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Abstract: Electroencephalography (EEG) and near-infrared spectroscopy (NIRS) are non-invasive

neuroimaging methods that record the electrical and metabolic activity of the brain, respectively.

Hybrid EEG-NIRS brain-computer interfaces (hBCIs) that use complementary EEG and NIRS

information to enhance BCI performance have recently emerged to overcome the limitations of

existing unimodal BCIs, such as vulnerability to motion artifacts for EEG-BCI or low temporal

resolution for NIRS-BCI. However, with respect to NIRS-BCI, in order to fully induce a task-related

brain activation, a relatively long trial length (≥10 s) is selected owing to the inherent hemodynamic

delay that lowers the information transfer rate (ITR; bits/min). To alleviate the ITR degradation,

we propose a more practical hBCI operated by intuitive mental tasks, such as mental arithmetic (MA)

and word chain (WC) tasks, performed within a short trial length (5 s). In addition, the suitability of

the WC as a BCI task was assessed, which has so far rarely been used in the BCI field. In this

experiment, EEG and NIRS data were simultaneously recorded while participants performed

MA and WC tasks without preliminary training and remained relaxed (baseline; BL). Each task

was performed for 5 s, which was a shorter time than previous hBCI studies. Subsequently,

a classification was performed to discriminate MA-related or WC-related brain activations from

BL-related activations. By using hBCI in the offline/pseudo-online analyses, average classification

accuracies of 90.0 ± 7.1/85.5 ± 8.1% and 85.8 ± 8.6/79.5 ± 13.4% for MA vs. BL and WC vs. BL,

respectively, were achieved. These were significantly higher than those of the unimodal EEG- or

NIRS-BCI in most cases. Given the short trial length and improved classification accuracy, the average

ITRs were improved by more than 96.6% for MA vs. BL and 87.1% for WC vs. BL, respectively,

compared to those reported in previous studies. The suitability of implementing a more practical

hBCI based on intuitive mental tasks without preliminary training and with a shorter trial length was

validated when compared to previous studies.
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1. Introduction

A hybrid brain-computer interface (BCI) refers to a BCI system that combines two or more different

types of brain signals or one brain signal with another bio-signal, such as electrooculogram (EOG) or

electromyogram (EMG) [1]. However, the latter case could be referred to as hybrid human-computer

interface (HCI), considering that BCI is originally used for paralyzed patients who cannot produce

a reliable bio-signal with residual muscles [2–4]. Thus, hybrid BCI will be hereafter referred to as

a BCI system developed based on different types of brain signals. Typically, hybrid BCIs provide a

higher classification accuracy than those of unimodal BCIs based on electroencephalogram (EEG),

near-infrared spectroscopy (NIRS) [5], or functional magnetic resonance imaging (fMRI) [6–8]. They can

also simultaneously employ the advantages of different modalities, such as a high temporal resolution

of EEG, robustness to the physiological artifact of NIRS, and high spatial resolution of fMRI [9,10].

Therefore, several researchers have focused on hybrid BCIs and introduced a variety of interesting

hybrid BCI systems [11–18].

Because of compact size, non-invasiveness, and usability, EEG is the most popular brain imaging

modality used for developing BCIs [3,19]. However, it is susceptible to electrical noise and motion

artifacts [20]. The NIRS is relatively robust to electrical noise [21–25], and thus, the disadvantage of

a conventional EEG-BCI is compensated if both EEG and NIRS are combined for developing BCIs.

The most important advantage obtained when NIRS is combined with EEG is that the information not

included in the EEG is obtained because the NIRS hemodynamic response is a physiological signal

induced by a mechanism different from that of the EEG [26]. Hence, combining EEG and NIRS are

well suited for the hybrid BCI as their advantages and disadvantages are complementary. Therefore,

the hybrid EEG-NIRS BCI (hereafter referred to as hBCI) has received increased attention from several

researchers [27,28]. By using hBCI, Fazli et al. [5] verified the improvement of binary classification

accuracy using motor imagery (MI), and Khan et al. [29] and Yin et al. [30] confirmed the enhanced

BCI efficiency by increasing the number of available BCI commands. Furthermore, open-access hBCI

datasets were released to satisfy the increasing interest for hBCIs [31,32]. Recently, a compact hBCI

system was proposed to improve the portability of the hBCI [33,34].

However, standard hBCIs also exhibit disadvantages, such as a longer single trial length (i.e., time

taken from the task onset to the end of the rest period) than that of a unimodal EEG-BCI because

the hBCI depends on the EEG, and NIRS suffering from an inherent hemodynamic delay [35]. Thus,

the performance of the hBCI in terms of information transfer rate (ITR in bits/min) is unavoidably

limited. Therefore, to increase the ITR, the trial length should be reduced while preventing a

degradation in the classification accuracy.

BCI users may not use a system that is inconvenient and requires a long training time. For instance,

a MI-based BCI is the most commonly used BCI which requires a long period of preliminary training

because most people do not easily understand how they can have a concrete feeling of motor imagery

(kinesthetic motor imagery) and tend to imagine an image of moving their body parts (visual motor

imagery) instead. Although several studies have introduced MI-based BCI systems based on minimal

(or no) training, approximately a quarter of the participants could not produce consistent MI-related

brain patterns [36,37]. This was confirmed in our recent study performed with 29 participants [31],

where approximately 24% (seven out of 29) of the participants did not show an acceptable classification

accuracy higher than a theoretical chance level of 60% [38] for the MI-BCI. Co-adaptive training has

reduced the percentage of participants unable to perform the MI-BCI [36,39,40]. Thus, the development

of BCI systems that require short preliminary training or ideally no training and use clear task-related

responses is essential to ensure that the BCI system become more practical. In this study, a mental

arithmetic (MA) or word chain (WC) task was used to implement a practical and effective BCI system

as an alternative to MI because MA and WC tasks require little preliminary training and are intuitive.

All individuals can readily understand how to concretely perform MA and WC tasks and clear

task-related responses emerge without intensive preliminary training [32,33,41]. Therefore, MA and

WC tasks were considered as intuitive mental tasks.
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In this study, to implement a more practical hBCI with a higher ITR, the following two aspects

were considered: (1) reduced trial length and (2) intuitive mental tasks requiring little preliminary

participant training, such as MA and WC. While MA has been frequently used in BCI studies, the WC

task was first introduced in our recent BCI study [32] and followed by another BCI study [42]. Because

the ITR as a function of the trial length can be significantly degraded using a relatively long trial length

(e.g., ≥10 s) owing to the inherent hemodynamic delay, a 5-s trial length was used to increase the

theoretically reachable ITR. The degradation of the classification accuracy owing to an insufficient

development of the task-related hemodynamic response within 5 s was compensated by adding EEG

data. Hence, the overall ITR could be larger than that of conventional hBCI studies with a long trial

length (≥10 s) [29,31–33].

