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Abstract: Colloidal quantum dots (CQDs) have a unique advantage in realizing near-infrared (NIR)
photodetection since their optical properties are readily tuned by the particle size, but CQD-based
photodetectors (QPDs) presently show a high dark current density (Jd) and insufficient dynamic
characteristics. To overcome these two problems, we synthesized and introduced two types of
conjugated polymers (CPs) by replacing the p-type CQD layer in the QPDs. The low dielectric
constant and insulating properties of CPs under dark conditions effectively suppressed the Jd in
the QPDs. In addition, the energy-level alignment and high-hole mobility of the CPs facilitated
hole transport. Therefore, both the responsivity and specific detectivity were highly enhanced in
the CP-based QPDs. Notably, the dynamic characteristics of the QPDs, such as the −3 dB cut-off
frequency and rising/falling response times, were significantly improved in the CP-based QPDs
owing to the sizable molecular ordering and fast hole transport of the CP in the film state as well as
the low trap density, well-aligned energy levels, and good interfacial contact in the CP-based devices.

Keywords: quantum-dot photodetector; conjugated polymers; hole-transporting polymers; dark
current suppression; dynamic properties; near-infrared detection

1. Introduction

The detection of near-infrared (NIR) light is currently evaluated as an important
technology in a wide range of fields, such as bioimaging, optical communications, and
autonomous driving sensors [1–9]. Therefore, NIR photodetectors (PDs) that convert NIR
light into electrical signals have been actively studied, resulting in the development of
various types of active materials based on silicon, InGaAs (III–V compounds), organic dyes,
and colloidal quantum dots (CQDs) [10–15]. Among these, CQDs are regarded as promising
candidates for flexible NIR PDs. They can be deposited by a solution process under ambient
conditions, and their bandgaps and energy levels can be easily tuned by the particle size,
ligand exchange treatment, and/or surface modification [16–21]. Wei et al. reported
lateral bilayer CQD PDs (QPDs) composed of PbS CQDs and p-n bulk heterojunction
(BHJ) organic layers. Due to the BHJ organic layer, the dark current density (Jd) value was
decreased and the photoinduced current density (Jph) value was increased, resulting in
an enhanced responsivity (R) of 0.25 A/W and a specific detectivity (D*) of 2 × 1012 Jones
under 950 nm light illumination of 10.6 µW/cm2 at a 40 V bias [22]. Zhao et al. reported
perovskite:PbS hybrid QPDs using an antisolvent additive solution process, which evenly
dispersed the PbS CQDs between the grain boundaries of the perovskite crystals. Owing to
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the well-modulated film morphology and perovskite crystals, the fabricated photodetector
exhibited a high D* value exceeding 1012 and 1011 Jones under visible and NIR illumination,
respectively, at a −0.5 V bias [23]. Zhang et al. developed bilayer QPDs composed of PbS
CQDs and perovskites. Due to the broad absorption covering the NIR region, the QPDs
showed a high R value of 1.58 A/W and a D* value of 3.0 × 1011 Jones under 940 nm
illumination, but exhibited a relatively slow signal response time of 42 ms [24]. Moreover,
our research group reported an improved QPD performance by introducing conjugated
polyelectrolytes onto the electron transporting layer (ETL) to facilitate electron transport
and suppress JD at the interface between the CQD layer and ETL. The promising D* values
of 2.5 × 1012 and 1.3 × 1012 Jones were achieved under 532 nm green [25] and 940 nm NIR
LED illumination [26], respectively, at −1 V.

