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Abstract

Sound source localization is an important topic in human-machine interacting,
teleconferencing, security systems, as well as autonomous driving and robotics.
While current state-of-the-art sound source localization methods allow localiza-
tion of a single or a small number of sound sources in moderately reverberant en-
vironments, it is known that their performance deteriorates when the reverberation
time is increased. Moreover, the localization of multiple sound sources is an even
more difficult task. Learning-based sound source localization methods recently
gained interest as they tend to outperform the state-of-the-art methods in multiple
source localization cases in reverberant environments. Nevertheless, this branch
of sound source localization methods is not yet sufficiently investigated. There-
fore, this thesis is aimed to the research of such methods. Both regression-based
and classification-based methods for single and multiple sound source localization
in two-dimensional and three-dimensional space are investigated. Supervised and
semi-supervised training strategies are researched. A dataset of tetrahedral micro-
phone array signals is collected for the evaluation of the performance of sound
source localization methods. The dissertation consist of an introduction, three
chapters and general conclusions. In the introduction, the dissertation problem
is formulated, the object of the research is defined and the aim of the thesis is
presented. Next, the objectives of the thesis are formulated. A brief presentation
of the research methodology is provided, followed by the outline of the scientific
novelty of the thesis and the practical value of the research findings. Finally, the
defended statements are formulated. The first chapter reveals the state of the art of
sound source localization using microphone arrays and networks. In the section,
most important sound source localization methods are outlined, with an emphasis
on learning-based source localization methods. In the second chapter presented
are the learning-based sound source localization methods suggested by the author.
Specifically, the multi-layer perceptron-based method for single sound source lo-
calization in two dimensions, the convolutional neural network-based methods for
multiple sound source localization in two and three dimensions and the Graph-
Regularized Neural Network-based single sound source localization method. In
the third chapter, the experimental setups for evaluation of the performance of the
original methods, presented in the second chapter, and the results of the experi-
mentation are presented. In the final chapter, the discussion on the experimental
results is presented and the conclusions are drawn. The results of the thesis were
published in six scientific publications: three papers in the reviewed scientific jour-
nals and three papers in other journals. Additionally, the results of the research
were presented in five conferences.
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Reziumė

Garso šaltinio lokalizavimas yra svarbus elementas žmogaus ir kompiuterio są-
veikos, telekonferencijų, apsaugos sistemų, taip pat autonominio vairavimo ir ro-
botikos srityse. Nors dabartiniai moderniausi garso šaltinių lokalizavimo meto-
dai leidžia lokalizuoti vieną ar nedidelį skaičių garso šaltinių vidutiniškai aidžioje
aplinkoje, yra žinoma, kad padidėjus aidėjimo laikui jų veikimas blogėja. Be to,
kelių garso šaltinių lokalizavimas yra dar sudėtingesnė užduotis. Mokymusi grįsti
garso šaltinio lokalizavimo metodai pastaruoju metu sulaukia vis didesnio susi-
domėjimo, nes jų veikimo tikslumas pranoksta pažangiausius klasikinius šaltinių
lokalizavimo metodus daugelio šaltinių lokalizavimo atvejų aidžioje aplinkoje. Ne-
paisant to, ši garso šaltinio lokalizavimo metodų šaka dar nėra pakankamai ištirta.
Todėl ši disertacija skirta mokymusi grįstų metodų tyrimams. Tiriami tiek regre-
sija, tiek klasifikavimu pagrįsti metodai, skirti vieno ir kelių garso šaltinių lokaliza-
vimui dvimatėje ir trimatėje erdvėje. Tiriamos prižiūrimo ir pusiau prižiūrimo
mokymo strategijos. Garso šaltinio lokalizavimo metodų veikimui įvertinti surink-
tas tetraedrinės mikrofonų gardelės signalų duomenų rinkinys. Disertaciją sudaro
įvadas, trys skyriai ir bendros išvados. Įvade suformuluojama disertacijos prob-
lema, apibrėžiamas tyrimo objektas ir pateikiamas darbo tikslas. Toliau suformu-
luoti baigiamojo darbo tikslai. Pateikiamas trumpas tyrimo metodikos pristatymas,
po kurio aprašoma baigiamojo darbo mokslinė naujovė ir praktinė tyrimo išvadų
vertė. Galiausiai suformuluojami ginami teiginiai. Disertaciją sudaro įvadas, trys
skyriai ir bendros išvados. Pirmame skyriuje aprašoma garso šaltinio lokalizaci-
jos pažangiausi metodai, kurie naudoja mikrofonų gardeles ir dirbtinius neuronų
tinklus. Skyriuje aprašomi svarbiausi garso šaltinio lokalizavimo metodai, akcen-
tuojant mokymusi grįstus garso šaltinio lokalizavimo metodus. Antrame skyriuje
pateikiami autoriaus siūlomi mokymu pagrįsti garso šaltinių lokalizavimo meto-
dai: daugiasluoksniu perceptronu pagrįstas vieno garso šaltinio lokalizavimo dvi-
matėje erdvėje metodas, sąsūkos neuronų tinklu pagrįstas metodas, skirtas dauge-
lio garso šaltinių lokalizavimui dvimatėje erdvėje, ir grafu reguliarizuotu dirbtiniu
neuronų tinklu pagrįstas vieno garso šaltinio lokalizavimo dvimatėje erdvėje meto-
das. Aptariami garso šaltinio lokalizavimo tikslumą įtakojantys veiksniai. Pris-
tatomi akustiniai požymiai, kurie gali būti naudojami su mokymu grįstais garso
šaltinio lokalizavimo metodais. Trečiajame skyriuje pateikiami metodų, aprašytų
antrajame skyriuje, eksperimentinių tyrimų aprašymai ir rezultatai. Pristatomas
tetraedrinių gardelių signalų duomenų rinkinys. Paskutiniame skyriuje pateikia-
mos bendrosios disertacijos išvados. Darbo rezultatai buvo paskelbti šešiose mok-
slinėse publikacijose: trijuose recenzuojamuose mokslo žurnaluose ir trijuose ki-
tuose leidiniuose. Be to, tyrimo rezultatai buvo pristatyti penkiose konferencijose.
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Notations

Abbreviations

ANN – Artificial Neural network
CNN – Convolutional Neural Network
DoA – Direction of Arrival
GRNN – Graph Regularized Neural Network
ILD – Inter-Aural Level Difference
IPD – Inter-Aural Phase Difference
ISOMAP – Isometric Mapping
MAE – Mean Average Error
MLP – Multi-Layer Perceptron
MSE – Mean Squared Error
NLDR – Non-Linear Dimensionality Reduction
PHAT – Phase Transform
RMS – Root Mean Square
RMSE – Root Mean Squared Error
SSL – Sound Source Localization
SRP – Steered Response Power
STD – Standard Deviation
STFT – Short-Time Fourier Transform
TDoA – Time Difference of Arrival
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Introduction

Problem Formulation

Sound source localization is an important topic in robotics, autonomous vehicles,
public security, conferencing, sound engineering and other fields. Applications
of sound source localization include speaker location discovering in a teleconfer-
ence, event detection and tracking, robot movement in an unknown environment
(Argentieri et al. 2015; Kotus 2013).

It is often needed to localize the sound source with accuracy that is close
to or better than human sound source localization abilities, that is, the ability to
determine the direction of arrival (DoA) of the sound source within accuracy of
15◦. Moreover, there is often a need to determine not only the source DoA, but
also the distance to the receiver. The task is becomes more complex when there is
a need to localize multiple simultaneously active sound sources, by either selecting
the most prominent sound source and suppressing others (one-vs-many scenario)
or by localizing an arbitrary number of strongest sound sources.

