figure 4.4A). However, it is unknown if the phytic acid was being 

degraded or was being solubilized. In order to test this the supernatant could have been 

ran using the same kit. No significant changes were seen within the fiber results due to 

the lack of fiber degrading enzymes (Figure 4.4B). 
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Figure 4.1 A:Mean values of phytic acid results for cellulase dosage trials after 24 h of saccharification. B: Mean values of 

crude fiber, NDF, and ADF at 4 and 24 h of saccharification with cellulase.  
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Figure 4.2 A: Mean values of phytic acid results for xylanase dosage trials after 24 h of saccharification. B: Mean values of 

crude fiber, NDF, and ADF. 
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Figure 4.3 A: Mean values of phytic acid results for pectinase dosage trials after 24 h of saccharification. B: Mean values of 

crude fiber, NDF, and ADF at 4 and 24 h of saccharification with pectinase  
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Figure 4.4 : Mean values of phytic acid results for phytase dosage trials after 24 h of saccharification. B: Mean values of crude 

fiber, NDF, and ADF at 4 and 24 h of saccharification with phytase. 
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4.3.2 Combined enzyme effect on phytic acid and fiber 

Fourteen combination were developed based on literature and the values received 

from the previous 16 trials with individual enzymes. In the individual enzyme test, all but 

cellulase at 0.5 mg/g and 0.75 mg/g were significantly different from the control. Under 

the combinations, only one of the 14 combinations (C- 0.5 mg/g cellulase + 1 mg/g of 

xylanase) was not significantly different from the control. Three other combinations were 

significantly different from both the control and the rest of the combinations (A- 1mg/g 

cellulase + 1mg/g xylanase, D- 0.5 mg/g cellulase + 0.5 mg/g xylanase + 0.5 mg/g 

phytase, and N – 0.5 mg/g cellulase + 0.5 mg/g xylanase). It should not go unnoticed that 

all three combinations had equal concentrations of cellulase and xylanase. Also, of the 

three, one (D) did have the lowest concentration of phytase, this could be attributed the 

low degradation of fiber that will be discussed later.  

Of the other 10 combination that were conducted only two were significantly 

different from each other (J- 1 mg/g cellulase + 1 mg/ pectinase, and L- 1 mg/g cellulase 

+ 1 mg/g phytase). This suggest the phytase had the added effect of degrading the phytic 

acid when the pectinase could not.  

Eight other combination that were tested were significantly lower than the control 

but not significantly different from each other (B, E, F, G, H, I , K, and M). Of these K 

(0.5 mg/g cellulase + 0.5 mg/g pectinase) was the only one to not contain a phytase. It is 

strange that the higher dosages of both did not significantly decrease the phytic acid 

content.  

According to Hu et al. (2013), there is a synergistic effect that a hemicellulase can 

have on the effect of a cellulase. The same can be said for pectinase on hemicellulose 
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(Dien et al., 2008). At first glance Figures 4.5 B-D some treads do appear among the 

combination and fiber types. For instance, the lowest combination for each of the three 

fiber types is combination G (1 mg/g cellulase + 1 mg/g xylanase + 1 mg/g phytase + 1 

mg/g pectinase). This probably is due to the presence of the high amount of the enzymes 

in the combination. The highest values in crude fiber and NDF content was combination 

D which was one of the higher values in phytic acid as well. As mentioned earlier, the 

phytic acid is trapped within the lignocellulosic structure, so if the lignocellulose is not 

being degraded the phytic acid cannot be reached by the phytase for degradation or be 

solubilized after being freed which prevents the decrease of the phytic acid content in the 

meal.   

The control crude fiber at was one of the highest when compared to the 

combinations except for combinations H and I which did not contain cellulase. The 

control NDF was also the highest overall, control ADF however, was not significantly 

different from any of trials. Most likely this is due to the use of primarily hemicellulases.  

As expected, the lower the enzyme dosage the lower the fiber degradation is. This is 

demonstrated when comparing F and G in all three fiber components. The G had a higher 

enzyme dosage which reduced fiber more effectively.  
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Figure 4.5 A: Mean values of  phytic acid content for combinations at 24 h of 

saccharification. B: Mean values of crude fiber for the combination at 4 and 24 h. C: 

Mean value of NDF for the combination at 4 and 24 h. D: Mean value of ADF for 

the combinations at 4 and 24 h.  

Bars with same letter above show no significance within the treatment compared to the control at p < 0.05. 

All letters correspond to combination in Table 4.2. 