2. Materials and Methods

2.1. Participants

Ten participants (five males and five females, 27.6 ± 4.9 years [mean ± standard deviation]) were

recruited for this study. All experiments were performed in Berlin with Korean participants who

were recruited via a local Korean community website in Germany. None of the participants reported

neurological, psychiatric, or other brain-related diseases that could affect the results of the study.

The participants were informed of the experimental procedure, and they signed a written consent

form prior to participation. After the experiment, they were financially compensated. The study was

conducted in accordance with the declaration of Helsinki and was approved by the Ethics Committee

of the Institute of Psychology and Ergonomics, Berlin Institute of Technology (approval number:

SH_01_20150330).

2.2. Instrumentation

The EEG data were recorded by the BrainAmp EEG amplifier (Brain Products GmbH, Gilching,

Germany) with a linked mastoids reference at a sampling rate of 1000 Hz after analog band-pass

filtering from 0.016 to 1000 Hz. Twenty-two active electrodes were fixed on a custom-made elastic cap

(EASYCAP GmbH, Herrsching, Germany) and placed at AFp1, AFp2, AFF1h, AFF2h, AFF5h, AFF6h,

F3, F4, F7, F8, Cz, C3, C4, T7, T8, Pz, P3, P4, P7, P8, POO1, and POO2. The ground electrode was

placed on Fz [28]. The NIRS data were recorded by NIRScout (NIRx GmbH, Berlin, Germany) at a

sampling rate of 12.5 Hz. Five light sources and three detectors resulting in nine channels were fixed

on the same cap as the EEG electrodes around Fpz. The inter-optode distance was 30 mm. Figure 1

shows the placement of the EEG electrodes and NIRS channels. The EEG electrodes were uniformly

distributed over the scalp. However, because it is widely known that brain activity related to MA and

WC tasks is observed in the (pre)frontal area [31,43,44], EEG electrodes located in the (pre)frontal area

were only employed for the data analysis (see Figure 1). The NIRS channels were originally located

only on the prefrontal cortex (PFC).

The EEG amplifier was also used to measure the EOG that was recorded at the same sampling

rate as that of the EEG using two vertical (above and below the left eye) and two horizontal (the outer

canthus of each eye) electrodes. The EEG, NIRS and EOG signals were simultaneously recorded.

To synchronize the signals, external triggers were sent to each amplifier through parallel ports using

MATLAB (MathWorks, Natick, MA, USA).
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Figure 1. Placement of the EEG electrodes (yellow with labels) and the location of the NIRS channels

(red). A ground electrode (gray) was located at Fz. An NIRS channel was created by a pair of

neighboring source and detector optodes. Only EEG and NIRS channels within the (pre)frontal area

denoted by the green dashed line were used for the data analysis.

2.3. Experimental Paradigm

The participants sat on a comfortable armchair in front of a 50-inch white screen. The distance

between the participants and the screen was approximately 1.6 m. The experiment was composed

of three sessions involving three types of tasks: MA, WC, and baseline (BL). During the MA task,

the participants were instructed to perform continuous single digit (between 6 and 9) subtraction

from a random three-digit number (e.g., 567-8: 567-8 = 559, 559-8 = 551, 551-8 = 543, etc.). During

the WC task, the participants were instructed to continuously come up with a word starting with

the last letter of a former word (e.g., in English: B: Boy–year–rabbit–tree, etc.) as fast as possible.

The participants were instructed to avoid repeating the same words. The WC task was performed in

the participants’ native language (Korean). Because the first letter changed depending on the word the

participants came up with, it was difficult to control the level of task difficulty with the initial letter of

the WC task. Thus, different initial letters were presented for the participants to avoid getting used

to the task. The participants reported that they had produced approximately four to five words for

each trial. During the MA and WC tasks, the participants did not articulate the answers because lip

motions may have contaminated the EEG and NIRS signals. However, an experimental supervisor

educated the participants on how to perform the task prior to the experiment, and the supervisor

repeatedly asked the participants to be get involved in the experiment sincerely at the end of every

single session. For the BL, the participants were asked to relax without any thoughts. Figure 2 shows

a schematic diagram of the experimental paradigm. Before and after a session, pre- and post-rest

were conducted for 1 min with a fixation cross displayed on the screen. A single session comprised

30 trials (10 repetitions per task). Each trial started with 2 s corresponding to the visual introduction

of the task. In the instruction period, an initial calculation problem (a random three-digit number

minus a single-digit number between 6 and 9) or a single letter was given for the MA and WC tasks,

respectively. A fixation cross was displayed for the BL. After the instruction period, a task period of

5 s, which was shorter than that of previous studies (10 s) [45–47]. A fixation cross was shown to avoid

unnecessary ocular movement. The task period ended with a “STOP” sign on the screen and was

followed by a resting period that was randomly assigned between 13 and 15 s. At the beginning and

end of the task period, a short beep (250 ms) was played. All instructions were displayed on the screen

by a video projector.
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Figure 2. Schematic sequence diagram of the experimental paradigm for one session. Each session

consists of a 15-s resting period, 30 repetitions of a given task, and a 15-s resting period. Each task starts

with a 2-s visual introduction, followed by a 5-s task period and a 13–15-s rest period starting with a

“STOP” sign on the screen for 2 s. At the beginning and end of the task period, a short beep was played

for 250 ms. At the instruction, +, A, and 567-8 indicate the baseline (BL), word chain (WC), and mental

arithmetic (MA) tasks, respectively. The red vertical line indicates the task onset. The task onset was

the time when the participants started to perform the numerical calculation (MA), state words (WC),

and be relaxed (BL).

2.4. Preprocessing

In this study, all data analyses were performed using MATLAB R2013b. With respect to EEG,

as previously mentioned, 10 (pre)frontal EEG channels (AFp1, AFp2, AFF1h, AFF2h, AFF5h, AFF6h,

F3, F4, F7, and F8) were only involved in the data analyses. The raw EEG data were first band-pass

filtered between 1–40 Hz, and then an independent component analysis (ICA)-based EOG correction

was performed using the automatic artifact rejection toolbox of EEGLAB [48]. The classification

performance obtained using the original data without EOG rejection and EOG-free data was compared;

however, there was no significant difference (results are not shown here). The preprocessed EEG

signals were then downsampled by decimation to 100 Hz, during which an anti-aliasing (low-pass) FIR

filter was also applied to avoid aliasing. A time-frequency analysis for each task was performed using

the EEGLAB toolbox [49]. For the NIRS data, concentration changes of deoxy- and oxy-hemoglobin

(HbR and HbO) were first calculated using the modified Beer-Lambert law [50]. The chromophore

data were band-pass filtered (sixth order zero-phase Butterworth filter with passband of 0.01–0.2 Hz)

to eliminate physiological noises. Band-pass filtering is a most common method to remove global

physiological noises, such as Mayer wave, cardiac pulse, respiration, etc. [21]. The continuous EEG

and NIRS data were segmented into epochs from t = −5 to 5 s relative to the task onset. A baseline

correction was performed by subtracting the average value between −5 and −2 s because it was

assumed that a participant may begin performing a corresponding task during the instruction period

(−2–0 s).