Relevance of the Thesis

Current algorithms are not robust enough against the environmental noise, the ad-
verse acoustical conditions (echoes, reverberation). The accuracy of existing sound
source localization methods based on the determination of the propagation time
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2 INTRODUCTION

difference decreases when reverberation occurs in the environment and when there
are noise sources in the environment, therefore, learning-based sound source lo-
calization methods have been actively researched recently. The growing interest in
learning-based sound source localization methods can be illustrated by the number
of articles published in the field, which was increasing exponentially between the
year 2011 and 2019 (see Fig. 0.1). Currently available learning-based sound source
localization methods can identify the direction of several sound sources, but not
the distance to them or their coordinates in three-dimensional space. In 3 dimen-
sions, the coordinates of several sound sources can be determined by formulating
the problem as a regression problem, but for this the number of sources in the
acoustic scene must be known in advance. A supervised training strategy requires
a large number of labeled samples, and sample labeling is a complex and time-
consuming task; strategies for unsupervised training or semi-supervised (hybrid)
training would reduce or eliminate the labeling of training samples, thus reducing
the time and cost of developing solutions.

Fig. 0.1. Number of articles published in the field of learning-based sound
source localization

Sound source localization is used for talker identification in teleconference
scenarios, as an aid for robotic locomotion and orientation in an unknown environ-
ment (Kotus 2013) as well as in surveillance and security enforcement scenarios
(Lopatka et al. 2011). Acoustic source localization is one of the key aspect of
human-robot interaction (Athanasopoulos et al. 2015).



INTRODUCTION 3

The Object of the Research

The object of the research of this thesis is learning-based methods for single and
multiple acoustic source localization, considering the acoustic properties of the
acoustic enclosure and the parameters of the sound source signals.

The Aim of the Thesis

The aim of the thesis is to propose original learning-based methods for acoustic
source localization within reverberant enclosures.

The Objectives of the Thesis

In order to solve stated problem and reach the aim of the thesis the following main
objectives are formulated:

1. To propose and investigate the supervised learning-based sound source lo-
calization approaches for multiple sound source two-dimensional localiza-
tion within an acoustic enclosure.

2. To propose and investigate the supervised learning-based sound source lo-
calization approaches for multiple sound source three-dimensional local-
ization within an acoustic enclosure.

3. To propose and investigate the semi-supervised and/or unsupervised sound
source localization approaches for a single sound source localization within
an acoustic enclosure.

Research Methodology

Experimental evaluation of the proposed methods for sound source localization
involved computer simulation of microphone array signals using image-source
method, as well as real-world microphone array signal acquisition and process-
ing. Simulated microphone array signals were generated and artificial neural net-
work models were trained using Python programming language with pyrooma-
coustics acoustic simulation package and TensorFlow machine-learning package.
Other computer simulations and calculations were performed in either MATLAB
or Python programming languages. Real-world microphone array signals were ob-
tained using 4 element planar microphone arrays and 4 element tetrahedral arrays
of various apertures.



4 INTRODUCTION

Scientific Novelty of the Thesis

1. A dataset of tetrahedral microphone array signals for the localization of
one and two sound sources in a reverberant environment has been prepared
and made public, allowing to evaluate the performance of sound source
localization methods with real data and to compare simulated microphone
array signals to real signals.

2. Novel methods, based on convolutional artificial neural networks for deter-
mining the two-dimensional direction of arrival of several sound sources
using microphone array signals’ cross-correlation in frequency bands and
spectrum phase component as an input features are presented.

3. A novel convolutional artificial neural network-based method for the lo-
calization of multiple sound sources in three-dimensional space involving
a three-dimensional neural network output structure is presented.

4. A method based on hybrid learning and graph-regularized artificial neural
network (GRNN) for localization of a single source in two-dimensional
space is presented, allowing the training of a sound source localization
system using a limited set of labeled samples.

Practical Value of the Research Findings

A data set of tetrahedral microphone grid signals with one and two sound sources
in the echo environment has been collected and made public. The dataset has not
only the positions of the sources and microphones marked, but also the geometry
and acoustic parameters of the room measured and presented, allowing to compare
real and simulated microphone array signals and to determine the accuracy of the
signal simulation.

A methodology for the creation of simulated acoustic signal datasets for the
study of graph-regularized neural networks is presented. A method for increasing
the accuracy of sound source coordinates in three-dimensional space using group-
ing is investigated.

The Defended Statements

1. Using a graph-regularized artificial neural network trained with a semi-
supervised training strategy and SRP-PHAT spatial spectra input features,
the mean average error of the localization of a single sound source in two
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dimensions can be reduced up to 4% compared to the SRP-PHAT intensity
map peak determination method.

2. Cross-correlation in frequency bands features can be used to determine
the direction of arrival of a sound source in two-dimensional space and
achieve a mean localization error of 23 degrees for one sound source and
a mean localization error of 26 degrees for two sound sources.

3. Using the spectral phase component as a feature, using convolutional arti-
ficial neural network can achieve up to 36% smaller localization error of
three audio sources in two-dimensional space than with the widely used
SRP-PHAT algorithm.

4. Using the proposed modification of the convolutional artificial neural net-
work output layer and the spectral phase component as the input feature, it
is possible to achieve a localization error as small as 1.08 m for two speaker
localization in three-dimensional space in a reverberant environment.

Approval of the Research Findings

The results of the research were published in 6 scientific publications, 3 in peer-
reviewed scientific papers, 3 in conference proceedings. Additionally, the results
of the research were presented in following conferences:

• Two Young Scientist Conferences Science – Future of Lithuania, 2017,
2019, Vilnius, Lithuania.

• Two Open Conferences of Electrical, Electronic and Information Sciences
(eStream), 2017, 2019, Vilnius, Lithuania.

• IEEE Workshop on Advances in Information, Electronic and Electrical
Engineering (AIEEE), 2017, Riga, Latvia.

Structure of the Dissertation

The dissertation consist of introduction, three chapters and general conclusions.
The volume of the dissertation is 150 pages, in which are given: 97 equations,
69 figures and 19 tables. Additionally, in the dissertation 101 items are cited.





1
Review of Methods for Sound

Source Localization

In this chapter, a review of sound source localization state-of-art is presented. First,
various possible acoustic scenarios in which the sound source localization may
take place are presented. Then the sound signal acquisition and processing sys-
tems (microphone arrays or networks) that are commonly used for the sound source
localization task are presented. The theoretical limits of the sound source local-
ization capabilities that depend on the parameters of such systems are discussed.
Lastly, state-of-art methods for sound source localization will be presented, with an
emphasis on learning-based acoustic source localization methods. The review, pre-
sented in this chapter is published in three scientific papers (Sakavičius, Serackis
2019, Sakavičius 2021, Sakavičius, Serackis 2021).

1.1. Acoustic Scenarios of Sound Source
Localization

In this section, key concepts regarding acoustics that are used throughout the thesis
are defined.

Acoustic scenario referred here to is a collection of parameters of the acoustic
medium, acoustic space, the sound field, the sound sources present within the
acoustic space, the receivers (microphones) and the associated processing system,
as well as the task that is intended to be performed. These parameters will be
discussed in detail in this section.