  

4.3.3. Sugar profile of the enzyme hydrolyzed DDGS  

4.3.3a: Individual enzyme effect on the DDGS 

Though samples were tested for different time periods, the glucose and total sugar data of 

the DDGS showed maximal effect at 4 hours, hence; only 4 hours data is discussed in this 

study. Sugars that are presented in the total sugar include glucose, cellobiose, galactose, 

A 

D C 

B 
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arabinose, xylose, and mannose. The control sample had only negligible amount of 

glucose present whereas total sugar concentration of 3.6 g/L was detected after 4 h of 

hydrolysis (without enzymes). The enzyme saccharification with four different class of 

enzymes (cellulase, pectinase, xylanase and phytase) resulted in increase in the glucose as 

and total sugar concentration as compared to that of the control (Table 4.4). There was an 

increase in glucose concentration with the increase in enzyme dosage from 0.5 to 1 mg/g 

dry DDGS. However, subsequent increase in enzyme dosage to 2 mg/g did not have 

significant impact in terms of glucose release, except for the phytase enzyme where big 

boost in glucose release was achieved with the increase in phytase dosage from 1 to 2 

mg/ dry gram. Among the enzymes that were tested, phytase was found to be the most 

effective with the maximal amount of glucose release even at the lower level. The study 

by Baldwin et al, (2018) reported similar results where increase in Viscozyme level from 

0.75 to 1 mg/dry gram DDGS did not have any significant effect on glucose release of 

pretreated DDGS. Additionally, the glucose and total sugar results as obtained on this 

study are comparable with the glucose reported for the enzymatic hydrolysis of pretreated 

DDGS by Baldwin et al., (2018) indicating BIO-CAT enzymes used in this study are 

more efficient than the other commercial enzymes that were used previously.  
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Table 4.4: Glucose and total sugar concentration of DDGS pretreated with four 

different enzymes at four different level of dosages 

Enzyme dosages (mg protein/dry 
gram of DDGS) 

Glucose (g/L) Total sugars (g/L) 

Cellulase   
0.5 1.88±0.17 7.22±1.93 
0.75 1.80±0.06 8.48±0.11 
1.0 2.88±0.53 10.79±0.55 
2.0 1.48±0.35 9.34±0.85 

Xylanase   
0.5 0.32±0.07 3.08±0.11 
0.75 1.24±0.05 7.78±0.98 
1.0 2.99±0.35 7.23±0.26 
2.0 3.30±0.16 6.73±0.28 

Pectinase   
0.5 1.11±0.11 5.50±0.21 
0.75 2.61±0.05 5.97±0.91 
1.0 3.35±0.52 7.92±0.45 
2.0 3.77±0.63 7.61±0.68 

Phytase   
0.5 2.91±0.42 6.37±1.06 
0.75 3.53±0.23 7.64±0.42 
1.0 4.28±0.30 8.45±0.40 
2.0 10.17±0.29 17.43±0.50 

 
 

4.3.3b: Effect of enzymes on DDGS when used in combination 

Several studies have found that enzymes when used in the combination can have 

synergistic effect and hence can be used to maximize the process efficiency. Hence in 

this study, four enzymes were tested at different combinations where dosages were also 

varied. The glucose and total sugar results obtained for the enzyme combination are 

presented in the Table 4.5. 
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Table 4.5: Glucose and total sugar concentration of the DDGS treated with different 

enzymes combination at various level of dosages 

 

 

Cellulase 
dosage 

Xylanase 
dosage 

Phytase 
dosage 

Pectinase 
dosage 

Glucose 
(g/L) 

Total sugars 
(g/L) 

A 1 1 - - 4.04±0.18 6.06±0.34 
B 1 1 1 - 5.14±0.79 10.97±2.74 
C 0.5 1 - - 1.60±0.26 8.91±0.90 
D 0.5 0.5 0.5 - 3.59±0.39 8.67±0.71 
E 0.5 1 0.5 - 6.54±0.22 14.31±0.76 
F 0.5 0.5 0.5 0.5 8.48±1.06 16.34±0.74 
G 1 1 1 1 9.89±0.40 16.80±1.20 
H - 1 1 1 11.81±1.31 20.46±0.91 
I - 0.5 0.5 0.5 7.92±0.79 15.66±1.33 
J 1 - - 1 9.56±0.79 17.53±1.36 
K 0.5 - - 0.5 6.28±0.27 13.25±0.40 
L 1 - 1 - 9.58±0.99 17.78±1.97 
M 0.5 - 0.5 - 7.77±0.46 17.01±0.92 
N 1 0.5 - - 4.47±0.29 9.07±0.33 

 
 

With the enzyme combinations that were tested, the maximal glucose release of 

11.81 g/L and minimal glucose release of 1.6 g/L was obtained with the enzyme mixture 

of H and C respectively. The enzyme mixture that had the maximal glucose release 

contained the xylanase, phytase and pectinase at level of 1 mg/g and no cellulase was 

added in the mixture. Alternatively, enzyme mixture containing the cellulase at 0.5 and 

xylanase at 1 mg/g dry DDGS resulted in the low glucose content. The results showed 

that when all four enzymes were added in a mixture, irrespective of the dosage (0.5 vs 1 

mg/dry gram) level, there was no change in the glucose and total sugar release. But in the 

absence of the cellulase, significant difference in the glucose release was observed with 

the change in enzyme dosages (comparing H and I). Similarly, the combinations, where 

cellulase was supplemented with pectinase at 0.5 mg/g (K) showed significant amount of 

the glucose and total sugar release comparable to other enzyme combinations (presented 
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in the Table 4.5) indicating effectiveness of the enzyme mixture can vary widely. Results 

also indicated that there is possibility to trade-off between the enzyme dosages and 

enzyme types when applied in the mixture.  