2.5. Features

For the EEG, the signals were band-pass filtered with multiple passbands of θ (4–8 Hz),

α (8–13 Hz), and β (13–30 Hz) bands given the good temporal stability of MA- and WC-related EEG

patterns in the α (8–13 Hz) and β (13–30 Hz) bands [51] and various participant-specific discriminative

EEG spectra, including the θ (4–8 Hz) band [33]. The filter bank common spatial pattern (FBCSP) was

applied to the processed signals [52–56]. The features were extracted using the log-variance of the first

and last three CSP components within a time window between 0 and 5 s (from the task onset to the

end of the task period) from all the EEG electrodes. For the NIRS data, even though the hemodynamic

response might not be fully developed owing to the inherent hemodynamic delay, the mean value

and average slope of the time courses of HbR and HbO between 0 and 5 s were only considered to
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obtain high ITRs by not using an analysis data length longer than the task period of 5 s. To capture the

precise characteristics of the NIRS signals, three sub-time windows (0–2, 2–4, and 4–5 s) were used

to calculate two types of features, and the feature vector was constructed using the mean and slope

features extracted from the three sub-windows for HbR and HbO, separately. The same trial length of

5 s was used for the EEG and NIRS data analyses to compare the performance (classification accuracy

and ITR) of the EEG, NIRS, and hBCI fairly.

2.6. Classification

A shrinkage linear discriminant analysis (sLDA) was used as a classifier [57,58]. The sLDA

effectively mitigates the degradation of the classification accuracy owing to the high dimensionality of

the feature vectors by replacing the empirical covariance matrix Σ with (1 − λ)Σ + λI, where λ and

I are the regularization parameter and identity matrix, respectively. The optimal λ was determined

based on the Ledoit-Wolf lemma [59–62]. A 10 × 5-fold cross-validation was applied to perform

an offline evaluation of the classification. The same classifier and cross-validation approach were

applied to both EEG and NIRS data. Three individual classifiers were used for EEG, HbR, and

HbO. The dimensionality of the EEG feature vector was the (number of CSP components × number

of pass-bands) × number of trials, and those of HbR/HbO were the (number of NIRS channels ×

number of sub-time windows × number of features) × number of trials. Then, a meta-classification

method was employed. Two possible combinations of the outputs of three individual classifiers were

formed (i.e., HbR+HbO and EEG+HbR+HbO) to construct two feature vectors for two meta-classifiers.

The dimensionality of the two feature vectors were the number of classifier outputs (2 [HbR+HbO] or

3 [EEG+HbR+HbO]) × number of trials, respectively. The meta-classifiers were trained based on the

training samples and then tested based on testing samples. The EEG, NIRS, and hBCI classification

accuracies corresponded to those obtained using the EEG, HbR+HbO, and EEG+HbR+HbO datasets,

respectively [5]. To sum up the meta-classification approach: a hierarchical classification method was

used that consists of two layers. In the first layer, the EEG and NIRS data were independently classified

using two sLDAs. The outputs of the individual sLDA classifiers formed a feature vector for a new

sLDA classifier in the second layer, and then the new sLDA gives a final classification result. In addition,

a pseudo-online simulation was performed to examine the feasibility of implementing an online hBCI

system based on our paradigm, wherein a session-wise cross-validation was performed. Thus, a test

set did not contain the data from other sessions included in a training set. A classifier should be built

using the (training) dataset that temporally preceded a test dataset in a pseudo-online simulation

(i.e., training a classifier with the data obtained in the first and second session [20 trials], and testing

the classifier with the data obtained in the third session [10 trials]). The pseudo-online analysis was

performed for simplicity with the assumption that each session was independent in violation of a strict

causal validation procedure (empirically the data results did not change significantly). Ideally, a causal

leave-one-out cross-validation procedure would be the most appropriate, however computationally

challenging. With the exception of the constitution of training and test dataset, the methods identical

to those used in the offline analysis were used for the pseudo-online analysis. Only two types of

binary classification, MA vs. BL and WC vs. BL, were performed because MA vs. WC and the ternary

classification (MA vs. WC vs. BL) did not show reasonable classification performance even though

they showed somewhat unique spatiotemporal patterns (see Section 3.2).

2.7. Information Transfer Rate

The ITR (bits/min) is a common metric to assess the performance of BCI systems. The ITR

is calculated based on the number of trials per minute (m), number of available commands (N),

and classification accuracy (P) as follows [3,19]:

ITR = m ×

(

log2 N + P log2 P + (1 − P) log2

1 − P

N − 1

)

(1)
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where N was 2 in this study.

2.8. Statistical Test

In this study, a Friedman test was performed to compare the BCI performances of the EEG, NIRS,

and hBCI, and a Wilcoxon signed rank test with a false discovery rate (FDR) correction was performed

as a post-hoc analysis.

3. Experimental Results

3.1. EEG Characteristics

Figure 3 shows the event-related EEG (de)synchronization (ERD/S) averaged over all participants

for MA, WC, BL, MA-BL (i.e., ERD/S difference between MA and BL), and WC-BL. The ERD/S was

calculated by averaging the spectral power changes measured at the 10 frontal electrodes (AFp1, AFp2,

AFF1h, AFF2h, AFF5h, AFF6h, F3, F4, F7, and F8). The ERD/S was estimated using the event-related

spectral perturbation algorithm in EEGLAB (window size: 5120 ms with either a sliding step of 80 or

90 ms). The sub-windows were zero-padded with a pad-ratio of 2, resulting in a frequency resolution

of approximately 0.1 Hz. A strong ERD was observed in the α band at approximately 10 Hz prior to

the task onset while performing the MA or WC task, and this might have been from the preceding

task introduction starting at −2 s. For the MA task (see MA and MA-BL), a narrow-band strong ERD

at approximately 10 Hz and broad-band ERD in the β-band (15–30 Hz) were observed. The ERS in

the θ-band and the high α-band (10–13 Hz) were also significantly observed in the early stage of the

task period (0–5 s). For the WC task (see WC and WC-BL), the ERD was observed around the whole

frequency bands, and specifically a prominent ERD was observed in the δ-, α-, and high-β bands.