7
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Acoustic medium is the volume filled with particles through which the acous-
tic waves propagate. Acoustic waves can propagate in any material - gases such
as air, liquids such as water, and solid materials such as wood or concrete. The
speed of sound within the acoustic medium depends on the stiffness factor and the
density of the medium. These measures, especially the density in turn depends
on the material composition of the medium and its temperature. In the scope of
this thesis, the acoustic medium is dry air unless noted otherwise. All acoustic
simulations were carried at the speed of sound cs = 340m s−1, corresponding to
a temperature of 14.7 ◦C. It should be noted, that the speed of sound changes less
than 10% in a temperature range of −30 ◦C to 30 ◦C. This can have some effect
on the performance of sound source localization algorithms (Rabenstein, Annibale
2017), but the effects of variable speed of sound were not investigated in the scope
of this thesis.

Acoustic space is any space filled with an acoustic medium in which the acous-
tic waves might propagate. An ideal acoustic space is isotropic and infinite. In such
space, acoustic waves travel without change of their velocity or direction (that is,
without refraction or reflection). Also, since there are no acoustic boundaries,
other wave propagation phenomena are also absent: scattering, diffraction, and
diffusion.

Such infinite and isotropic acoustic spaces do not exist in the real world. In the
real world, acoustic spaces inevitably contain boundaries - rooms have walls and
furniture, and open spaces are limited at least by the ground. Acoustic boundary is
considered to be a limit of space where the velocity of sound changes considerably
because of the change in the density of the acoustic medium (i.e., due to change of
the material of the acoustic space or the temperature gradient). Acoustic bound-
aries can refract or reflect the acoustic waves. Acoustic boundaries that occur at
the change of the acoustic medium material are called walls or ground in the scope
of this thesis, while the acoustic boundaries that are present due to the change of
the density of the same material (i.e., air) due to the temperature gradient are not
discussed further in this thesis. In the scope of this thesis, acoustic spaces that are
only limited by the ground are considered an acoustically open spaces, while the
acoustically closed spaces are limited by solid boundaries (walls).

In acoustically open spaces, the sound field is considered a free field, which
is free from reflected sound waves – only the direct sound energy from the sound
source arrives at the receiver. In practice, free field can only be achieved in ane-
choic rooms. In all other cases, at least the ground reflections exist. Nevertheless,
the almost all open spaces – unlimited by walls, and limited only by the ground,
can be approximately analyzed as having a free field. Absence of reflections means
that there are no phantom, or image sources present in the acoustic scenario, which
allows even the most simplistic sound source localization algorithms perform well
and localize the sound source with only a few percent mean squared error.
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In other hand, acoustic spaces that are limited by walls are considered acoustic
enclosures. Sound source localization in acoustic enclosures is much more com-
plex when compared to the localization in open spaces. In acoustic enclosures,
sound waves emitted by the sound source tend to reflect from the boundaries of
the enclosure creating image sources (see Fig. 1.1).

Fig. 1.1. Source images produced by sound wave reflections from the
boundaries of the acoustic enclosure

When there are reflections within the acoustic enclosure, sound waves travel
between the source and the receiver in multiple paths (direct and reflected), thus
the multipath wave propagation occur. These paths are of different lengths, and so
is the time that the sound waves take to arrive from the source to the receiver. In
other words, the sound waves arriving at the source are delayed proportionally to
the length of the path taken by the sound waves. Furthermore, the sound waves are
filtered at the boundary, and the transfer function depends on the acoustic proper-
ties of the material that forms the boundary. For example, the sound energy can
be attenuated more in the high frequency range, while the low-frequency content
can be reflected back into the enclosure virtually without much attenuation if the
wall is composed of a porous material. Such material may absorb acoustic waves
of short wavelength (of comparable lengths to the pores of the material) while the
longer acoustic waves are reflected without attenuation. Acoustic waves can reflect
many times until their energy is completely absorbed (that is, their energy is con-
verted to heat) by the enclosure surfaces. The number of times the acoustic wave
reflects before arriving at the receiver is called the reflection order. For example, if
the sound wave is reflected 3 times before reaching the receiver, such sound wave
is called a third order reflection.

The most prominent product of acoustic reflections is the reverberation. Re-
verberation might be viewed as the sum of many delayed acoustic waves arriving
at the receiver, each with different delay duration and signal attenuation due to the
different sound energy absorption properties of the enclosure boundaries.

Inside the acoustic enclosure, the sound field is not a free field anymore, De-
pending on the ratio between the direct acoustic wave energy and the energy of the
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reflections, also known as direct-to-diffuse ratio (DDR) of acoustic wave energy,
the sound field is either of mixed or diffuse type.

Conventional time-delay estimators exhibit dramatic performance deteriora-
tion in the presence of multipath signals. This limits their application in reverber-
ant enclosures, particularly when the signal of interest is speech and it may not pos-
sible to estimate and compensate for channel effects prior to time-delay estimation
(Brandstein, Silverman 1997). Time-delay estimation based locators might not be
able to determine the correct time-lag of cross-correlation maximum, because the
reflected and delayed signal might introduce another peak in the cross-correlation
result, which can sometimes be higher than the peak at the real time-lag.

Generally the receivers obtain the delayed source signal via direct path, but
also delayed and filtered copies of the source signals via indirect paths. When the
reverberation is strong (the sound field inside the enclosure is the reverberant, or
diffuse field), the reflected signals are as strong as the direct signal. This is the
main cause of the sound source localization algorithm performance deterioration.

In this thesis, only the sound propagation in enclosures is analysed as it has
greater potential to practical use, i.e. in enhancing robotic hearing, teleconferenc-
ing, ambient intelligence and security systems, which are mostly used inside rooms
and buildings.

An acoustic source is an emitter that creates the vibration of acoustic medium,
thus creating acoustic waves of the medium particles. An ideal acoustic source is a
point at which the acoustic waves start to emerge in all directions, that is, the ideal
source is of negligible dimensions and unidirectional. This source is called point
source. The wavefront of such source is spherical. A complex acoustic source
might be of non-negligible dimensions. In this case, the source is defined by a
collection of points on the surface of the vibrating body of the source. Each point
of such complex acoustic source might emit different acoustic waves. The waves
emitted by these points are subject to wave superposition and the resulting radiation
pattern might not be uniform in every direction. In real world situations ideal
acoustic sources do not exist – every source has certain defined dimensions. Yet it
is possible to approximate any acoustic as an ideal point source if the dimensions of
the source are much smaller (by at least an order of magnitude) than the distance
between the source and the receiver – in this case, the wavefront of the emitted
wave is almost spherical. Take a guitar for example: each point of guitar’s body
vibrate when a string is strung. Different points might vibrate in different phases,
creating a complex vibration pattern that in turn creates a complex sound field
around the guitar. It is possible to analyze every point of a guitar as an independent
point source, but this would be a very complex and resource intensive approach.
But as we move further from the guitar, the wavefront of all summed point sources
approaches a sphere, which is the radiation pattern of an ideal point source. Thus,
if we move away from the guitar far enough, we might analyze the guitar as a



1. REVIEW OF METHODS FOR SOUND SOURCE LOCALIZATION 11

point source. Acoustic source might be described by these parameters: source
signal spectrum, source signal dynamic range, radiation directivity pattern.

In an ideal unlimited isotropic acoustic space, it is possible to have only one
acoustic source. In an acoustic enclosure, though, reflections and thus image
sources are always present, and even for a single active sound source within an
enclosure, virtually infinite image sources exist. This means that the localization
of an acoustic source is more complex in the acoustic enclosure than in an open
acoustic space. It is worth noting that the image source waveforms are correlated
with the real acoustic source waveform. However, in real world situations, almost
always there are more than one acoustic sources that emit uncorrelated waves.
Acoustic noise that is present within an acoustic scene can also be considered an
acoustic source. For example, environmental noise is almost always present in
any acoustic enclosure – more than 26% of Lithuanian population is constantly
exposed to noise sound pressure levels (SPL) of 55 dBSPL to 59 dBSPL.