 

4.4 Conclusion 

The enzyme treatment of the DDGS using different enzyme types (Cellulase, 

pectinase, phytase and xylanases) improved overall DDGS composition. Irrespective of 

the enzyme types, sugar yields were not improved beyond 1 mg/g dosages when treated 

individually. Results showed that enzyme cocktails when used in the mixture has 

potential to have synergistic effect and high efficiency could be achieved even using the 

lower dosages. However, further research needs to be conducted to determine the enzyme 

cocktail that would help in achieving the complete fiber degradation. Mild pretreatment 

prior to enzyme treatment would probably lead to the further reduction of the fibers. 
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 – Extruded DDGS treated with fungal fermentation and enzymatic 

hydrolysis 

 

Abstract 

Experimentation with standard DDGS showed positive results after fungal 

fermentation and enzymatic hydrolysis. In order to improve the fiber degradation, the 

addition of extrusion prior to fermentation and saccharification was tested. When it was 

determined that this had a greater effect the combination of both fungal fermentation and 

enzymatic saccharification was combined as a treatment for standard and extruded 

DDGS. The submerged trials at a 15% SLR were evaluated for improvement in protein, 

fiber, phytic acid, and residual sugar content. After fungal fermentation, N. crassa at 48 h 

of fermentation showed the greatest improvement in protein content. However, as 

compared to standard DDGS, extruded DDGS showed less degradation of fiber after 

fungal fermentation. When the combined enzymatic hydrolysis and fungal fermentation , 

maximum protein yields were seen at 24h with extruded DDGS and simultaneous 

addition of enzyme. These trials also showed improved fiber reduction.  

 

5.1 Introduction: 

Distillers dried grains with solubles (DDGS), a corn ethanol industry by-product 

is feed to livestock. However, under processing condition for ethanol fermentation some 

nutritional components are lost while others are concentrated. Part of the concentrates 

include the cellulosic structure that forms the cell wall (Liu, 2012). The cellulose is 
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difficult for many animals to break down making DDGS inefficient in digestibility (Stein, 

2008), hence DDGS inclusion level is limited to < 30% in animal diets. 

  Extrusion has been used for decades in food production; however, it was not until 

the 1980’s that the use of extrusion as a pretreatment became popular. During extrusion 

pretreatment feedstocks are subjected to simultaneous heating, mixing and shear forces 

which results physical and chemical changes (Karunanithy et al., 2013).  Advantages to 

the use of extrusion as a pretreatment include: continuous process, adaptability for feed 

stock, no sugar degradation, and low cost (Zheng & Rehmann, 2014). Little to no loss of 

solids happens because of the lack of post treatment recovery (Mood et al., 2013). 

 In addition to extrusion pretreatment, the use of biological conversion is 

promising. Biological pretreatment is considered environmentally safe and low energy 

process (A. K. Kumar & Sharma, 2017). As shown in the fungal fermentation and 

enzyme hydrolysis chapters the use of microbes to alter the composition of DDGS is 

possible. In the past the use of biological pretreatment in large scale has been avoided due 

to the prolonged treatment and expensive vessels (Mood et al., 2013).  

 However, it has been shown that the combination of biological pretreatments and 

physical/chemical pretreatments aids in the process (A. K. Kumar & Sharma, 2017; 

Mood et al., 2013).  J. R. Croat et al. (2017) found that the protein increase while 

lowering the NDF content for hexane extracted and cold press canola was best treated 

with extrusion/ T. reesei and extrusion/ F. venenatum respectively.  This suggest that the 

use of extrusion does not produce inhibitors for secondary fermentations.  

 This study aims to look at the individual and combined effect of enzyme 

saccharification and fungal fermentation in three separate experiments. The first is 
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utilizing fungal fermentation of extruded DDGS, the second uses enzyme saccharification 

on the extruded DDGS, and the third after a down selection of parts 1 and 2 are combined 

to look at its effect on the extruded DDGS.  

 

5.2 Methodology: 

5.2.1 Feedstock 

DDGS was collected from Dakota Ethanol (Wentworth, SD). Solids were ground 

through a 1mm screen and stored in an air-tight bucket at room temperature until use.  

 

5.2.2 Extrusion Pretreatment 

Four kg of DDGS (moisture content 12%, dry basis) was extruded using a 

Brabender Plasti-Corder model PL2000 (South Hackensack, NJ) The extruder had 3 

temperature zones set to 90, 90 and 100℃ respectively. A screw with a compression ratio 

of 3:1 and barrel ratio of 20:1 was set to 100 rpm. Finally, the extruded DDGS was 

pushed through a die with a 3 mm opening. Extruded DDGS was spread on to trays and 

left to cool and dry over night before being stored in an air-tight bucket at room 

temperature until use.  

 

5.2.3 Microorganisms Used  

T. reesei (NRRL-3653) (pH 5), N. crassa (NRRL-2332) (pH 5), R. oligosporus 

(NRRL-2710) (pH 5), and A. pullulans (NRRL- 2311-1) (pH 3). All strains were obtained 

from the culture collection at USDA ARS and stored at 4℃ and re-cultured every 30 

days on to potato dextrose agar (PDA, BD Difco) 
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5.2.4 Enzyme used 

Enzymes purchased from BIO-CAT (Troy, VA) are shown in Table 5.1. All 

enzymes were received as powder and sealed to prevent contamination. Enzyme protein 

content amounts were determined by using a LECO FP-528 instrument (LECO Corp., St. 