α
−

β θ α

δ α β

 

Figure 3. Event-related (de)synchronization (ERD/S) induced by MA, WC, BL, MA-BL (difference

between MA and BL), and WC-BL (difference between WC and BL) in the frontal area. The results are

calculated by averaging the spectral power changes measured at the 10 frontal electrodes (AFp1, AFp2,

AFF1h, AFF2h, AFF5h, AFF6h, F3, F4, F7, and F8). A common colorbar for all five subplots indicates

the range of the map in dB. The gray patches indicate the task period of 0–5 s.
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However, in contrast to the MA task, a distinct ERS was not observed in any frequency band.

For the BL, no distinct ERD/S was detected when compared to the MA and WC tasks with the

exception of the weak ERD in the α-band (approximately 10 Hz).

3.2. NIRS Characteristics

The changes in the spatial distributions of the grand average hemodynamic responses over time

are shown in Figure 4. Figure 4a corresponds to the HbR changes for the MA, WC, and BL tasks.

During the task period (0–5 s) shown in Figure 4a, the HbR gradually decreased owing to the MA

or WC task as the time increased, and the lowest decrease in HbR was observed at the end of the

task period (4–5 s). The HbR induced by the WC decrease appeared more broadly at the left-side

channels than that induced by the MA task. However, a subtle change in the HbR induced by the BL

was observed. Figure 4b shows the HbO changes exhibited a trend opposite to HbR. While performing

the MA or WC task, the HbO gradually increased. In contrast to HbR, a distinct change in the HbO

was observed at 2–4 s. For the BL, the HbO gradually increased as time increased, but not significant

as compared to MA and WC.

α

 

Figure 4. Scalp plot of (a) HbR and (b) HbO at given time periods for the MA, WC, and BL tasks.

The colorbars indicate the amplitude in mmol/L.

3.3. Classification Accuracy

Figure 5 shows the offline binary classification accuracies of each participant for EEG, NIRS,

and hBCI. For MA vs. BL, the average EEG and NIRS classification accuracies were 84.9 ± 7.0%

and 79.1 ± 12.1% (mean ± standard deviation), respectively. For WC vs. BL, the average EEG and

NIRS classification accuracies were 78.7 ± 7.4% and 77.4 ± 9.4%, respectively. The hBCI classification

accuracies were 90.0 ± 7.1% and 85.5 ± 8.1% for MA vs. BL and WC vs. BL, respectively. The hBCI

classification accuracies were significantly higher (corrected p < 0.01) than those of the NIRS and EEG

in both cases (MA vs. BL and WC vs. BL).
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Figure 5. Individual and average offline binary classification accuracies of the EEG (blue), NIRS (red),

and hBCI (green) for MA vs. BL (top) and WC vs. BL (bottom). The error bars indicate the standard

deviations of the individual accuracies. The red and black dashed lines are the threshold of the effective

binary BCI (>70%) and the theoretical chance level of 60% (p < 0.05) [38]. The significant difference

between the average classification accuracies of the EEG, NIRS, and hBCI are denoted by asterisks

(** corrected p < 0.01).

The pseudo-online classification results are shown in Figure 6. The pseudo-online hBCI

classification accuracies (85.8 ± 8.6% and 79.8 ± 10.2%) were higher than those of the EEG (81.5 ± 8.1%

and 73.2 ± 6.2%) and NIRS (75.0 ± 13.6% and 74.3 ± 10.6%) in both cases (MA vs. BL and WC vs. BL).

When compared with the hBCI classification accuracy, in both cases, significant differences in the NIRS

classification accuracy were observed (corrected p < 0.05).

 
(a) 

Figure 6. Cont.
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(b) 

Figure 6. Individual and average pseudo-online binary classification accuracies of the EEG (blue),

NIRS (red), and hBCI (green) for MA vs. BL (a) and WC vs. BL (b). The error bars indicate the standard

deviations of the individual accuracies. The red and black dashed lines are the threshold of the effective

binary BCI (>70%) and the theoretical chance level of 60% (p < 0.05) [38]. The significance difference

between the average classification accuracies of the EEG, NIRS, and hBCI are denoted by an asterisk

(* corrected p < 0.05).

3.4. Information Transfer Rate

Figure 7 shows the ITR comparison between this study and previous hBCI studies [31–33].

The light and dark gray dashed lines denote the theoretical ITRs given the trial length (5 s in this

study and 10 s in previous studies [31–33]). The average ITRs and their standard deviations are shown

on the left side of the figure. The circle and square symbols indicate the individual ITRs examined

in the current and previous studies, respectively. As shown in Figure 7, hBCI ITRs of 6.88 ± 2.87

and 5.24 ± 2.48 bits/min were obtained on average for MA vs. BL and WC vs. BL, respectively.

The hBCI ITRs were significantly higher to those of the EEG and NIRS for both cases (corrected

p < 0.01). For MA vs. BL, given the short trial length (5 s), the average ITRs were 96.6% and 127.8%

higher than the average ITRs in previous studies [31,33]. For WC vs. BL, the average ITR was 87.1%

higher than that in a previous study [32].

Figure 7. Cont.
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Figure 7. Comparison of the ITRs as a function of the classification accuracy: (a) MA vs. BL and

(b) WC vs. BL. The scatter plots comparing the ITRs of the EEG or NIRS verses those of the hBCI (blue:

EEG vs. hBCI and red: NIRS vs. hBCI) for (c) MA vs. BL and (d) WC vs. BL. In (c,d), the circles above

the black dashed lines indicate that the individual ITRs of the hBCI are higher than those of the EEG or

NIRS. The p-values indicate the significance.

4. Discussion

This study focused on the implementation of a more practical hBCI with improved ITR by

employing intuitive mental tasks and shortening the trial length. Given the inherent hemodynamic

delay [35], a task-related hemodynamic response was insufficiently developed within the task period

(<5 s). To overcome this issue, three sub-time windows were employed to capture the precise

characteristics of the NIRS signals, and the EEG data with good temporal resolution were added.

This approach led to significantly improved ITR as well as classification accuracy. In addition,

the suitability of the WC task (a verbal fluency task) as a BCI task was validated.

In contrast to the concern that the short trial length was not sufficient to fully develop

the task-related hemodynamic response and results in relatively low performance, the mean

offline/pseudo-online NIRS classification accuracies exceeded 70%, irrespective of the type of task

performed when three sub-time windows were used for the classification. This result was comparable

to those in previous studies [31,44,63], which showed an average classification accuracy higher than

70%, with a threshold of an effective binary BCI [36,39,40] using a relatively long trial length (10 s).

Thus, the classification accuracy was not considerably degraded despite using a relatively short trial

length (5 s). In spite of the short trial length, the results confirmed that the classification accuracy

was significantly higher by combining the EEG and NIRS data than that of the unimodal NIRS- or

EEG-BCI, irrespective of the type of mental task.

In this study, a single-digit number between 6 and 9 was used as the subtrahend to maintain a

higher task difficulty than using a subtrahend between 1 and 5, thereby providing a cognitive load to

the participants and preventing easy adaptation to the calculation. However, it was difficult to evaluate

the exact level of task difficulty for different subtrahends between 6 and 9 because the difficulty level

was also dependent on the three-digit number that changed whenever a subtraction was performed.