In this thesis, acoustic sources are analysed as point sources unless noted oth-
erwise. The emphasis is put on speech source localization. Speech bandwidth
is considered to be in range of 300Hz to 4000Hz, that is, the lengths of speech
waves are in range 1.13m to 0.085m. Considering that these lengths are virtually
always smaller than the dimensions of the rooms in which the speakers are active,
the premise of a speaker being a point source is considered true.

In case of sound source localization, one might wish to localize a single sound
source either in a noiseless or noisy environment – in this case, the localization
scenario is single source localization or single-versus-many source localization. In
cases where more than one simultaneously active sound sources need to be local-
ized, the localization scenario is multiple-source or multiple-versus-many source
localization. “Versus-many” indicates that not all sources that are present within
the acoustic scene are to be localized, but only one or a few, as opposed to noise
sources that are also present in the scene and are often numerous, or spatially dis-
tributed. For example, one might wish to localize two speakers within a room,
whose mouths (acoustic sources) can be modelled as point sources, and do not
need to localize the noise that comes from the windows of the room, which might
also not be possible to approximate as point sources due to their dimensions.

The acoustic waves emitted by sound sources in an acoustic scenario are cap-
tured by acoustic receivers. Acoustic receivers are devices that convert acoustic
energy into other energy form for further processing. Generally, the resulting en-
ergy form is no longer influenced by the acoustic events. Most prominent examples
of acoustic receivers are ears and microphones. In either case, the acoustic signal is
converted to an electric signal (nerve signals or electric current) and can no longer
be modified by the acoustics of the room or other acoustic signals.

Acoustic receivers might be broadly described by these parameters: sensi-
tivity, frequency response, directional pattern, Signal-to-Noise ratio (SNR). The
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frequency response might be considered a spectral sensitivity measure, while the
directional pattern might be considered a spatial sensitivity measure. Together,
they define a spectral-spatial response of the receiver. For example, the human ear
has a complex spectral-spatial response pattern due to the shape of the cochlea,
which help human localize the sound source (Argentieri et al. 2015). In this the-
sis, omni-directional receivers with flat frequency response within the frequency
range of the analysed source signals are used unless noted otherwise. This is to not
over-complicate the analysis.

Smallest number of receiver array that might be used for acoustic source local-
ization is one (El Badawy, Dokmanic 2018). In such scenario, a complex acoustic
structure is used to create a complex spectral-directional sensitivity pattern of a
single microphone.

Acoustic receivers are often operated in arrays. This allows the use of array
processing algorithms to be used, which will be discussed later in greater detail.
Acoustic receivers contained within the array are referred to as array elements.
A most simple receiver array consist of two elements. An example of such array
might be the human ears. Two element acoustic arrays are referred to as binaural
arrays (Löllmann et al. 2018). Such array allow to obtain most simple acoustic
features: interaural level difference (ILD), interaural time difference (ITD) and
interaural phase difference (IPD).

Receiver arrays that have more than two elements might be arranged spatially
in a single line (linear array) or in circle (circular array). Such arrays can have any
number of receivers. Both linear and circular arrays are considered planar arrays,
that is, their elements are positioned on a plane. Array elements can be arranged on
a two-dimensional grid, and in this case the array is considered a two-dimensional
planar array. An example of such array is Pepper robot microphone system (He
et al. 2018a). Increasing the number of elements even more also increases the
options of spatial arrangement of the elements. 4 element array can be arranged
in a tetrahedron shape, with receivers positioned at the nodes of the tetrahedron.
This is the simplest non-planar array. More complex non-planar arrays include
spherical arrays, for example, the Eigenmike (Löllmann et al. 2018). The way the
array elements are spatially arranged is referred to as the array geometry.

Generally, array elements are placed at constant distances. The distance be-
tween adjacent array elements is called the spatial sampling period. The inverse
of spatial sampling period is the spatial sampling rate, and denotes the spatial fre-
quency of array elements.

The largest distance between array the elements is called the array aperture.
For binaural arrays, the array sampling period is equal to the array aperture. For
all other receiver array geometries, the array aperture is always larger than the spa-
tial sampling period. Uniformly sampled linear arrays are called Uniform Linear
Arrays (ULA). Some other cases include non-linear spatial sampling, such as ge-
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ometric sampling used in DICIT array (Löllmann et al. 2018). Increased array
aperture offers better TDoA estimation resolution. The time of flight between the
edges of the array translates to number of temporal samples, which in turn defines
the minimum time difference between two neighboring TDoA values, and thus the
DoA angles. Increased spatial sampling rate offers better frequency response of the
array. If the elements of the array are spaced more than a single wavelength apart,
it is impossible to unambiguously determine the TDoA of the source at the micro-
phone elements, since it is unknown, how many wavelengths actually fit between
the elements. For non-periodic signals, ambiguity might mitigated by selecting a
longer analysis window; this will be discussed further in greater detail. To achieve
high spatial sampling rate with large array aperture, a large number of receiver
elements is needed, raising computational and monetary cost of the array, which
might be the limiting factor. By aperture size, receiver arrays can be categorized
into compact arrays, where the distance between edge elements is smaller than the
shortest wavelength of an incoming acoustic signal, and large aperture arrays, with
aperture of comparable size or larger than the shortest received wavelength.

Receiver elements might not be uniformly spaced. In this case in the scope
of this thesis the collection of receivers is called not an array, but a distributed
sensor network. Sensor networks were investigated by Astapov et al. (2015). When
a set of distributed receiver arrays are used instead of singular microphones, a
configuration is called distributed sensor array.

In all above cases except the single microphone setup, the receiver elements
are considered to be omnidirectional. For the sake of completeness, another class
of acoustic receiver arrays must be also presented: the ambisonics, or soundfield
microphones. Such arrays or array networks can also be used for acoustic source
localization, for example, Soundfield SPS200 or Oktava 4D-Ambient (Hack 2015).
In this thesis, such soundfield microphones are not further analysed, and generally
the focus is on omnidirectional microphone arrays.

In all practical cases, there is more than one active sound source within the
considered environment. In real world situation, there can me many simultaneous
talkers, noise sources and background ambience. The number of active sound
sources can vary throughout the time. Main reasons for this change of active sound
sources are:

1. A sound source becomes silent at one moment and becomes active at an-
other.

2. A sound source enters or leaves the considered environment.

A localization algorithm can be designed to perform the following:

1. Localize a single, most prominent sound source within an environment,
disregarding any other weaker sound sources.
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2. Localize a defined number (known a priori) of most prominent sound
sources.

Most single sound source localization algorithms rely on the fact that there are
only one prominent of desired sound source within the acoustic scene. In practice,
there are always more than one sound source in the acoustic scene, but it possible
to select only the most prominent sound source and determine its DoA or position.

One versus many scenario occurs when there are many active sound sources
within the acoustic scene, but the localization algorithm is designed to discern one
sound source against background noise (which can be a sum of multiple sound
sources) and estimate its position.

The main challenge for the multiple sound source localization using features
that are based on TDoA estimation (trilateration, GCC-PHAT, CCFB) is that there
are no means to determine a priori which source is active. When calculating the
cross-correlation function, there might be several peaks in the cross-correlation
result (when the signals of the sound sources are similar), and there are no way
to determine which of the peaks correspond to real TDoAs (of the same sound
source), and which are erroneous, manifesting due to the similarity of the signals
of the sound sources.

1.2. Theoretical Limits of the Accuracy of the Sound
Source Localization

There are an exact theoretical limitations on the resolution of the DoA estimation
imposed by the geometry of the microphone array and the sampling rate of the
audio signal.