Joseph, MI, USA. The values obtained was then used to determine the amount of enzyme 

needed to achieve the desired level of enzyme loading.  

 

Table 5.1 Enzymes utilized 

 Activity  Optimal pH Protein content (%, dry basis) 
Cellulase 200,000 FPU/g 5 42.52 
Pectinase 1,000 PG/g 3.5 1.75 
Phytase 1,000 FTU/g 5.5 1.67 
Xylanase 100,000 XU/g 5 8.86 

 

5.2.5 Inoculum Preparation:  

Cultures on PDA plates were transferred to 5% glucose 0.5% yeast extract (GYE) 

and incubated for 48 h at 150 rpm and 30°C in a shaker (New Brunswick Scientific 

Excella, E24 rotary shaker, Hauppauge, NY, USA). 

 

5.2.6 Fermentation of Extruded DDGS 

Extruded DDGS was subjected to the fungal fermentation using 100 ml working 

volume in 250 ml Erlenmeyer flasks  and 15%  solid loading rate (SLR) on dry matter 

basis.  Flasks were pH adjusted to optimal pH for fungi or enzyme using 3.6M H2SO4 and 

10M NaOH. Samples were foam stoppered and autoclaved at 121℃ for 20min. Eighteen 

flasks were inoculated with 1 ml of 48 h fungal broth for each fungal strain. All flasks 
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were incubated at 30℃ and 150 rpm for 120 h. Samples were collected at 0, 24, 48, 72, 

96, and 120 h. Three flasks were drawn at random from the shaker, at each time point and 

respective fungus. The complete content of each flask was transferred to a 250 ml 

centrifuge bottle and spun for 10 min at 10,000 rpm and 20℃. The solids and liquid 

sample weights were recorded, and oven dried at 80 °C prior to grinding and storing at 

room temperature. 

 

5.2.7 Enzyme Saccharification of Extruded DDGS: 

For each trial twenty-one flasks were prepared with extruded DDGS. Each 250ml 

flask was prepared with 100ml working volume and 15% SLR on dry basis. Flasks were 

pH’ed using 3.6M H2SO4 and 10M NaOH, to 4.5 to best accommodate mixed enzymes. 

Next, each flask was foam stoppered, covered with foil, and autoclaved. After 

autoclaving, flasks were left to cool to room temperature. When ready, all flasks were 

treated with the proper dosage and incubated at 55 ℃ and 200 rpm for up to 24h. At 0, 2, 

4, 6, 8, 20, and 24 h, three flasks were drawn at random from the shaker for each time 

point. After bringing to 80 ℃ on a hot plate to inactivate enzyme, flasks were 

quantitatively transferred to 250 ml centrifuge bottles, which were then centrifuged for 10 

min at 20 ℃ and 10,000 rpm.  

 

5.2.7.1 Treatments Used: 

Optimal treatments were down selected from the enzyme study and shown in 

Table 5.2. Prior to addition to flasks, enzymes were dissolved into sterile water. After 
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water had been added, solutions were mixed by vortex and left to sit for an hour to fully 

dissolve and defoam.  

Table 5.2 Enzyme dosages with combination abbreviation (mg of protein/ g of solid) 

 Cellulase Xylanase Phytase Pectinase 

A 1 1 1 1 
B  0.5 0.5 0.5 0.5 
C 1 1 1 - 
D 1 - - 1 
E 0.5 - - 0.5 
F - 1 1 1 

 

5.2.8 Combined Enzyme and Fungal Treatment 

A saccharification utilizing combination A (Table 5.2) for four hours prior to 

inoculation with N. crassa and simultaneous inoculation and saccharification was tested 

on both untreated DDGS and extruded DDGS. Flasks were prepared using a 15 % w/v 

SLR and pH adjusted to 4.5 followed by autoclaving. Samples with the saccharification 

prior to inoculation was sampled at time of enzyme addition (-4 h), time of fungal 

addition (0 h), 24, 48, 72, 96, and 120 h of incubation for a total of 21 flasks prepared. 

Samples without prior saccharification were sampled at 0, 24, 48, 72, 96 and 120 h for a 

total of 18 flasks prepared.  

 

5.2.9 Sample Processing:  

5.2.9a Protein  

Protein analysis was conducted on a LECO FP-528 instrument (LECO Corp., St. 

Joseph, MI, USA) for the fungal fermentation trials. This method utilizes the Dumas 

method according to the official method approved by AOAC international. Samples of 

0.25 ± 0.001g are weighed out then transferred to the instrument. The instrument drops 
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the sample into a 900℃-furnace causing the sample to combust releasing the nitric oxide 

from the amino acids. The nitric oxide is moved to a copper reduction tube where the 

nitric oxide is reduced to nitrogen gas. The nitrogen gas is then read by a gas 

chromatography where the nitrogen content is quantified. The conversion factor of 6.25 is 

used to display as is protein content (Sweeney & Rexroad, 1987). Finally, moisture 

correction is used to present protein on dry basis. All fungal fermentation pellets and 

supernatants were run individually for each replicate. 