Thus, the use of subtrahends between 6 and 9 was assumed to result in a similar difficulty level of

the MA task. Many previous NIRS-BCI studies [29,64,65] also used the same approach. However,

variations of the task difficulty owing to different subtrahends could be further investigated to take

advantage of the difficulty level to increase the BCI performance.

In contrast to a long trial length of 10 s used in all previous hBCI studies, which is generally

used in NIRS-BCIs [31–33], the task duration of 5 s sufficiently induced task-related brain activation
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for EEG-BCI because the EEG exhibits good temporal responsiveness. Therefore, as known from

the literature reporting that EEG and NIRS are complementary, resulting in an improved BCI

performance [5], it is effective to improve the NIRS-BCI performance by adding the EEG.

Initial dip features of the NIRS signals that can be extracted at 0–2.5 s based on the task onset are

potentially good candidates, although these do not lead to better classification accuracy as indicated by

previous studies [66,67]. Moreover, since the initial dip in the hemodynamic signal shows a negative

peak around 2 s and return to the baseline level before 5 s [68,69], the initial dip function can be

approximated with a mixture of the Gaussian functions and a general linear regression analysis

(which is frequently performed in fMRI and NIRS analyses). Using an initial dip model function

may thus be useful to appropriately extract the meaningful features. In this study, even though

we did not explicitly employ these initial dip features for the NIRS signal, the features may still be

captured implicitly through preprocessing with three separated time windows (0–2, 2–4, and 4–5 s) for

feature extraction.

The results of the pseudo-online hBCI simulation for MA vs. BL and WC vs. BL were inferior

to the offline classification accuracy (p = 0.0078 and 0.0039, respectively) because a chronological

split usually yields more conservative results than a random sampling [5]. Figure 6 showed the

pseudo-online analysis results, and only one NIRS case contained a classification accuracy lower than

the theoretical chance level of 60% for MA vs. BL (participant 10). In addition, an online classification

was emulated as a function of the number of training samples. The classification accuracy gradually

increased as the number of training samples increased. Considering the effective binary BCI threshold

of 70%, more than 10 and 15 samples were required as training samples for MA vs. BL and WC vs. BL,

respectively. For more details, see the Supplementary Information. Overall, the pseudo-online analysis

results implied that it was possible to successfully apply the proposed BCI paradigm to develop an

online BCI system based on our experimental setting. The WC task within the short trial length is

potentially appropriate for online hBCI implementation. In addition, the calibration phase should

be optimized to directly apply our suggestion to the online classification experiment. In this study,

20 trials per task were used for the pseudo-online classifier training. Thus, 10–15 min are required to

calibrate the classifier to implement the online BCI system. The optimal or necessary length of the

calibration time remains unknown. To improve the practicality, this should be examined in future

studies. Additional analysis results in the Supplementary Information provide second-hand evidence

that a minimum of 10 training samples are required for MA vs. BL and a minimum of 15 training

samples are required for WC vs. BL.

Previous studies on BCI have adopted MA as a BCI task because MA induces reliable brain

activations with high reproducibility [70–72]. Mental singing (music imagery) [44,63], mental

rotation [70,73], and verbal fluency, such as phonemic silent word generation and semantic silent word

generation, were also frequently used [73,74]. However, the WC task is a verbal fluency task that has

been rarely used in previous BCI studies. A comparison of task-induced ERD/S characteristics between

the MA and WC tasks was shown in Figure 3. Similar characteristics (ERD) in the α- and high-β

bands were observed accompanying the task-specific unique characteristics in other frequency bands.

Similarly, as shown in Figure 4, the spatiotemporal characteristics of the task-induced hemodynamic

responses between the MA and WC tasks partly overlapped, although they also exhibited their own

unique patterns. However, the unique patterns were not enough to be distinguished based on a single

trial classification. Moreover, the WC task exhibited significantly different spatiotemporal patterns with

respect to the ERD/S and hemodynamic responses than those of the BL and resulted in a meaningful

classification accuracy between the WC and BL tasks. The WC task is also intuitive and does not

require preliminary training, as required by MA, and thus the WC task could be an adequate mental

task for developing a BCI. The WC task could be also used to examine the participant-dependent

optimal BCI task pair that shows a high classification accuracy [70]. Furthermore, because the WC task

has been rarely employed in BCI studies, it would be interesting to examine the difference in the BCI

performance for the traditional verbal fluency task [75,76].
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5. Conclusions

In the study, promising classification accuracy was achieved with a shorter trial length using

the hBCI system, and significant improvements were validated in the ITR owing to the improved

classification accuracy of the hBCI system and the reduced trial length. In addition, the WC task

achieved a competitive BCI performance in terms of the classification accuracy when compared with

that of the MA task. The pseudo-online emulation results implied that the proposed BCI paradigm

could be potentially applied to an online BCI system.

Supplementary Materials: The following is available online at http://www.mdpi.com/1424-8220/18/6/1827/s1,
Figure S1: Time courses of concentration changes of (a) HbR and (b) HbO for mental arithmetic (MA), word chain
(WC), and baseline (BL), Figure S2: Classification accuracy for MA vs. BL and WC vs. BL as a function of the
number of training samples.

Author Contributions: J.S., D.-W.K., K.-R.M. and H.-J.H. designed the experiments. J.S. and D.-W.K. performed
the experiments. J.S., D.-W.K. and H.-J.H analyzed the data. All authors wrote and reviewed the paper.

Funding: The study was supported by Institute for Information & Communications Technology Promotion
(IITP) grant funded by the Korea government (No. 2017-0-00451). The study was also supported by the Basic
Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry
of Science, ICT & Future Planning (NRF-2015R1C1A1A02037032) and by the National Research Foundation
of Korea(NRF) grant funded by the Korea government (MSIP; Ministry of Science, ICT & Future Planning)
(No. 2017R1C1B5017909). Correspondence to K.-R.M. and H.-J.H.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pfurtscheller, G.; Allison, B.Z.; Brunner, C.; Bauernfeind, G.; Solis-Escalante, T.; Scherer, R.; Zander, T.O.;

Müller-Putz, G.; Neuper, C.; Birbaumer, N. The hybrid BCI. Front. Neurosci. 2010, 4. [CrossRef] [PubMed]

2. Wolpaw, J.; Wolpaw, E.W. Brain-Computer Interfaces: Principles and Practice; Oxford University Press: New

York, NY, USA, 2012.

3. Dornhege, G.; Millán, J.R.; Hinterberger, T.; McFarland, D.; Müller, K.-R. Toward Brain-Computer Interfacing;

MIT Press: Cambridge, MA, USA, 2007.