In the present study, we synthesized two types of conjugated polymers (CPs), PSBOTz
and PBB, to improve the NIR photodetection properties of QPDs. PbS CQDs are commonly
synthesized by a single ligand exchange process using tetrabutylammonium iodide (TBAI),
but they exhibit relatively high Jd values, low on/off ratios, and slow response times in
devices [27]. To overcome these limitations, Chuang et al. developed electron-blocking
and hole-transporting PbS CQDs via a ligand exchange reaction using 1, 2-ethanedithiol
(EDT) [28], and the EDT-treated PbS CQDs significantly enhanced the charge collection
efficiency by modifying the electric field and energy level of the PbS CQDs [29–31]. How-
ever, we found that the EDT-treated PbS CQDs (PbS-EDT) still exhibited substantial Jd
and slow signal response times in the QPDs. In addition, the layer-by-layer process re-
quired multiple coating steps to deposit the PbS-EDTs. [32] In contrast, thiophene- and
benzene-ring-based semiconducting polymers naturally possess p-type characteristics, and
a uniform thin film is readily achieved by a simple spin-coating process owing to the
high viscosity of the polymer solution [33–36]. In addition, several CPs were successfully
utilized as a hole-transporting layer in the photovoltaic applications [37,38]. To understand
the effect of CP on the QPDs, the CP-based QPDs were directly compared with the control
PbS-EDT-based devices. The low dielectric constant and insulating properties of the CPs
under dark conditions significantly reduced Jd in the QPDs [39], resulting in D* values
one order of magnitude higher than those of the PbS-EDT-based devices. In addition, the
tunable highest occupied molecular orbital (HOMO) energy levels of CPs could control
the hole-transporting properties by matching the energy level with the photoconductive
TBAI-treated n-type PbS CQD (PbS-TBAI) layer, which improved the hole mobility and
Jph in the QPDs. Notably, the PBB polymer showing strong molecular ordering and the
lowest trap density in the QPDs exhibited superior dynamic characteristics with a 9-fold
increase in the frequency response and a 3–4-fold increase in the signal response speed in
the devices. The utilization of CPs with high-hole mobility, low-trap density, and proper
HOMO energy levels appears promising for high-performance QPDs

2. Results and Discussion
2.1. Material Characterization

PbS CQDs were synthesized via a modified hot-injection method using lead acetate
trihydrate as the lead source [40]. The X-ray diffraction (XRD) spectrum of the synthesized
PbS CQDs was measured and shown in Figure S1. The diffraction peaks of PbS CQDs
appeared at 25, 31, 42, 51, 61, 69, and 71◦, which corresponded to (111), (200), (220), (311),
(400), (331), and (420) crystal lattices, respectively.

Figure S2a shows the first excitonic peak of the synthesized PbS CQDs, and their
optical bandgap (Eopt

g ) was calculated using Equation (1):

Eopt
g =

hc
λmax

(1)

where h is the Planck constant, c is the velocity of the light, and λmax is the first excitonic
peak. The measured Eopt

g from the λmax at 867 nm was 1.43 eV.
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Since the bandgap (Eg) of the CQDs depends on the particle size, the bandgap can
also be calculated by measuring the size of the CQDs (Equation (2)) from the transmission
electron microscopy (TEM) images of PbS CQDs [16]:

Eg = 0.41 +
(

0.0252d2 + 0.283d
)−1

(2)

The measured diameter (d) of the PbS CQDs was approximately 2.76 nm, and the
corresponding Eg was 1.43 eV. The particle sizes of the PbS CQDs matched well with their
optical bandgaps. The absorption properties and TEM images of the PbS CQDs are shown
in Figure S2a,b, respectively.

The conjugated polymers (CPs), PSBOTz and PBB, were synthesized via Stille poly-
merization according to our synthetic procedures [14,41] and their polymeric structures
and 1H NMR were recorded in Scheme 1 and Figures S3 and S4, respectively [14,42]. The
number average molecular weights of the PSBOTz and PBB polymers were determined to
be 5800 Da (Ð = 2.24) and 9400 Da (Ð = 2.06), respectively, by gel permeation chromatogra-
phy (GPC) (Figures S5 and S6). The UV-Vis spectra of PSBOTz and PBB were compared in
the film state (Figure 1a). Both the PSBOTz and PBB polymers showed similar absorption
bands, and the absorption maxima in the film state were 520 and 524 nm, respectively.
The optical bandgaps of the CPs were calculated from the onset wavelength of the film
state. The onset wavelengths of PSBOTz and PBB were 616 and 628 nm, respectively, which
corresponded to optical bandgaps of approximately 2.0 eV. FT-IR spectra of PSBOTz and
PBB were shown in Figure S7. Both polymers showed C-H, C-C, C-N, and C-S stretching
and C-H and C-C bending peaks in common, but PBB showed additional strong C-O
stretching peaks at 1220–1183 cm−1 due to the existence of C-O bonding on the BBO moiety.
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Scheme 1. Molecular structure of PSBOTz and PBB.