5.2.9b Phytic acid analysis  

Phytic acid analysis was conducted using the Megazyme Phytic acid/Total 

phosphorus kit for all 120h fungal screen samples and 24h enzyme saccharification. 

Analysis being with one gram of solids being mixed with 0.66 HCl stirring overnight for 

extraction. Using 0.75 NaOH the sample is neutralized prior to testing for free and total 

phosphorus values. The free phosphorus value is determined by not adding the enzymes, 

while the total value requires the addition of a phytase and alkaline phosphatase.  The kit 

comes with prepared phytase and alkaline phosphatase along with the buffers for the 

reaction. The reaction is conducted at 37℃ with phytase for 10 min and alkaline 

phosphatase for 15 min. The enzyme reaction is stopped by the addition of trichloroacetic 

acid 50% w/v. Phosphorus is quantified using a color metric determination.  Ascorbic 

acid/sulfuric acid and ammonium molybdate mixed in a 5:1 ratio creates the color 

reagent. One ml of the sample is mixed with the color reagent and incubated for 1 hour at 

37℃. Reaction are read on a microplate reader at 655 nm (Megazyme, 2017). Replicates 

for each sample were run individually. 
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5.2.9c Fiber analysis   

Fiber analysis was conducted by the Agricultural Experiment Station Chemical 

Laboratories at the University of Missouri-Columbia. Fungal samples at 120h, and 4 and 

24h enzyme saccharification samples were analyzed for crude fiber, neutral detergent 

fiber (NDF), and acid detergent fiber (ADF). Crude fiber was tested according to AOAC 

official method 978.10 2006. NDF was conducted according to JAOAC v. 56, 1352-

1356, 1973, while ADF was tested using AOAC 973.18 (A-D) 2006 official method. 

 

5.2.9 Statistical Analysis 

 Data were analyzed using a combination of Microsoft Excel® and R studio 3.5.0 

(Vienna, Austria) with downloadable packages. 

 

5.3 Results and Discussion  

 Utilization of extrusion pretreatment followed by enzymatic and fungal treatment 

replicates were done in 250 ml Erlenmeyer flasks while being shaken. Trial were 

designed to down selected for optimal fungal and enzyme treatment. Trials conducted 

with fungi were tested for protein at all time points, and fiber (crude, NDF, ADF) and 

phytic acid content at 120 h replicates. Enzyme hydrolysis trials were analyzed, and fiber 

and phytic acid at 4 and 24 h.  

 

5.3.1 Proximate analysis 

Proximate analysis was conducted on the DDGS before and after extrusion as 

shown in Table 5.3. There was no significant change in the proximate composition of the 
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DDGS after extrusion pretreatment. There was only slight increase in ADF. Phytic acid 

was also reduced due to the heat sensitivity of the compound. 

Table 5.3 Proximate composition of DDGS before and after extrusion  

 
Protein 
(%) 

Crude 
(%) 

NDF 

(%) 
ADF 

(%) 
Phytic Acid 

(g/100g) 
DE DDGS 29.98 7.8 24.21 9.75 0.58 
Extruded Pellets 30.88 6.6 23.94 11.38 0.52 

All values on dry basis except phytic acid 

5.3.2 Fungal Fermentation 

5.3.2.1 Protein  

Protein for the fungal fermentations can be seen in Figure 5.1. At 0h the values 

were not normally distributed which is why they do not contain values above the set of 

bars. However, it should be noticed that these values are higher than the extruded DDGS, 

which is due to the solubilization effect seen in prior testing. The control protein held 

steady throughout the 120 h of incubation. This is confirmed in the supernatant values 

shown in Figure 5.2 

The most effective fungi to increase protein was N. crassa at 48 h by reaching 

over 40% on dry basis. After 48h the protein decreased in the pellet but increased in the 

supernatant. This could be due to the isoelectric point of the protein within the sample. 

As the protein in the pellet decreased the pH of the samples increased. At 48 h of 

incubation the pH was 4.85 while 72 and 96 h were 5.23 and finishing at 5.44 at 120 h.  



  99 

Following N. crassa, A. pullulans 2311 was not significantly different at 96 and 

120 h of fermentation. It was not significantly different after 48 h when compared to 

longer fermentation with A. pullulans. Due to the consistency of the supernatant, the 48 

and 72 h samples were unavailable, but the protein did not show much difference 

between hour 24 and 96. No contrast was seen between the control, T. reesei, and R. 

oligosporus protein within the pellet.  

 

Figure 5.1 Mean values of protein content in pellet after fungal fermentation 

Groups of bars with same letter above show no significance when compared to the control at p < 0.05. All  

values on dry basis 
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Figure 5.2 Supernatant protein content after fungal fermentation 

All values on dry basis  

 

5.3.2.2 Crude fiber, NDF, and ADF 

Fungal fermentation of extruded DDGS fibers after 120 h of fermentation are 

shown in Table 5.4 . The first important observation is the increase in content under all 

three forms of fiber analysis from the extruded pellets to the uninoculated control 

samples. The increase is due to the solubilization effect, that was observed in chapter 3, 

as the soluble portion of the meal was removed with the supernatant. This effect was 

amplified using fungal fermentation when the fungi hydrolyze components that 

concentrate in the insoluble fraction such as the fiber.  