Maximal resolution of the localization is limited by the parameters of the audio
system – most importantly – the sampling rate, fs, and the quantization resolution,
Q, which affects the Signal-to-Quantization Noise Ratio, SQNR.

If the difference of TDoA is very small, and resolves to one or few audio
samples, it might be difficult to discern estimate the TDoA and in turn the DoA or
position of the sound source.

Considering a case where two microphones m1 and m2 are placed on the x
axis, at 10 cm to opposite directions from the y axis (m1 = [0; 0.1] m;
m2 = [0;−0.1] m), and the source is s = [(−10 . . . 10); (−10 . . . 10)] m, as-
suming the speed of sound (group velocity) vS = 340m s−1, the maximal TDoA
is ∆TA = 0.59ms If the sampling rate is fs = 48 kHz, this corresponds to
28.2 samples. This is illustrated by Fig. 1.2.
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Fig. 1.2. TDoA as a function of the distance between the source and two
listening points; a) z axis in seconds; b) z axis in samples, fs = 48 kHz
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Fig. 1.3. Difference of TDoA between adjacent grid points (clipped); a) z axis
in seconds; b) z axis in samples, fs = 48 kHz

The change in TDoA (∆∆TA) when the source position is changed by a con-
stant value alongside any of the axes, is different and depends on the angle and the
distance between the source and the center of the listening array.

By calculating the derivative, we find that the difference between adjacency
points. The grid points onto which the sound source is located, are separated in
both x and y directions by 0.1m.

It can be seen in Fig. 1.3 that the difference between two grid points is less
than 1 sample, when the grid is spaced by 0.1m. Increasing the spacing leads to
greater differences in TDoA between adjacent points. This means that the resolu-
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Fig. 1.4. TDoA and the difference of the TDoA between adjacent grid points
(clipped) when grid spacing is 1m, z axis in samples; a) TDoA; b) difference of

the TDoA

tion of localization based on TDoA is limited by sampling rate. For example, when
the spacing of the grid is increased to 1m, difference of TDoA between adjacent
grid points is in range of single samples (see Fig. 1.4). It can be shown that this
difference of TDoA is directly proportional to the grid step and to the sampling
ratio.

1.3. Categorization of Sound Source Localization
Methods

The selection of the most suitable sound source localization method in a particu-
lar situation is dependent on the acoustic properties of the environment where the
localization takes place, where the sound sources and receivers are active. De-
pending on the type of the sound field – be it a free or diffuse field, some SSL
algorithms might perform better than others.

Existing source localization procedures may also be loosely divided into three
general categories: those based upon maximizing the steered response power (SRP)
of a beamformer, techniques adopting high-resolution spectral estimation con-
cepts, and approaches employing time-difference of arrival (TDoA) information
(DiBiase et al. 2001).

Steered-Beamformer-Based Locators work on the principle of computation-
ally steering the directivity of a microphone array via beamforming, that is, via
delay-and-sum or filter-and-sum of the microphone signals. The most simple such
locator can be realized by cross-correlating two microphone signals and searching
for the time-lag at which the maximum of the cross-correlation product occurs.
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Such is the Generalized Cross-Correlation (GCC) locator. By applying the phase
transform (PHAT), a widely known GCC-PHAT locator is obtained. Going fur-
ther, more microphone pairs can be employed, and by calculating the time-lags
for all pairs to maximize the response of the microphone array at a certain DoA, a
Steered Response Power locator is constructed. Again, by applying the phase trans-
form, SRP-PHAT locator is achieved. Overall, the computational requirements
of the focalization-based ML estimator, namely the complexity of the objective
function itself as well as the relative inefficiency of an appropriate optimization
procedure, prohibit its use in the majority of practical, real-time source locators.
Furthermore the steered response of a conventional beamformer is highly depen-
dent on the spectral content of the source signal. Many optimal derivations are
based on a priori knowledge of the spectral content of the background noise, as
well as the source signal. In the presence of significant reverberation, the noise
and source signals are highly correlated, making accurate estimation of the noise
infeasible. Furthermore, in nearly all array applications, little or nothing is known
about the source signal. Hence, such optimal estimators are not very practical in
realistic speech-array environments.

Another class of sound source location methods is high resolution spectral-
estimation-based locators. These algorithms tend to be significantly less robust to
source and sensor modeling errors than conventional beamforming methods. in-
corporated models typically assume ideal source radiators, uniform sensor channel
characteristics, and exact knowledge of the sensor positions. Such conditions are
impossible to obtain in real-world environments. While the sensitivity of these
high-resolution methods to the modeling assumptions may be reduced, it is at the
cost of performance. Additionally, signal coherence, such as that created by the
reverberation conditions of primary concern here, is detrimental to algorithmic
performance, particularly that of the eigenanalysis approaches. This situation may
be improved via signal processing resources, but again at the cost of decreased
resolution.

The third class of sound source locators is TDoA-based locators. Primarily
because of their computational practicality and reasonable performance under am-
icable conditions, the bulk of passive talker localization systems in use today are
TDoA-based.

The two major sources of signal degradation which complicate this time delay
estimation problem are background noise and channel multi-path due to room re-
verberations. The noise-alone case has been addressed at length and is well under-
stood. Assuming uncorrelated, stationary Gaussian signal and noise sources with
known statistics and no multi-path, the ML time-delay estimate is derived from a
SNR-weighted version of the Generalized Cross-Correlation (GCC) function.

In the presence of single-path propagation, maximum likelihood (ML) ver-
sions of the GCC- and LS-based time delay estimators have been well studied
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and shown to be practical and to obtain theoretical bounds. However, these meth-
ods exhibit dramatic performance degradation in the presence of simple multipath
channels (a few echoes) as well as the more complex scenario of a reverberant
room (a very large number of closely spaced echoes, the equivalent of nearly-flat
multiplicative noise in the spectral domain). These shortcomings limit their appli-
cability for time-delay estimation in realistic enclosures.

In the past, some studies have investigated the time delay estimation problem
in the presence of a few correlated additive echoes. However, the results obtained
cannot be used to predict the effects of reverberation on time delay estimation per-
formance since reverberation consists in the superposition of a very large number
of closely spaced echoes, a phenomenon that is more adequately modeled as multi-
plicative noise in the frequency domain (i.e., convolutional smearing) (Champagne
et al. 1996).

1.3.1. Generalized Cross Correlation

Given the signals acquired by a couple of microphones, a coherence measure can
be defined as a function that indicates the similarity degree between the two signals
realigned according to a given time lag. Coherence measures can hence be used
to estimate the time delay between two signals. For example, Cross-Correlation is
the most straightforward coherence measure (Brutti et al. 2008).

The most common approach adopted in the sound source localization com-
munity to compute a coherence measure is the use of GCC-PHAT Knapp, Carter
(1976). Let us consider two digital signals x1(n) and x2(n) acquired by a couple
of microphones, GCC-PHAT is defined as follows:

GCC-PHAT(d) = IFFT(
X1 ·X

∗

2

|X1||X2|
), (1.1)

where d is a time lag, subject to |d| < τmax, while X1 and X2 are the discrete
Fourier transforms (DFT) of x1 and x2 respectively and IFFT denotes the inverse
fast Fourier transform. The inter-microphone distance determines the maximum
valid time delay τmax. It has been shown that, in ideal conditions, GCC-PHAT
presents a prominent peak in correspondence of the actual TDoA. On the other
hand, reverberation introduces spurious peaks which may lead to wrong TDoA
estimates (Champagne et al. 1996).