The HOMO energy levels of the synthesized materials were evaluated by cyclic
voltammetry (CV), as shown in Figure 1b. All the CPs and PbS CQDs were coated onto ITO
glass, which was used as the working electrode. The onset potentials of PSBOTz, PBB, PbS-
TBAI, and PbS-EDT were 0.64, 0.81, 1.22, and 0.34 V, respectively, and the corresponding
HOMO energy levels were −5.3, −5.5, −5.9, and −5.0 eV, respectively. An energy level
diagram is shown in Figure 1c. All the hole-transporting materials (PSBOTz, PBB, and
PbS-EDT) showed high-lying HOMO energy levels compared to PbS-TBAI, which indicates
the formation of an efficient hole-transport pathway from the PbS-TBAI layer to the hole-
transporting layer. However, the HOMO energy levels of PSBOTz (−5.3 eV) and PbS-EDT
(−5.0 eV) were higher than those of the electron-blocking MoOX layer (−5.3 eV), which
does not seem to be ideal for efficient hole transport to the electrode. To utilize PbS-EDT
as a hole-transporting layer, it is considered that an alternative electrode capable of better
band alignment with the PbS-EDT is needed. In contrast, PBB had an intermediate HOMO
energy level (−5.5 eV) located between the PbS-TBAI (−5.9 eV) and MoOX (−5.3 eV) layers.
Therefore, it is strongly expected that PBB had the most ideal HOMO energy level for
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hole transport in devices [37]. The optical and electrochemical properties of the CPs are
summarized in Table S1.
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2.2. Static Properties of QPDs

NIR QPDs were fabricated with an n-i-p structure of ITO/ZnO/PbS-TBAI/PbS-EDT
or CP/MoOX/Ag; the schematic device structure is illustrated in Figure 2a. The PbS-TBAI
and PbS-EDT layers were obtained by a solid-state ligand exchange process using TBAI
and EDT solutions, respectively. To obtain an appropriate thickness for the PbS CQD layer,
the layer-by-layer spin-coating process was repeated five times for the PbS-TBAI layer and
two times for the PbS-EDT layer. The CPs required only one spin-coating process owing to
the sufficient viscosity of the polymer solution. The thickness of each layer was estimated
from the cross-sectional SEM images, as shown in Figure S11.

The current density–voltage (J–V) curves were measured under the illumination of a
collimated 940 nm NIR LED by changing the light intensity, as shown in Figure 2b–d. R is
defined as the electrical output per optical input, which can be calculated using Equation (3),
where Jph is the photogenerated current density and Plight is the incident light power:

R
(

A
W

)
=

Jph

Plight
(3)

The R values of the PSBOTz, PBB, and PbS-EDT-based devices were 0.175, 0.220, and
0.217 A/W, respectively, under the illumination of 7 µW/cm2 at −1 V, and 0.101, 0.138, and
0.116 A/W, respectively, under the illumination of 5.0 mW/cm2 at −1 V. The PBB-based
devices showed higher R values than the other devices. The well-aligned HOMO energy
levels of PbS-TBAI (−5.9 eV), PBB (−5.4 eV), and MoOx (−5.3 eV) are expected to improve
the hole transport properties of the devices.