Crude fiber is determined using the Weende method which removes the soluble 

fraction leaving behind the cellulose and other insoluble components(Foss, 2018).  

T. reesei is known for producing many carbohydrase’s’ that can degrade the 

fibrous fraction (Nevalainen et al., 1994). If a cellulase is being produced both the NDF 
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and ADF will be significantly lower than the corresponding control value which is shown 

in data. The insignificance of the T. reesei crude fiber value also indicates fibers were 

being degraded and not concentrated while the combined protein of the supernatant and 

the pellet were increasing. 

A. pullulans produces many hemicellulases  (Christov et al., 1999; Myburgh et al., 

1991). The significant difference of NDF of the A. pullulans fermented solids supports 

this. A lack of cellulase production was seen in the unextruded DDGS and is concurrent 

with the extruded fermentation demonstrated by the significantly higher crude fiber and 

the insignificance of the ADF.  

Unlike the standard DDGS, the extruded DDGS when fermented with N. crassa 

did not have the largest decrease in fiber concentration. In fact, it was not significantly 

different from control in the ADF or the NDF value. It did have the highest increase in 

the crude fiber. This in part may be due to the extrusion of the DDGS which has the 

effect of altering the digestibility of the fiber for the fungi. The drastic increase in protein 

may have also caused the concentration of the fibers. 

Table 5.4 Fiber content of extruded DDGS with 120h fungal fermentation 

  Crude Fiber NDF ADF 
Uninoculated 8.67 ± 0.12 a 43.16 ± 4.27 b 23.02 ± 1.09 bc 
T. reesei 8.94 ± 0.33 a 32.15 ± 0.70 a 18.03 ± 2.42 a 
A. pullulans 9.87 ± 0.20 bc 35.09 ± 0.65 a 19.06 ± 2.43 ab 
N. crassa 10.56 ± 0.29 c 41.08 ± 0.81 b 24.30 ± 1.13 c 
R. oligosporus 9.35 ± 0.57 ab 35.11 ± 0.80 a 23.19 ± 1.12 bc 

Mean value of fiber percentage sharing same superscript letter within the column are not 
significantly different at p < 0.05. All value on dry basis 
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5.3.2.3 Phytic acid 

After processing, standard DDGS and extruded DDGS phytic acid values did not 

change (Chapter 3). When comparing to standard DDGS R. oligosporus also had the 

highest value which was determined as the phytase produced by the fungi degrading the 

phytic acid into myo-inositol phosphate which is detected by the Megazyme kit.  

As discussed in Chapter 4, lignocellulose material of the meal can hold the phytic 

acid, but when the lignocellulose is degraded the phytic acid is released. This can be seen 

in the T. reesei sample. With the lowest NDF and ADF values the fiber released the 

phytic acid allowing it to be removed with the supernatant. As N. crassa and A. pullulans 

were nearly equal in the standard DDGS fermentation trials the values which is 

concurrent with the results of the extruded DDGS.  

 

Figure 5.3 Phytic acid at 120 h fermentation. 
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5.3.3 Enzyme hydrolysis 

5.3.3.1 Crude fiber, NDF and ADF 

 After extrusion the crude fiber and NDF content were reduced. However, after 

enzymatic treatment NDF was mostly unaffected at 4 and 24h when compared to the 

control as seen in Figure 5.4. Combination A (1mg/g of cellulase, xylanase, phytase, and 

pectinase) was able to reduce crude fiber which compares with the results from the 

standard DDGS studies. Higher NDF and ADF concentrations for all combinations were 

seen for the extruded DDGS than with the same treatments for the standard DDGS. 

According to de Vries et al. (2013) extrusion and enzyme hydrolysis had little effect on 

the NSP. However, better NDF values were seen for the extruded DDGS after fungal 

fermentation. This may suggest that the ability of the fungi to produce several enzymes 

may be better treatment of NSP.  

 

 

Figure 5.4 Enzymatic hydrolysis of extruded DDGS 

All values on dry basis 

0

10

20

30

40

50

60

Standard
Control

Extruded
Control

A B C D E F

Fi
be

r 
co

nt
en

t (
%

)

CRUDE FIBER 4h CRUDE FIBER 24h NDF 4h

NDF 24h ADF 4h ADF 24h



  104 

5.3.3.2 Phytic acid  

Phytic acid was significantly reduced after enzymatic hydrolysis as shown in 

Figure 5.5. Most likely this is due to the use of the phytase during hydrolysis which was 

included in combination A, B, C, and F. Combinations D and E did not contain phytase 

which explain the insignificant values. All trials except for F (1mg/g of xylanase, 

phytase, and pectinase) showed significant decrease in phytic acid from 4 to 24h. This is 

due to the solubilization effect, that as mixing time increased more phytic acid was 

solubilized, or the passive diffusion of the phytic acid when in phytate salt form (Perlas & 

Gibson, 2002).  

 

Figure 5.5 Phytic acid content of extruded DDGS after enzymatic hydrolysis 
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designed: 4 h saccharification prior to inoculation and addition of enzyme and fungi at 

the same time. This was then tested on both standard DDGS and extruded DDGS.  