Our environment is an acoustic enclosure (room), hence the propagation of
sound waves is interfered by objects, such as: walls, furniture and people. This
interference creates reverberation, or multi-path propagation of the waves. Re-
verberation could severely effect the performance of many processes done on the
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microphone array. Therefore it must be incorporated into the acoustic model to
best cope with the realistic conditions.

Let h′(~dm, ~ds, t) denote the room impulse response for both direct-path and
reflected paths from the sound source s at location ~ds to microphone m at location
~dm. Let v(~ds, t) be the response describing the characteristics of the microphone
m. Since the position and orientation of microphone m are known and fixed, this
response function only depends on the source location ~ds. The microphone signal
at microphone m can be modelled as follows:

xm(t) = s(t) ∗ h′(~dm, ~ds, t) ∗ v(~ds, t) + nm(t), (1.2)

where s(t) is the source signal, nm(t) is the noise corresponding to the mth channel
and ∗ denotes linear convolution.

The impulse response from the source-output to the microphone-output is the
convolution of h′(~dm, ~ds, t) and v(~ds, t). This impulse response only depends on
the source location if we [assume that the] the microphone m is located at a fixed
known position forever. Denote the impulse response by h(~ds, t). Equation (1.2)
becomes

xm(t) = s(t) ∗ h(~ds, t) + nm(t). (1.3)

The equation completely describes the signal received at the microphone m where
the reverberant channel’s impulse response and uncorrelated noise are taken into
account (Do 2009: p. 8).

GCC has been a popular method to determine the time-difference of arrival
(TDoA) between two microphones in a pair. Then for multiple TDoA values, one
can estimate the source location. Take a 4-element microphone array for example
(Do 2009: p. 12). If the distance from microphone m to the source rm(m =
1, 2, 3, 4), the time delay (traveling time) of the signal from the source to that
microphone is τm = rm

c Then the time difference of arrival, TDoA between two
microphones m and n can be defined as

τmn = τm − τn =
rm − rn

c
. (1.4)

From this relation one can estimate the source location using several techniques:
linear intersection, spherical interpolation, etc.

Recall Equation (1.3) for a microphone k:

xk = s(t) ∗ h(~ds, t) + nk(t). (1.5)
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Consider a signal at another microphone l:

xl = s(t− τkl) ∗ h(~ds, t) + nk(t). (1.6)

Note that to be accurate, we would have to include the time delay τk into the
source signal s(t), i.e. s(t − τk) in Equation (1.5) to show the signal received at
microphone k. However, for simplicity, here we normalized so that the time delay
from the source to microphone k, τk is 0. In other words, we are only concerned
with the relative TDoA, τkl between these two microphones k and l.

The cross-correlation of thee two microphone signals will show a peak at the
time-lag where these two shifted signals are aligned, corresponding to the TDoA
τkl. The cross-correlation of xk(t) and xl(t) is defined as

ckl =

∫

∞

−∞

xk(t)xl(t+ τ) dt. (1.7)

Taking the Fourier Transform of the cross-correlation results in a cross-power

spectrum

Ckl(ω) =

∫

∞

−∞

ckl(t)e
jωt dt. (1.8)

Applying convolution properties of the Fourier Transform for (1.7) when trans-
forming it into (1.8), we have

Ckl = Xk(ω)X
∗

l (ω), (1.9)

where Xi(ω) is the Fourier Transform of the signal xi(t) and ·∗ denotes complex
conjugate.

The inverse Fourier Transform of (1.9) gives us the cross-correlation function
of the microphone signals:

ckl(τ) =
1

2π

∫

∞

−∞

Xk(ω)X
∗

l (ω)e
jωτ dω. (1.10)

The generalized cross-correlation (GCC) of xk(t) and xl(t) is the cross-correlation
of their two filtered versions. Denoting the Fourier Transforms of these two filters
as Wk(ω) and Wl(ω), we have the GCC defined as

Rkl(τ) =
1

2π

∫

∞

−∞

(Wk(ω)Xk(ω))(Wl(ω)Xl(ω))
∗ejωτ dω. (1.11)
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We define a combined weighting function Ψkl(ω) as

Ψkl(ω) = Wk(ω)W
∗

l (ω). (1.12)

Substituting (1.12) into (1.11), the GCC becomes

Rkl(τ) ≡
1

2π

∫

∞

−∞

Ψkl(ω)Xk(ω)X
∗

l (ω)e
jωτ dω. (1.13)

The TDoA between two microphones k and l is the time lag τ that maximizes
the GCC in the real range limited by the distance between the microphones:

τ̂ = argmax
τ

Rkl(τ). (1.14)

In reality, Rkl(τ) has many local maxima thus making it harder to detect the
global maximum. The choice of weighting functions Ψkl(ω) affect the perfor-
mance of the GCC.

It has been shown that the phase transform (PHAT) weighting function is ro-
bust in realistic environments (Elko, Anh-Tho Nguyen Pong 1997; Silverman et al.

2005) even though it is sub-optimal to the maximum likelihood (ML) weighting
function which was studied in under reverberant-free conditions.

PHAT is defined as follows:

Ψkl ≡
1

|Xk(ω)X
∗

l (ω)|
. (1.15)

Applying the weighting function PHAT from Equation (1.15) into the expres-
sion for GCC in Equation (1.13), the Generalized Cross-Correlation using the
Phase Transform (GCC-PHAT) for two microphones k and l is defined

Rkl(τ) ≡
1

2π

∫

∞

−∞

1

|Xk(ω)X
∗

l (ω)|
Xk(ω)X

∗

l (ω)e
jωτ dω. (1.16)

In an M -microphone array there are
(

M
2

)

or M×(M−1)
2 pairs of microphones.

Using GCC-PHAT on any subset Q of these pairings to estimate the TDoA of each
pair creates Q TDoA estimates. For each hypothesized point ~x in 3D space of the
room containing the sound source, true TDoAs can be calculated for that Q pairs.
From the estimated TDoAs τ̂Q(~x) and the true TDoAs τQ(~x) one can establish the
root mean square (RMS) error as follows

ERMS(~x) =
√

(τ̂Q(~x)− τQ(~x))2. (1.17)
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And the source location estimate ~xs is

~xs = argmin
~x

ERMS(~x). (1.18)

The peak in GCC-PHAT is used to estimate the TDoA. However, under real con-
ditions, the GCC-PHAT is corrupted by reverberation and noise (He et al. 2018a).
The GCC-PHAT is not optimal for TDoA estimation of multiple source signals
since it equally sums over all frequency bins disregarding the “sparsity” of speech
signals in the time-frequency (TF) domain and the randomly distributed noise
which may be stronger than the signal in some time-frequency bins (He et al.

2018a).

1.3.2. Steered Response Power

Steered Response Power (SRP) and SRP with Phase Transform (SRP-PHAT) vec-
tors can be considered the middle ground between the trivial acoustic features
like TDoA and ideal features, like room impulse response (RIR) or relative trans-
form function (RTF). SRP-PHAT features are obtainable in real world, are rel-
atively high-dimensional and contain information about sound reflections within
the room.