4. Höhne, J.; Holz, E.; Staiger-Salzer, P.; Muller, K.R.; Kubler, A.; Tangermann, M. Motor imagery for severely

motor-impaired patients: Evidence for brain-computer interfacing as superior control solution. PLoS ONE

2014, 9, e104854. [CrossRef] [PubMed]

5. Fazli, S.; Mehnert, J.; Steinbrink, J.; Curio, G.; Villringer, A.; Müller, K.-R.; Blankertz, B. Enhanced performance

by a hybrid NIRS-EEG brain computer interface. NeuroImage 2012, 59, 519–529. [CrossRef] [PubMed]

6. Weiskopf, N.; Mathiak, K.; Bock, S.W.; Scharnowski, F.; Veit, R.; Grodd, W.; Goebel, R.; Birbaumer, N.

Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging

(fMRI). IEEE Trans. Biomed. Eng. 2004, 51, 966–970. [CrossRef] [PubMed]

7. Goldman, R.I.; Stern, J.M.; Engel, J.; Cohen, M.S. Simultaneous EEG and fMRI of the alpha rhythm.

Neuroreport 2002, 13, 2487–2492. [CrossRef] [PubMed]

8. Sitaram, R.; Weiskopf, N.; Caria, A.; Veit, R.; Erb, M.; Birbaumer, N. fMRI brain-computer interfaces.

IEEE Signal Process. Mag. 2008, 25, 95–106. [CrossRef]

9. Lloyd-Fox, S.; Blasi, A.; Elwell, C.E. Illuminating the developing brain: The past, present and future of

functional near infrared spectroscopy. Neurosci. Biobehav. Rev. 2010, 34, 269–284. [CrossRef] [PubMed]

10. Ritter, P.; Villringer, A. Simultaneous EEG-fMRI. Neurosci. Biobehav. Rev. 2006, 30, 823–838. [CrossRef]

[PubMed]

11. Amiri, S.; Fazel-Rezai, R.; Asadpour, V. A review of hybrid brain-computer interface systems. Adv. Hum.

Comput. Interact. 2013, 2013, 187024. [CrossRef]

12. Allison, B.Z.; Brunner, C.; Kaiser, V.; Müller-Putz, G.R.; Neuper, C.; Pfurtscheller, G. Toward a hybrid

brain-computer interface based on imagined movement and visual attention. J. Neural Eng. 2010, 7.

[CrossRef] [PubMed]

13. Pfurtscheller, G.; Solis-Escalante, T.; Ortner, R.; Linortner, P.; Müller-Putz, G.R. Self-paced operation of an

SSVEP-based orthosis with and without an imagery-based “brain switch”: A feasibility study towards a

hybrid BCI. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 409–414. [CrossRef] [PubMed]

http://www.mdpi.com/1424-8220/18/6/1827/s1
http://dx.doi.org/10.3389/fnpro.2010.00003
http://www.ncbi.nlm.nih.gov/pubmed/20582271
http://dx.doi.org/10.1371/journal.pone.0104854
http://www.ncbi.nlm.nih.gov/pubmed/25162231
http://dx.doi.org/10.1016/j.neuroimage.2011.07.084
http://www.ncbi.nlm.nih.gov/pubmed/21840399
http://dx.doi.org/10.1109/TBME.2004.827063
http://www.ncbi.nlm.nih.gov/pubmed/15188865
http://dx.doi.org/10.1097/00001756-200212200-00022
http://www.ncbi.nlm.nih.gov/pubmed/12499854
http://dx.doi.org/10.1109/MSP.2008.4408446
http://dx.doi.org/10.1016/j.neubiorev.2009.07.008
http://www.ncbi.nlm.nih.gov/pubmed/19632270
http://dx.doi.org/10.1016/j.neubiorev.2006.06.008
http://www.ncbi.nlm.nih.gov/pubmed/16911826
http://dx.doi.org/10.1155/2013/187024
http://dx.doi.org/10.1088/1741-2560/7/2/026007
http://www.ncbi.nlm.nih.gov/pubmed/20332550
http://dx.doi.org/10.1109/TNSRE.2010.2040837
http://www.ncbi.nlm.nih.gov/pubmed/20144923


Sensors 2018, 18, 1827 14 of 16

14. Brunner, C.; Allison, B.Z.; Altstatter, C.; Neuper, C. A comparison of three brain-computer interfaces based

on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both

signals. J. Neural Eng. 2011, 8. [CrossRef] [PubMed]

15. Panicker, R.C.; Puthusserypady, S.; Sun, Y. An asynchronous P300 BCI with SSVEP-based control state

detection. IEEE Trans. Biomed. Eng. 2011, 58, 1781–1788. [CrossRef] [PubMed]

16. Leeb, R.; Sagha, H.; Chavarriaga, R.; Millan, J.D. A hybrid brain-computer interface based on the fusion

of electroencephalographic and electromyographic activities. J. Neural Eng. 2011, 8, 025011. [CrossRef]

[PubMed]

17. Yong, X.; Fatourechi, M.; Ward, R.K.; Birch, G.E. The design of a point-and-click system by integrating

a self-paced brain-computer interface with an eye-tracker. IEEE J. Emerg. Sel. Top. Circuits Syst. 2011, 1,

590–602. [CrossRef]

18. Müller-Putz, G.; Leeb, R.; Tangermann, M.; Höhne, J.; Kübler, A.; Cincotti, F.; Mattia, D.; Rupp, R.;

Müller, K.-R.; Millán, J.R. Towards noninvasive hybrid brain–computer interfaces: Framework, practice,

clinical application, and beyond. Proc. IEEE 2015, 103, 926–943. [CrossRef]

19. Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for

communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [CrossRef]

20. Delorme, A.; Sejnowski, T.; Makeig, S. Enhanced detection of artifacts in EEG data using higher-order

statistics and independent component analysis. NeuroImage 2007, 34, 1443–1449. [CrossRef] [PubMed]

21. Naseer, N.; Hong, K.-S. fNIRS-based brain-computer interfaces: A review. Front. Hum. Neurosci. 2015, 9.

[CrossRef] [PubMed]

22. Sweeney, K.T.; Ayaz, H.; Ward, T.E.; Izzetoglu, M.; McLoone, S.F.; Onaral, B. A methodology for validating

artifact removal techniques for physiological signals. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 918–926.