5.3.4.1 Protein 

Protein content after enzyme hydrolysis and fungal fermentation can be seen in 

Figure 5.6. In the sequential addition of the enzyme and fungi, 0 h and all time points are 

considered from the addition of the fungi. Some difference was seen at the 0 h sampling 

time due to the prior hydrolysis of the samples. An increase in all protein content was 

seen from 0 to 24 h of incubation due to the growth of the N. crassa. However, protein 

content decrease with the following hours due to the increase in the supernatant protein 

content as shown in Figure 5.7. This decrease congruent with the other results shown in 

Figure 5.1 and Figure 5.2; however these may have peaked faster due to the addition of 

the enzyme.  

The most effective treatment was the extruded DDGS using the simultaneous 

addition of fungi and enzyme at 24 h. Neurospora crassa species are a known producer 

of an extracellular protease, specifically, when grown on a high protein content medium 

to utilize the amino acids from the macromolecules (Drucker, 1972). The protease 

activity responsible for the increase of protein in the supernatant, because of the smaller 

peptide chains it produced during the proteolytic action. Drucker (1972) also found that 

the inclusion of 2% D-cellobiose was able to increase growth and protease activity of the 

N. crassa. Due to the high content of cellobiose in the DDGS also aids in the conversion 

of the DDGS by N. crassa.  



  106 

 

Figure 5.6 Protein content of pellet after enzymatic hydrolysis and fungal 

fermentation 

SD = Standard DDGS, ED= Extruded DDGS, Sequential = 4 h saccharification followed by inoculation of 

N. crassa, Simultaneous = enzyme and fungi added at the same time. All values on dry basis

 

Figure 5.7 Protein content of supernatant after enzymatic hydrolysis and fungal 

fermentation 

All values on dry basis.  
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5.3.4.2 Crude Fiber, NDF and ADF 

Fiber values were lowered at 120 h by using a combination of enzyme hydrolysis 

and fungal fermentation when compared to the respective controls (standard or extruded 

DDGS) and to N. crassa treated DDGS. During the lag phase of growth, the fungi is not 

producing lignocellulosic enzymes such as cellulase or xylanase. The addition of the 

supplemental enzyme during this phase helps increase hydrolysis of the lignocellulosic 

components of the DDGS until the N. crassa can start to produce secondary enzymes 

such as the cellulase, endoxylanase, or β-glucosidase.   

 

Figure 5.8 Fiber content of DDGS at 120h after enzymatic hydrolysis and fungal 

fermentation  

SD = Standard DDGS, ED= Extruded DDGS, Sequential = 4 h saccharification followed by inoculation of 

N. crassa, Simultaneous = enzyme and fungi added at the same time. All values on dry basis. 
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5.3.4.3 Phytic acid 

Phytic acid was reduced in all combinations of enzyme hydrolysis and fungal 

fermentation, but the more beneficial combination was through the use of sequential 

addition of the enzyme and fungus as seen in Figure 5.9 irrespective of extrusion 

pretreatment. A statistical significance is seen between the extruded simultaneous and 

extruded sequential trials. It is not understood why they phenomenon occurs.  

In previous studies, it was questioned whether the phytic acid was being washed 

into the supernatant or degraded by the phytase included in the enzymatic hydrolysis. To 

address this, the same phytic acid assay was tested on the supernatant from the 120 h 

fermentation. The results are displayed in Figure 5.9 which show very little if any phytic 

acid in the supernatant. This implies that the phytic acid is being degraded by phytase 

during the enzymatic hydrolysis.  

 

Figure 5.9 Phytic acid content of DDGS pellet and supernatant after enzymatic 

hydrolysis and 120 h fungal fermentation 
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5.4 Conclusion 

The use of extrusion does improve the basic composition of the DDGS. This can 

further be improved through enzymatic hydrolysis or fungal fermentation. The 

combination of extrusion pretreatment, enzymatic hydrolysis, and fungal fermentation 

can help to further reduce fiber content of DDGS. This can be linked to the extended 

fermentation than hydrolysis or fermentation could do alone. Maximum protein content 

can be reached sooner due to the increased access of nutrients by fungi allowed by the 

extrusion pretreatment and enzymatic hydrolysis. Further research should be done to find 

minimum time requirement for maximum fiber reduction.    
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 -Summary and Conclusion 

After the congressional act that mandated an increased production of renewable 

energy sources, the production of distiller’ grains as co-products followed (Congress, 

2007).  Currently, DDGS is utilized in many livestock feeds due to its palatability and 

availability (Stein, 2008). DDGS is generally composed of 28.7-31.6% protein, 8.3-9.7% 

crude fiber, 36.7-49.1% NDF, and 13.8-18.5% ADF (Spiehs, Whitney, & Shurson, 2002).  

The main limitations of dried distillers’ grains are the low protein and high fiber 

content. The high fiber prevents monogastric consumption due to reduce growth rates and 

digestive stress (Stein, 2008). The added inefficiencies of the protein and essential amino 

acids reduces digestibility. Several studies have been done to improve the fiber content 

by using physical and chemical pretreatments or by adding carbohydrase enzymes to the 

feed (Noureddini, Byun, & Yu, 2009; Tsai et al., 2017).  With all this, the inclusion of 

DDGS in animal diet is still low. In order to address these challenges, this study used 

fungal fermentation, enzymatic hydrolysis, and extrusion pretreatment individually and in 

combinations to treat the DDGS.  