The signal xm(t) at microphone m is (see (1.3)):

xm(t) = s(t) ∗ h(~ds, t) + nm(t). (1.19)

In an M -microphone array system, the unitarily weighted delay-and-sum beam-
former which has been briefly introduced in Chapter 1 can be created by de-
laying the microphone signals xm(t) with appropriate steering delays, δm with
m = 1, 2, ..,M to make them aligned in time, and then summing all these time-
aligned signals together. Mathematically, it is defined as follows

y(t, δ1, δ2, . . . , δM ) ≡
m=M
∑

m=1

xm(t− δm). (1.20)

To make the microphone signals time-aligned, the steering delays δm can be
set to

δm = τm − τ0, (1.21)

where τm is the time delay from the source to microphone m and τ0 is set to the
minimum of all time delays τi, i = [1, 2, . . . ,M ] to make δm non-negative and
hence system is causal.
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Now we can express the output of a delay-and-sum beamformer in terms of
the source signal, the channel’s impulse response and the noise as follows

y(t, δ1, δ2, . . . , δM ) ≡ s(t)∗

m=M
∑

m=1

h(~ds, t−τm+τ0)+

M
∑

m=1

nm(t−τm+τ0). (1.22)

When an adaptive filter is applied to the delay-and-sum beamformer, a filter-

and-sum beamformer is achieved. In the frequency domain, a filter-and-sum beam-
former output is

Y (ω, δ1, δ2, . . . , δM ) =
m=M
∑

m=1

Gm(ω)Xm(ω)e−jωδm . (1.23)

where Xm(ω) is the Fourier Transform of the microphone signal xm(t) and Gm(ω)
is the Fourier transform of the filter.

In general, the steered response power (SRP) is the output power of a filter-
and-sum beamformer over all points ~x in a predefined region. For each point ~x it
is a function of steering delays, and in the frequency domain is defined as

P (δ1, . . . , δM ) ≡

∫

∞

−∞

Y (ω, δ1, δ2, . . . , δM )Y ∗(ω, δ1, δ2, . . . , δM ) dω. (1.24)

Substituting equation (1.23) into equation (1.24), we have

P (δ1, . . . , δM ) ≡

∫

∞

−∞

(

k=M
∑

k=1

Gk(ω)Xk(ω)e
−jωδk

)(

l=M
∑

l=1

G∗

l (ω)X
∗

l (ω)e
jωδl

)

dω.

(1.25)
Rearranging the expression yields

P (δ1, . . . , δM ) ≡

∫

∞

−∞

k=M
∑

k=1

l=M
∑

l=1

Gk(ω)G
∗

l (ω)Xk(ω)X
∗

l (ω)e
jω(δl−δk) dω.

(1.26)
From the equation (1.21) it is easy to see that

δl − δk = τl − τk. (1.27)
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Inserting (1.27) into (1.26) we obtain

P (δ1, . . . , δM ) ≡

∫

∞

−∞

k=M
∑

k=1

l=M
∑

l=1

Gk(ω)G
∗

l (ω)Xk(ω)X
∗

l (ω)e
jω(τl−τk) dω.

(1.28)

Note that the integral converges because in practice the microphone signals
and the filters have finite energy. Hence, the summations can be interchanged with
the integral and moved outside the integral as follows:

P (δ1, . . . , δM ) ≡
k=M
∑

k=1

l=M
∑

l=1

∫

∞

−∞

Gk(ω)G
∗

l (ω)Xk(ω)X
∗

l (ω)e
jω(τl−τk) dω.

(1.29)
Define the combined weighting function

Ψkl ≡ Gk(ω)G
∗

l (ω). (1.30)

Recall that (1.4) gives us
τl − τk = τkl. (1.31)

Substituting the expressions in (1.30) and (1.31) back into (1.29) gives us the ex-
pression for the SRP:

P (δ1, . . . , δM ) ≡

k=M
∑

k=1

l=M
∑

l=1

∫

∞

−∞

ΨklXk(ω)X
∗

l (ω)e
jωτkl dω. (1.32)

Now we recall the GCC from (1.13):

Rkl(τ) ≡
1

2π

∫

∞

−∞

Ψkl(ω)Xk(ω)X
∗

l (ω)e
jωτ dω. (1.33)

It can easily be seen that the SRP and the GCC have almost identical expres-
sions except that the SRP is summed over all pairs of microphones and there is a
constant offset of 2π. Therefore, this provides us a means to calculate the steered
response power (SRP) of a microphone array by summing the generalized cross-
correlation (GCC) of all pairs of microphones in the array (here the constant offset
is ignored since it is just a scalar).

Similar to the idea of GCC-PHAT, when the weighting function phase trans-

form, PHAT, is applied to the steered response power (SRP), we obtain the SRP-
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PHAT. The SRP-PHAT for each point ~x n the space is defined as follows

P (δ1, . . . , δM ) ≡

k=M
∑

k=1

l=M
∑

l=1

∫

∞

−∞

1

|Xk(ω)X
∗

l (ω)|
Xk(ω)X

∗

l (ω)e
jωτkl dω. (1.34)

Since the GCC between microphone k and microphone l is the same as be-
tween microphone l and k, the elements summing to form the above SRP-PHAT
functional form a symmetric matrix with fixed energy terms on the diagonal.
Therefore, the art of the SRP-PHAT that changes with ~x is either the upper-part or
the lower part of the matrix. In other words, for a particular point ~x in the space,
the part of the SRP-PHAT in Equation (1.34) that changes with ~x can be computed
by summing the GCC of not all pairs of the M -microphone array, but only a subset
Q of the pairs where Q = [k, l], ∀ k ∈ [1, . . . ,M − 1],M ≥ l > k:

P ′(δ1, . . . , δM ) ≡

k=M
∑

k=1

l=M
∑

l=k+1

∫

∞

−∞

1

|Xk(ω)X
∗

l (ω)|
Xk(ω)X

∗

l (ω)e
jωτkl dω.

(1.35)
To find the source locations, we steer the beamformer over all possible points

in a focal volume containing the source. The points that give the maximum weighted
output power (SRP-PHAT) of the beamformer will be the source locations. For a
single source, the location estimate ~xs is

~xs = argmaxP ′(~x), (1.36)

where P ′(~x) is the SRP-PHAT at point ~x and is defined in equation (1.35). Note
that the calculation of any particular point P ′(~x) will be called a functional evalu-
ation (fe).

The hypothesis is that the SRP-PHAT will peak at the actual source location
even under very noisy and highly reverberant conditions. However, the problem
with SRP-PHAT is its expensive computational cost because the search space has
many local maxima, and thus computationally intensive grid-search methods have
been required to find the global maximum.

1.4. Assumptions about W-disjoint Orthogonality of
the Sound Sources

Assuming the signal to be W-disjoint orthogonal allow to perform signal demixing
and blind source separation. Given a windowing function W (t), we call two func-
tions si(t) and sj(t) W-disjoint orthogonal if the supports of the windowed Fourier
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transforms of si(t) and sj(t) are disjoint. The windowed Fourier transform of si(t)
is defined,

FW (si(·))(ω, τ) =

∫

∞

−∞

W (t− τ)si(t)e
−iωt dt, (1.37)

which will be referred to as SW
i (ω, τ) where appropriate. The W-disjoint orthog-

onality assumption can be stated concisely,

SW
i (ω, τ)SW

j (ω, τ) = 0, ∀ i 6= j, ∀ ω, τ. (1.38)

Note that, if W (t) = 1, SW
i (ω, τ) becomes the Fourier transform of si(t),

which we will denote Si(ω). In this case, W-disjoint orthogonality can be ex-
pressed,

Si(ω, τ)Sj(ω, τ) = 0, ∀ i 6= j, ∀ ω, (1.39)

which is called disjoint orthogonality (Jourjine et al. 2000).
Human speech is considered to be approximately W-disjoint orthogonal (Rickard

2002).

1.5. Learning-Based Sound Source Localization

Due to the ability to approximate complex functions that define the relationship
between the microphone array signals and features extracted from those signals and
the positions or DoAs of sound sources, learning-based sound source localization
methods might be further advantageous in such circumstances.