[CrossRef] [PubMed]

23. Tai, K.; Chau, T. Single-trial classification of NIRS signals during emotional induction tasks: Towards a

corporeal machine interface. J. NeuroEng. Rehabil. 2009, 6. [CrossRef] [PubMed]

24. Falk, T.H.; Guirgis, M.; Power, S.; Chau, T. Taking NIRS-BCIs outside the lab: Towards achieving robustness

against environment noise. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 136–146. [CrossRef] [PubMed]

25. Cui, X.; Bray, S.; Bryant, D.M.; Glover, G.H.; Reiss, A.L. A quantitative comparison of NIRS and fMRI across

multiple cognitive tasks. NeuroImage 2011, 54, 2808–2821. [CrossRef] [PubMed]

26. Fazli, S.; Lee, S.-W. Brain computer interfacing: A multi-modal perspective. J. Comput. Sci. Eng. 2013, 7,

132–138. [CrossRef]

27. Dähne, S.; Bießmann, F.; Samek, W.; Haufe, S.; Goltz, D.; Gundlach, C.; Villringer, A.; Fazli, S.; Müller, K.-R.

Multivariate machine learning methods for fusing multimodal functional neuroimaging data. Proc. IEEE

2015, 103, 1507–1530. [CrossRef]

28. Fazli, S.; Dähne, S.; Samek, W.; Bießmann, F.; Müller, K.-R. Learning from more than one data source: Data

fusion techniques for sensorimotor rhythm-based brain–computer interfaces. Proc. IEEE 2015, 103, 891–906.

[CrossRef]

29. Khan, M.J.; Hong, M.J.; Hong, K.-S. Decoding of four movement directions using hybrid NIRS-EEG

brain-computer interface. Front. Hum. Neurosci. 2014, 8. [CrossRef] [PubMed]

30. Yin, X.X.; Xu, B.L.; Jiang, C.H.; Fu, Y.F.; Wang, Z.D.; Li, H.Y.; Shi, G. A hybrid BCI based on EEG and fNIRS

signals improves the performance of decoding motor imagery of both force and speed of hand clenching. J.

Neural Eng. 2015, 12. [CrossRef] [PubMed]

31. Shin, J.; von Lühmann, A.; Blankertz, B.; Kim, D.-W.; Jeong, J.; Hwang, H.-J.; Müller, K.-R. Open access

dataset for EEG+NIRS single-trial classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1735–1745.

[CrossRef] [PubMed]

32. Shin, J.; von Lühmann, A.; Kim, D.-W.; Mehnert, J.; Hwang, H.-J.; Müller, K.-R. Simultaneous acquisition

of EEG and NIRS during cognitive tasks for an open access dataset. Sci. Data 2018, 5, 180003. [CrossRef]

[PubMed]

33. Shin, J.; Müller, K-R.; Schmitz, C.H.; Kim, D.-W.; Hwang, H.-J. Evaluation of a compact hybrid brain-computer

interface system. Biomed Res. Int. 2017, 2017. [CrossRef] [PubMed]

34. von Lühmann, A.; Wabnitz, H.; Sander, T.; Müller, K.-R. M3BA: A mobile, modular, multimodal biosignal

acquisition architecture for miniaturized EEG-NIRS based hybrid BCI and monitoring. IEEE Trans.

Biomed. Eng. 2017, 64, 1199–1210. [CrossRef] [PubMed]

http://dx.doi.org/10.1088/1741-2560/8/2/025010
http://www.ncbi.nlm.nih.gov/pubmed/21436538
http://dx.doi.org/10.1109/TBME.2011.2116018
http://www.ncbi.nlm.nih.gov/pubmed/21335304
http://dx.doi.org/10.1088/1741-2560/8/2/025011
http://www.ncbi.nlm.nih.gov/pubmed/21436524
http://dx.doi.org/10.1109/JETCAS.2011.2175589
http://dx.doi.org/10.1109/JPROC.2015.2411333
http://dx.doi.org/10.1016/S1388-2457(02)00057-3
http://dx.doi.org/10.1016/j.neuroimage.2006.11.004
http://www.ncbi.nlm.nih.gov/pubmed/17188898
http://dx.doi.org/10.3389/fnhum.2015.00003
http://www.ncbi.nlm.nih.gov/pubmed/25674060
http://dx.doi.org/10.1109/TITB.2012.2207400
http://www.ncbi.nlm.nih.gov/pubmed/22801522
http://dx.doi.org/10.1186/1743-0003-6-39
http://www.ncbi.nlm.nih.gov/pubmed/19900285
http://dx.doi.org/10.1109/TNSRE.2010.2078516
http://www.ncbi.nlm.nih.gov/pubmed/20876031
http://dx.doi.org/10.1016/j.neuroimage.2010.10.069
http://www.ncbi.nlm.nih.gov/pubmed/21047559
http://dx.doi.org/10.5626/JCSE.2013.7.2.132
http://dx.doi.org/10.1109/JPROC.2015.2425807
http://dx.doi.org/10.1109/JPROC.2015.2413993
http://dx.doi.org/10.3389/fnhum.2014.00244
http://www.ncbi.nlm.nih.gov/pubmed/24808844
http://dx.doi.org/10.1088/1741-2560/12/3/036004
http://www.ncbi.nlm.nih.gov/pubmed/25834118
http://dx.doi.org/10.1109/TNSRE.2016.2628057
http://www.ncbi.nlm.nih.gov/pubmed/28113943
http://dx.doi.org/10.1038/sdata.2018.3
http://www.ncbi.nlm.nih.gov/pubmed/29437166
http://dx.doi.org/10.1155/2017/6820482
http://www.ncbi.nlm.nih.gov/pubmed/28373984
http://dx.doi.org/10.1109/TBME.2016.2594127
http://www.ncbi.nlm.nih.gov/pubmed/28113241


Sensors 2018, 18, 1827 15 of 16

35. Cui, X.; Bray, S.; Reiss, A.L. Speeded near infrared spectroscopy (NIRS) response detection. PLoS ONE 2010,

5. [CrossRef] [PubMed]

36. Vidaurre, C.; Blankertz, B. Towards a cure for BCI illiteracy. Brain Topogr. 2010, 23, 194–198. [CrossRef]

[PubMed]

37. Blankertz, B.; Sannelli, C.; Halder, S.; Hammer, E.M.; Kübler, A.; Müller, K.R.; Curio, G.; Dickhaus, T.

Neurophysiological predictor of SMR-based BCI performance. NeuroImage 2010, 51, 1303–1309. [CrossRef]

[PubMed]

38. Combrisson, E.; Jerbi, K. Exceeding chance level by chance: The caveat of theoretical chance levels in brain

signal classification and statistical assessment of decoding accuracy. J. Neurosci. Methods 2015, 250, 126–136.