Fungal fermentation utilizes the natural production of enzymes to degrade fiber 

and increase the protein content. This allows for a low-input method of improving the 

feedstock, easy scale up, and material handling. However, this process takes considerable 

amount of time and space to obtain preferred results which ultimately increases  the cost 

(Subramaniyam & Vimala, 2012). Fungal fermentation when performed at optimal solid 

loading rates can help in fine tuning the overall process for maximum yield and 

efficiency. Submerged state fermentation with different fungal strains enhanced the 

nutritional profile of the DDGS (Chapter III). However, maximum solubilization effect 
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was observed at the low SLRs, irrespective of the fungal strains used. Effectiveness of 

fungal strains in improving the overall composition of the DDGS varied depending on the 

parameter tested. For example, all strains performed equally on protein levels; while 

maximal fiber and phytic reduction was achieved with N. crass and A. pullulans 

respectively.  

N. crassa (NRRL-2332) at a solid loading rate of 20% degraded the fiber the best 

of all strains at resulting with the 7.8% crude fiber, 30.4% NDF and 19.8% ADF. Also 

seen was solubilization effect, whereby the process of removing the liquid fraction 

removed soluble portions such as free sugars and phytic acid. At lower SLR the meal had 

higher protein but also higher fiber, alternatively the higher the SLR the lower the fiber 

and protein.  

Enzymatic hydrolysis utilizes enzymes to degrade targeted fractions. Typically, 

the use of commercially available, pre-isolated enzymes is used. This method may be 

preferred over the fungal fermentation due to the ready active enzyme that can cut down 

on production time (Shi et al., 2009). As compared to mixing the enzymes with the feed, 

this processes also ensures that proper conditions for the activity of the enzyme can be 

met. When fed directly, pH and temperature of the animal’s digestive system can effect 

efficiency (V. Ravindran, 2013).  

Enzyme hydrolysis was conducted with a commercially available cellulase, 

xylanase, phytase, and pectinase at dosages between 0.5 to 2 mg of protein/ g of solid 

individually and combined (Chapter IV). The most effective treatment was with the use 

of 1 mg of protein/ g of cellulase, xylanase, phytase, and pectinase on DDGS. Through 

synergistic effects of the enzymes this was achieved. The cellulase with the accessory 
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enzymes was able to degrade the most cellulose because the xylanase and pectinase 

degraded the hemicellulose surrounding the cellulose. The decrease in phytic acid is also 

due to the synergistic effect because the degradation of the cellulose released the phytic 

acid and allowed it to be removed with the liquid portion.  

Based upon this work, down selection was used to evaluate the effect of fungal 

fermentation and enzymatic hydrolysis on extruded DDGS (Chapter V). Several studies 

have shown that to increase access for the biological treatment, a physical or chemical 

pretreatment is essential. (Kim, Yu, Han, Choi, & Chung, 2011; Zhong, Lau, Balan, Dale, 

& Yuan, 2009). Following extrusion fermentation and hydrolysis were conducted at a 

higher SLR based upon results from Chapter III. From Chapter IV, six of the most 

effective enzyme treatments were selected. And finally, the combination of fungal 

fermentation, enzymatic hydrolysis, and extrusion were tested (Chapter V).  

Fungal fermentation with extruded DDGS utilizing N. crassa had the greatest 

increase in protein content at 48 h of incubation. Enzymatic hydrolysis using 1 mg/g of 

cellulase, xylanase, phytase and pectinase yielded the most effective treatment in 

reduction of fiber, but the combination of 1 mg/g of cellulase, xylanase, and phytase 

resulted in the best reduction of phytic acid in the meal. When extrusion pretreatment, 

enzymatic hydrolysis, and fungal fermentation were combined in a sequential or 

simultaneous addition, the use of extrusion and simultaneous addition at 24 h yielded the 

highest protein content. However, the used of sequential addition was more effective in 

reducing the phytic acid content in standard and extruded DDGS.  All fibers were 

reduced irrespective of extrusion or enzyme and fungal addition.  
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Fungal fermentation of DDGS in combination with pretreatments (enzymes and 

extrusion) has potential to improve the nutritional profile of the DDGS. Therefore, future 

research could be focused into multiple directions. For example, more small laboratory 

scale studies should be conducted in exploring the effect of co-fermenting the DDGS 

using two or more fungi. Since, our findings have suggested that different fungal strains 

have different ability in terms of fiber and phytic acid reduction; co-fermenting could be 

beneficial for the overall process. Co-fermentation of the DDGS could be carried out 

using solids and submerged state fermentation. Whereas further research could also be 

geared towards upscaling and improving lysine content. In order to attempt feeding trials, 

production within a larger vessel with better condition control such as aeration, agitation, 

and temperature is needed. This would hopefully result in better mass balance and more 

efficiency.  Improving the lysine content of the DDGS would also aid it in increased 

usage. This could be done by simply supplementing the meal or finding a natural process 

to enhance the amino acid content. Finally, converted DDGS should be then tested to 

determine palatability, growth performance, and digestibility in fish feeding trials.     
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