D* is the most important figure of merit for evaluating the photodetection performance,
and it can be calculated from Equation (4), where q is the elementary charge and R is the
responsivity, which was calculated from Equation (3):

D∗
(

cm
Hz0.5

W
, Jones

)
=

R√
2qJd

(4)

The D* values of the PSBOTz, PBB, and PbS-EDT-based devices were 1.77 × 1012,
2.82 × 1012, and 8.24 × 1011 Jones, respectively, under the illumination of 7 µW/cm2

at −1 V, and 1.02 × 1012, 1.77 × 1012, and 4.39 × 1011 Jones, respectively, under the
illumination of 5.0 mW/cm2 at −1 V. The CP-based devices exhibited significantly higher
D* values than the PbS-EDT-based devices due to the low level of Jd in the devices. This
is a unique advantage of polymeric materials since the CPs act as insulators under dark
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conditions. However, PbS-EDTs are not good insulators under dark conduction since they
contain mobile ions or ligands [43,44]. Therefore, PbS-EDT was limited to blocking Jd in
the devices, whereas CPs can act as a Jd blocking layer under dark conditions. In particular,
PBB-based devices showed the highest D* values among the fabricated devices, which was
attributed to the lowest Jd values and highest R values in the QPDs. The measured QPD
properties were summarized in Table 1.
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Table 1. Summary of QPD properties.

Pin
a (mW/cm2) Jd (A/cm2) Jph (A/cm2) R (A/W) D* (Jones) Bias (V)

PSBOTz/PbS-
TBAI

0.007 3.05 × 10−8 1.22 × 10−6 0.175 1.77 × 1012

−1
0.103 3.05 × 10−8 1.49 × 10−5 0.144 1.46 × 1012

0.500 3.05 × 10−8 6.21 × 10−5 0.124 1.26 × 1012

1.00 3.05 × 10−8 1.17 × 10−4 0.117 1.18 × 1012

5.00 3.05 × 10−8 5.04 × 10−4 0.101 1.02 × 1012

PBB/PbS-TBAI

0.007 1.90 × 10−8 1.54 × 10−6 0.220 2.82 × 1012

−1
0.102 1.90 × 10−8 1.88 × 10−5 0.183 2.34 × 1012

0.500 1.90 × 10−8 8.13 × 10−5 0.163 2.08 × 1012

1.00 1.90 × 10−8 1.56 × 10−4 0.156 2.00 × 1012

5.00 1.90 × 10−8 6.89 × 10−4 0.138 1.77 × 1012

PbS-EDT/PbS-
TBAI

0.007 2.19 × 10−7 1.52 × 10−6 0.217 8.24 × 1011

−1
0.102 2.19 × 10−7 1.72 × 10−5 0.169 6.37 × 1011

0.500 2.19 × 10−7 7.18 × 10−5 0.145 5.46 × 1011

1.00 2.19 × 10−7 1.32 × 10−4 0.132 4.97 × 1011

5.00 2.19 × 10−7 5.82 × 10−4 0.116 4.39 × 1011

a Input light power (Pin) of 940 nm LED illumination.
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The hole mobility (µh) was estimated from the space-charge-limited current (SCLC)
of the hole-only device with an ITO/PEDOT: PSS/PbS-EDT or CP/MoOX/Ag structure,
and the results are shown in Figure 2e. The µh was calculated via Mott-Gurney’s law using
Equation (5):

JSCLC =
9ε0εrµSCLCV2

8L3 (5)

where ε0 and εr were the vacuum permittivity and relative dielectric constant, respectively.
In this paper, the εr value was set as 3.5 and 21.2 for the polymer HTL and PbS-EDT,
respectively, which was the most widely used value. L was the thickness of active layer. The
µh values of the PSBOTz, PBB, and PbS-EDT-based devices were 2.75 × 10−3, 9.63 × 10−3,
and 1.77 × 10−3 cm2/V·S, respectively. PbS-EDT exhibited the lowest mobility among
the three hole-transporting materials despite the high current density generation under
the applied voltage owing to the high dielectric constant value of 21.2 [45]. In particular,
the high dielectric constant of PbS-EDT facilitates Jd transport at the interfaces, which is
closely related to the high Jd and low D* in PbS-EDT-based QPDs [46]. In contrast, the PBB
polymer exhibited the highest hole mobility with a low dielectric constant of 3.5, which
could result in the best R and D* values among the three hole-transporting materials.