[CrossRef] [PubMed]

39. Vidaurre, C.; Sannelli, C.; Müller, K.-R.; Blankertz, B. Machine-learning-based coadaptive calibration for

brain-computer interfaces. Neural Comput. 2011, 23, 791–816. [CrossRef] [PubMed]

40. Vidaurre, C.; Sannelli, C.; Müller, K.-R.; Blankertz, B. Co-adaptive calibration to improve BCI efficiency.

J. Neural Eng. 2011, 8, 025009. [CrossRef] [PubMed]

41. Shin, J.; Müller, K.-R.; Hwang, H.-J. Near-infrared spectroscopy (NIRS) based eyes-closed brain-computer

interface (BCI) using prefrontal cortex activation due to mental arithmetic. Sci. Rep. 2016, 6, 36203. [CrossRef]

[PubMed]

42. Shin, J.; Kwon, J.; Choi, J.; Im, C.-H. Performance enhancement of a brain-computer interface using

high-density multi-distance NIRS. Sci. Rep. 2017, 7, 16545. [CrossRef] [PubMed]

43. Kubota, Y.; Toichi, M.; Shimizu, M.; Mason, R.A.; Coconcea, C.M.; Findling, R.L.; Yamamoto, K.; Calabrese, J.R.

Prefrontal activation during verbal fluency tests in schizophrenia—A near-infrared spectroscopy (NIRS)

study. Schizophr. Res. 2005, 77, 65–73. [CrossRef] [PubMed]

44. Power, S.D.; Falk, T.H.; Chau, T. Classification of prefrontal activity due to mental arithmetic and music

imagery using hidden Markov models and frequency domain near-infrared spectroscopy. J. Neural Eng.

2010, 7, 026002. [CrossRef] [PubMed]

45. Shin, J.; Kwon, J.; Im, C.-H. A multi-class hybrid EEG-NIRS brain-computer interface for the classification of

brain activation patterns during mental arithmetic, motor imagery, and idle state. Front. Neuroinform. 2018,

23, 5. [CrossRef] [PubMed]

46. Khan, M.J.; Hong, K.-S. Hybrid EEG–fNIRS-based eight-command decoding for BCI: Application to

quadcopter control. Front. Neurorobot. 2017, 11, 6. [CrossRef] [PubMed]

47. Koo, B.; Lee, H.-G.; Nam, Y.; Kang, H.; Koh, C.; Shin, H.-C.; Choi, S. A hybrid NIRS-EEG system for self-paced

brain computer interface with online motor imagery. J. Neurosci. Meth. 2015, 244, 26–32. [CrossRef] [PubMed]

48. Gomez-Herrero, G.; De Clercq, W.; Anwar, H.; Kara, O.; Egiazarian, K.; Van Huffel, S.; Van Paesschen, W.

Automatic removal of ocular artifacts in the EEG without an EOG reference channel. In Proceedings of the

7th Nordic Signal Processing Symposium, Reykjavik, Iceland, 7–9 June 2006.

49. Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including

independent component analysis. J. Neurosci. Meth. 2004, 134, 9–21. [CrossRef] [PubMed]

50. Kocsis, L.; Herman, P.; Eke, A. The modified Beer–Lambert law revisited. Phys. Med. Biol. 2006, 51, N91.

[CrossRef] [PubMed]

51. Friedrich, E.V.C.; Scherer, R.; Neuper, C. Stability of event-related (de-) synchronization during

brain–computer interface-relevant mental tasks. Clin. Neurophysiol. 2013, 124, 61–69. [CrossRef] [PubMed]

52. Blankertz, B.; Kawanabe, M.; Tomioka, R.; Hohlefeld, F.; Müller, K.-R.; Nikulin, V.V. Invariant common

spatial patterns: Alleviating nonstationarities in brain-computer interfacing. In Proceedings of the Advances

in Neural Information Processing Systems (NIPS), Vancouver, BC, Canada, 3–6 December 2007.

53. Koles, Z.J.; Soong, A.C.K. EEG source localization: Implementing the spatio-temporal decomposition

approach. Electroencephalogr. Clin. Neurophysiol. 1998, 107, 343–352. [CrossRef]

54. Blankertz, B.; Tomioka, R.; Lemm, S.; Kawanabe, M.; Müller, K.-R. Optimizing spatial filters for robust EEG

single-trial analysis. IEEE Signal Process. Mag. 2008, 25, 41–56. [CrossRef]

55. Blankertz, B.; Tangermann, M.; Vidaurre, C.; Fazli, S.; Sannelli, C.; Haufe, S.; Maeder, C.; Ramsey, L.; Sturm, I.;

Curio, G.; et al. The Berlin brain–computer interface: Non-medical uses of BCI technology. Front. Neurosci.

2010, 4, 00198. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0015474
http://www.ncbi.nlm.nih.gov/pubmed/21085607
http://dx.doi.org/10.1007/s10548-009-0121-6
http://www.ncbi.nlm.nih.gov/pubmed/19946737
http://dx.doi.org/10.1016/j.neuroimage.2010.03.022
http://www.ncbi.nlm.nih.gov/pubmed/20303409
http://dx.doi.org/10.1016/j.jneumeth.2015.01.010
http://www.ncbi.nlm.nih.gov/pubmed/25596422
http://dx.doi.org/10.1162/NECO_a_00089
http://www.ncbi.nlm.nih.gov/pubmed/21162666
http://dx.doi.org/10.1088/1741-2560/8/2/025009
http://www.ncbi.nlm.nih.gov/pubmed/21436515
http://dx.doi.org/10.1038/srep36203
http://www.ncbi.nlm.nih.gov/pubmed/27824089
http://dx.doi.org/10.1038/s41598-017-16639-0
http://www.ncbi.nlm.nih.gov/pubmed/29185494
http://dx.doi.org/10.1016/j.schres.2005.01.007
http://www.ncbi.nlm.nih.gov/pubmed/16005386
http://dx.doi.org/10.1088/1741-2560/7/2/026002
http://www.ncbi.nlm.nih.gov/pubmed/20168001
http://dx.doi.org/10.3389/fninf.2018.00005
http://www.ncbi.nlm.nih.gov/pubmed/29527160
http://dx.doi.org/10.3389/fnbot.2017.00006
http://www.ncbi.nlm.nih.gov/pubmed/28261084
http://dx.doi.org/10.1016/j.jneumeth.2014.04.016
http://www.ncbi.nlm.nih.gov/pubmed/24797225
http://dx.doi.org/10.1016/j.jneumeth.2003.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15102499
http://dx.doi.org/10.1088/0031-9155/51/5/N02
http://www.ncbi.nlm.nih.gov/pubmed/16481677
http://dx.doi.org/10.1016/j.clinph.2012.05.020
http://www.ncbi.nlm.nih.gov/pubmed/22749465
http://dx.doi.org/10.1016/S0013-4694(98)00084-4
http://dx.doi.org/10.1109/MSP.2008.4408441
http://dx.doi.org/10.3389/fnins.2010.00198
http://www.ncbi.nlm.nih.gov/pubmed/21165175


Sensors 2018, 18, 1827 16 of 16

56. Blankertz, B.; Acqualagna, L.; Dähne, S.; Haufe, S.; Schultze-Kraft, M.; Sturm, I.; Ušćumlic, M.; Wenzel, M.A.;
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