To evaluate the charge generation rate under 940 nm LED illumination, the net pho-
tocurrent density–effective voltage (Jnph vs. Veff) was plotted, as shown in Figure 2g. The
Jnph and Veff values were calculated using Jnph = Jph − Jd and Veff = V0 − V, respectively,
where V0 is the voltage when the Jnph value is 0. The maximum charge generation rate
(Gmax) was obtained using Equation (6):

Jsat = qGmaxL (6)

where L is the active layer thickness, q is the elementary charge, and Jsat is the saturated Jnph
value from the Jnph vs. Veff plot; the Jsat value was also set as the maximum Jnph value since
there was a Jnph value that was not saturated [47]. From these equations, the calculated
Gmax values of the PSBOTz, PBB, and PbS-EDT-based devices were 1.13 × 1026, 3.66 × 1026,
and 8.36 × 1025 m−3s−1, respectively. The PBB-based devices showed the highest Gmax
values, which implies that charge extraction was highly improved at the interfaces between
the PBB and PbS-TBAI layers.

To evaluate the charge recombination properties of the QPDs, the dependence of Jph
and VOC on Plight was investigated (Figures S8 and 2f). The relationship between Jph and
Plight is shown in Equation (7):

Jph ∝ Pα
light (7)

The α value is the empirical factor, and the bimolecular recombination in the devices is
more efficiently suppressed as α approaches 1 [48]. The calculated α values of the PSBOTz,
PBB, and PbS-EDT-based devices were 0.87, 0.94, and 0.88, respectively, under a bias of
−1 V. The PBB-based devices exhibited the lowest bimolecular recombination, which is
advantageous for achieving fast charge transport and efficient Jph generation [49]. The open-
circuit voltage vs. incident light (VOC vs. Plight) was plotted to estimate the trap-assisted
recombination, as shown in Figure 2f:

VOC =
nkT

q
ln
(

Pα
light

)
+ C (8)

where T is the temperature, q is the elementary electron charge, C is a constant, k is
Boltzmann’s constant, and n is the ideality factor. A kT/q value closer to 1 indicates a
smaller trap-assisted recombination under VOC conditions [50]. The calculated n values of
the PSBOTz, PBB, and PbS-EDT-based devices were 1.45, 1.45, and 1.42, respectively, which
indicates a similar degree of trap-assisted recombination in all three devices.

The trap densities of the PSBOTz, PBB, and PbS-EDT-based devices were investigated
from the SCLC plots of the ITO/ZnO/PbS-EDT and CP/Al devices, as shown in Figure S9.
The trap density was calculated using Equation (9) [51]:
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VTFL =
qNL2

2ε0εr
(9)

where VTFL is the trap-filled limited voltage, which is set as the onset point where the
slope is drastically increased, L is the thickness of the pristine film layer, ε0 is the vacuum
permittivity, and εr is the dielectric constant (PbS-EDT: 21.2 and CP: 3.5). The N value
indicates the electron trap density, and the calculated values of PSBOTz, PBB, and PbS-EDT
were 9.49 × 1016, 8.95 × 1016, and 1.28 × 1017 cm−3, respectively. The PBB-based devices
exhibited the lowest trap densities among the three types of devices.

2.3. Dynamic Properties of QPDs

The dynamic characteristics of the NIR QPDs were evaluated from the transient
photovoltage (TPV) response upon square-wave 940 nm wavelength irradiation in the self-
powered mode, as shown in Figure 3b–d. The signal response time is defined as the time
required for the detection signal to evolve from 10 to 90 % (rising time, tr) or from 90 to 10%
(falling time, tf) of the steady-state voltage under a light intensity of 5.00 mW/cm2 [52]. As
shown in Figure 3c,d, the tr values of the PSBOTz, PBB, and PbS-EDT-based devices were
25, 14, and 33 µs, respectively. The PBB-based devices exhibited the fastest rising response
among the three types of devices. Regarding tf, the signal responses of the PSBOTz-, PBB-,
and PbS-EDT-based devices were delayed to 5.7, 2.6, and 12.6 ms, respectively, but the
PBB-based devices still showed the fastest response time among the three types of devices.
The highest hole mobility, lowest trap density, and well-aligned HOMO energy level of
PBB resulted in the fastest signal response in the QPDs. Interestingly, the falling response
speed of the PbS-EDT-based devices was extremely slow compared to the CP-based QPDs.
In general, a long carrier recombination lifetime in photodiodes results in a slow response
speed [53,54]. Therefore, the relatively long exciton lifetimes of CQDs could generate
residual Jph after removing the light sources, whereas the short exciton lifetime of CPs
could effectively remove the off-light Jph in the devices.

The −3 dB cut-off frequency (f−3dB) of the QPDs was measured using a collimated
940 nm LED with a power density of 5.0 mW/cm2 in the self-powered mode, as shown in
Figure 3e. The measured f−3dB values of the PSBOTz-, PBB-, and p-type PbS-based devices
were 4.1, 19.3, and 2.2 kHz, respectively. Notably, the frequency response of the PBB-based
devices was approximately one order of magnitude higher than the other devices. The
frequency response also exhibited a tendency similar to the TPV responses.

The noise equivalent power (NEP) and linear dynamic range (LDR) were calculated
using Equations (10) and (11), respectively, where Jmax and Jmin are the maximum and
minimum current density values, respectively, which are in a linear relationship between
Jph and Plight [51].

NEP
(

W
cm2

)
=

Jd
R

(10)

LDR (dB) = 20log
Jmax

Jmin
(11)

The calculated NEP values of the PSBOTz-, PBB-, and PbS-EDT-based devices were
2.69 × 10−7, 1.67 × 10−7, and 1.41 × 10−6 W/cm2, respectively, at a bias of −1.0 V. The
CPs were highly efficient in decreasing the NEP values owing to the low Jd values in the
devices, and this low NEP is advantageous for detecting low-intensity light. The LDR
values of the PSBOTz-, PBB-, and PbS-EDT-based devices were calculated to be 95, 107,
and 88 dB at −1.0 V, respectively as shown in Figure S8 [55]. The lower Jd values of the
CP-based devices also resulted in a better LDR.
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2.4. Morphological Characterization

The interfacial contact between the PbS-TBAI and CP layers is highly important for
improving the charge extraction at their interfaces. To evaluate this, the water contact angles
(θs) on the surfaces of the PbS-TBAI, PSBOTz, PBB, and PbS-EDT films were measured and
found to be 107◦, 101◦, 101◦, and 98◦, respectively (Figures 4a–c and S6). Interestingly, the
EDT treatment of the PbS CQDs drastically decreased their hydrophobicity, which implies
poor interfacial contact between the PbS-TBAI and PbS-EDT layers. On the other hand,
the CPs showed hydrophobicity similar to the PbS-TBAI layer; therefore, CP/PbS-TBAI
layer-by-layer can make better contact at the interfaces.

The surface roughness was analyzed by atomic force microscopy (AFM), as shown in
Figure 4d–f. The RMS roughness (Rq) values of the PSBOTz, PBB, and PbS-EDT films on
the PbS-TBAI layer were 1.7, 1.1, and 1.2 nm, respectively. All the films showed smooth and
uniform surfaces. Although the surface roughness of the PBB film was the lowest among
the three films, there is no meaningful difference.

Two-dimensional grazing incidence wide-angle X-ray scattering (2D GIWAXS) images
of pristine PSBOTz and PBB films, as shown in Figure 5, were compared to understand
the difference in the molecular ordering. Along the qxy axis, the two polymers did not
show any significant difference in the ordering, but along the qz axis, there were some
different ordering patterns. In the long-distance ordering area (0.2–1.0 Å−1), PSBOTz
showed lamellar ordering peaks with clear reflections at (100), (200), and (300), and the
corresponding d-spacing was 23 Å, whereas PBB showed clear (100) and (200) reflection
peaks with a smaller d-spacing of 21 Å. In the short-distance ordering area (1.0–2.0 Å−1),
PSBOTz showed two types of π–π stacking ordering at 1.35 and 1.72 Å−1, which correspond
to a d-spacing of 4.65 and 3.65 Å, respectively, whereas PBB showed a dominant strong π–π
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stacking at 1.51 Å-1 with a d-spacing of 4.16 Å. Since PBB has a shorter lamellar ordering
distance and a more dominant type of π–π stacking ordering than PSBOTz in the film state,
PBB could increase the hole mobility and reduce the trap densities in the devices.
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3. Materials and Methods
3.1. Materials Synthesis

Precisely, 3.04 g of lead acetate trihydrate (Pb(Ac)2·3H2O; Alfa Aesar) and 7 mL of
oleic acid (OA; technical grade, Sigma-Aldrich, Seoul, Korea) was dissolved in 40 mL
of 1-octadecene (ODE; 90%, Sigma-Aldrich, Seoul, Korea) at 90 ◦C for 2.5 h under vac-
uum conditions. The sulfur precursor solution was prepared by adding 0.750 mL of
hexamethyldisilathiane ((TMS)2S; synthesis grade, Sigma-Aldrich, Seoul, Korea) to 10 mL
of ODE. Then, the sulfur precursor solution was injected into the lead precursor solu-
tion and reacted for 5 s. After the reaction, 20 mL of toluene was injected into the re-
actor and cooled to room temperature. The synthesized CQDs were purified by cen-
trifugation with acetone and methanol. The precipitated CQDs were dried overnight
under vacuum and dispersed in n-octane before device fabrication. The concentrations
of the CQD solutions were 80 and 50 mg/mL in n-octane for the PbS-TBAI and PbS-
EDT layers, respectively. Poly(4-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-
b′]dithiophen-2-yl)-2,6-dioctylbenzo[1,2-d:4,5-d′]bis(oxazole)) (PBB) and poly[(4,8-bis(5-((2-
ethylhexyl)thio)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl)-alt-((5-bromo-4-
octylthiazol-2-yl)thiophene-2,5-diyl)] (PSBOTz) were synthesized according to our synthetic
procedures [14,41].

3.2. Device Fabrication

Indium-doped tin oxide coated glass (ITO) was used as the bottom transparent elec-
trode. The ITO films were sonicated for 20 min with acetone, distilled water, and isopropyl
alcohol. After sonication, the ITO films were stored in a vacuum oven at 80 ◦C overnight.
For the ZnO precursor solution, 0.45 M of zinc acetate dihydrate (Zn(Ac)2·2H2O, Alfa Aesar,
Gongduk-Dong, Mapo-Gu, Korea) and 0.45 M of monoethanolamine (Sigma-Aldrich, Seoul,
Korea) were dissolved in 2-methoxyethanol at 60 ◦C for 3 h. The precursor solution was
cooled and aged for 1 d. Before the spin-coating process, the ITO films were subjected to
ultraviolet ozone (UV O3) treatment for 20 min. The prepared ZnO precursor solution was
coated onto ITO at 3000 rpm for 30 s and then thermally annealed at 220 ◦C for 10 min.
The ZnO coating process was repeated once more to obtain a suitable thickness. For the
n-type CQD layer, the CQD solution was coated onto the ZnO-coated ITO at 2000 rpm for
10 s. Precisely, 20 mM of tetrabutylammonium iodide (TBAI; Sigma-Aldrich, Seoul, Korea)
in methanol was used for the ligand exchange process for 30 s and rinsed with methanol
twice. The PbS-TBAI layer coating process was repeated five times. The PbS-EDT layer,
which was used as the control device, utilized a 50 mg/mL CQD solution and 4 mM of
1,2-ethanedithiol in ACN solution. The PbS-EDT layer coating process was similar to the
n-type CQD layer and was repeated twice. The polymer HTL solution was prepared by
dissolving the polymer in chlorobenzene at a concentration of 5 mg/mL in a N2-filled glove
box. After stirring overnight, each polymer HTL solution was coated onto the PbS-TBAI
layer at 2000 rpm for 40 s and then thermally annealed at 80 ◦C for 5 min. MoOX and Ag
were thermally deposited under high vacuum conditions (<10−6 Torr) and acted as the
hole-blocking layer and top electrode, respectively. The final active area was calculated
as 0.09 cm2.

3.3. Device Characterization

The absorbance spectra were measured using a UV/Vis spectrometer (Scinco Mega-
800, Seoul, Korea). Morphological images were obtained using atomic force microscopy
(AFM; SPA400, SII, Chiba, Japan) in the tapping mode. Field emission scanning electron mi-
croscopy (FE-SEM; JSM-7610F, JEOL Ltd., Tokyo, Japan) was used to confirm the thickness
of each layer in the device. The current density–voltage (J–V) curve was obtained using
a source meter (Keithley 2602B, Cleveland, Ohio, USA). A collimated NIR LED (M940L4,
Thorlabs, Newton, N.J. USA) was used to illuminate NIR light in the device. An external
quantum efficiency (EQE) spectrometer (QuantX-300, Newport, RI, USA) was used to
record the EQE spectrum as a function of the wavelength. The charge carrier mobility was
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calculated using the space-charge-limited current (SCLC) method with the Mott–Gurney
law. The hole-only device (ITO/PEDOT:PSS/PbS-EDT or CP/MoOx/Ag) was measured
under dark conditions to evaluate the hole mobility.

4. Conclusions

We synthesized and utilized two types of CPs, PSBOTz and PBB, to replace the
PbS-EDT layer for high-performance QPDs. The HOMO energy levels of PSBOTz, PBB,
and PbS-EDT were −5.3, −5.5, and −5.0 eV, respectively, and only PBB showed well-
aligned HOMO energy levels in the QPDs. In addition, the PBB polymer exhibited the
highest hole mobility of 9.6 × 10−3 cm2/V·s among the three types of hole-transporting
materials. More importantly, the low dielectric constant and insulating properties of
the CPs under dark conditions effectively suppressed Jd in the QPDs. Therefore, the D*
values of the PBB-based devices were four times higher than those of the PbS-EDT-based
devices. A significant enhancement in the QPD performance was achieved in the dynamic
characteristics. The f−3dB of the PBB-based devices was 19.3 kHz, which was one order of
magnitude higher than the other devices. The TPV measurements revealed that both tr and
tf were significantly decreased in the PBB-based devices. The sizable molecular ordering
and fast hole transport of PBB in the film state, and the low trap density, well-aligned
energy levels, and good interfacial contact in the PBB-based devices greatly improved the
dynamic characteristics of the QPDs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27217660/s1. Figure S1: X-ray diffraction spectrum
of PbS CQD coated on ITO-patterned glass, Figure S2: (a) UV/Vis absorption spectra and (b) TEM
image of synthesized OA-capped PbS CQDs, Figure S3: 1H NMR of PSBOTz, Figure S4: 1H NMR of
PBB, Figure S5: GPC results for PSBOTz, Figure S6: GPC results for PBB, Figure S7: FT-IR spectra of
(a) PSBOTz and (b) PBB conjugated polymers, Figure S8: Linear dynamic range results for (a) PSBOTz,
(b) PBB, and (c) PbS-EDT based devices at −1.0 V bias, Figure S9: SCLC plots using an electron-only
device (ITO/ZnO/PbS-EDT or CP/Al) for the trap density calculation, Figure S10: Water contact
angle result for PbS-TBAI pristine film, Figure S11: Cross-sectional SEM images of (a) PSBOTz,
(b) PBB, and (c) PbS-EDT based devices, Table S1: Summary of optical and electrochemical properties
of the CPs in this study, Table S2: Summary of calculated hole mobility, maximum charge generation
rate, and trap density value of each fabricated device.
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