Multiple investigations of application of ANNs for SSL were presented re-
cently (Argentieri et al. 2015; Grumiaux et al. 2021b). Sound source localization
using ANN is commonly formulated either as a classification (Bohlender et al.

2021; Chakrabarty, Habets 2019a; Grumiaux et al. 2021a; Hao et al. 2020; Hirvo-
nen 2015; Hubner et al. 2021; Ma, Liu 2018; Roden et al. 2015; Vargas et al. 2021),
or a regression problem (Cao et al. 2019; Grondin et al. 2019; Kim 2014; Pertila,
Cakir 2017; Youssef et al. 2013).

In case of the regression problem, the output of the ANN is a one-dimensional,
two-dimensional or three-dimensional vector (in case of a single sound source
(Huang et al. 2020; Park et al. 2020)) or a set of vectors (in case of a multiple
source localization (Kapka, Lewandowski 2019; Kim, Ling 2011; Yasuda et al.

2020)).
In case of the classification problem, the input features are classified to an

array of spatial classes, representing the source coordinates in 1, 2 or 3 dimensions.
In case the source is localized in a single dimension, this dimension is most

often the azimuth of the sound source (DoA, (Chakrabarty, Habets 2019b; He et al.
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2018a; Subramanian et al. 2021; Takeda, Komatani 2016a; Zermini et al. 2016)).
In case of 2 dimensions, source azimuth and elevation (2D DoA (Lin, Wang 2019;
Noh et al. 2019; Perotin et al. 2018)). Some authors provide a method to local-
ize a sound source 3 dimensions, either in polar (Roden et al. 2015) or Cartesian
(Adavanne et al. 2019a; Phan et al. 2020; Ronchini et al. 2020; Singla et al. 2020)
coordinates. It must be noted that source localization in 3 dimensions is usually
approached as a regression problem, and was only investigated as a classification
problem by Roden et al. (2015) and Takeda, Komatani (2016b).

Methods for the classification-based localization of single (Kucuk et al. 2019;
Yalta et al. 2017) as well as multiple (Perotin et al. 2018; Subramanian et al. 2021)
simultaneously active sound sources were proposed.

A variety of input features were proposed to use with an ANN-based sound
source localization methods, ranging from ILD and ITD (Roden et al. 2015; Youssef
et al. 2013) and IPD (Pak, Shin 2019; Sivasankaran et al. 2018) to GCC-PHAT (He
et al. 2018a; Lu 2019; Vesperini et al. 2016; Xiao et al. 2015) or SRP-PHAT power
maps (Diaz-Guerra et al. 2021) to magnitude and phase spectrograms of the ar-
ray signals (Adavanne et al. 2018; Kapka, Lewandowski 2019; Lin, Wang 2019;
Schymura et al. 2021; Zhang et al. 2019) and even unprocessed audio waveforms
(Chytas, Potamianos 2019; Huang et al. 2018; Jenrungrot et al. 2020; Pujol et al.

2019; Sundar et al. 2020; Suvorov et al. 2018; Vecchiotti et al. 2019; Vera-Diaz
et al. 2018).

While there are many available ANN types, most commonly, the CNN (Salvati
et al. 2018; Vargas et al. 2021) and RNN (Wang et al. 2019) or a combination
of both are used (Huang et al. 2018; Ma et al. 2015; Roden et al. 2015; Takeda,
Komatani 2016a; Youssef et al. 2013) and Autoencoders (Huang et al. 2020; Wu
et al. 2021; Zermini et al. 2016) are also investigated.

Since the sound source localization needs to map the input features to a metric
coordinates or spatial classes that represent the metric coordinates of the sounds
source(s), unsupervised learning methods are not commonly used, as it is impos-
sible for a machine learning algorithm to learn the accurate mapping between the
feature space and the physical space without any supervision. Although there are
some investigations in semi-supervised (Bianco et al. 2020; Moing et al. 2021;
Takeda, Komatani 2017) or weakly-supervised learning strategies (Opochinsky
et al. 2019), nevertheless, most often, a supervised learning strategy is employed.

The performance of the mentioned proposed learning-based SSL methods
were evaluated using either simulated or real-world sound source datasets, with
sound sources captured in either anechoic or reverberant environments.

Signals of the localized sound sources range from narrowband or harmonic
signals (Ding et al.) to broadband noise signals (Huang et al. 2021) to human
speech (Diaz-Guerra et al. 2021; Subramanian et al. 2021) or a variety of
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real-world signals and noises (Adavanne et al. 2019a; Huang et al. 2021; Kapka,
Lewandowski 2019).

Generally, for supervised training of an ANN, a large dataset of labeled sam-
ples is needed, which is costly to acquire and the case of SSL, it needs to con-
tain a number of multichannel array signal recordings with the positions of the
sound source labeled for each frame of the recording. A few of such datasets ex-
ist (Guizzo et al. 2021; Löllmann et al. 2018) and were used extensively by many
authors. Another way of obtaining a SSL dataset is to simulate the array signals
using acoustic models. Most commonly, an image source method (Allen, Berkley
1976) is used for RIR simulation, which can then be convoluted with dry signals
to obtain a rendition of the sound source signals propagated within an acoustic en-
closure, with introduced multi-path propagation and associated effects. While the
localization of a sound source in a reflection-free environment is often an easier
task, most authors investigated sound source localization in a reverberant environ-
ments because such scenario is more common in real-life situations.

Most often, the number of the sound sources desired to be localized is known
or set in advance, although localization of an a-priori unknown number of sources
was also demonstrated (Cao et al. 2021; Chazan et al. 2019; He et al. 2018b).

Although great majority of the reviewed research focused on localization of
stationary sound sources, advances in moving source localization were made (Ada-
vanne et al. 2019b).

1.5.1. Acoustic Features for Sound Source Localization

Several types of acoustic features that can be used for acoustic sound source local-
ization are discussed further.

Features can be grouped by their dimensionality into low-dimensional and
high-dimensional feature groups. The criteria for determining whether the fea-
ture is low- or high-dimensional is relative to the number of feature observation. If
the the dimensionality of features p is much larger than the number of observations
N , often written p >> N , then the feature is considered to be high-dimensional.

Time Difference of Arrival (TDoA) is a trivial acoustic feature, that can be
estimated using cross-correlation of the signals of the pairs of the microphones
within a microphone array, for example, the GCC-PHAT. Knowing the TDoA for
several non-co-linear (or non-parallel) microphone pairs, it is possible to estimate
the position of the sound source using triangulation (trilateration).

While this would be a simple and straightforward method, the accurate TDoA
estimation becomes very tricky in reverberant or noisy environments. Moreover,
the TDoA contains only very little information about the distance between the
sound source and the microphone pair (just one value per pair). For a microphone
array with 4 elements, that’s only 6 values. TDoA does not explicitly contain
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any information about the structure of reflections withing the enclosure, nor the
geometry or acoustic properties of the enclosure.

TDoA is also commonly known as interaural time difference, ITD (in context
of binaural or multiaural hearing).

In contrast to the ITD, the interaural phase difference, or IPD for short, op-
erates on much smaller time difference than ITD. IPD is most useful when the
receiver array is compact and no spatial aliasing occurs.

High dimensional acoustic features are represented by a vector that has a num-
ber of elements that is comparable to a number of observed samples of the feature.

It is assumed that high-dimensional acoustic features, such as room impulse
response (RIR) or room transfer function (RTF) contain a unique fingerprint of
sound source and microphone positions within an enclosure. This is because the
structure of room reflections is unique for every source position and every micro-
phone position (theoretically, there might be some cases when same RIR is ob-
tained for more than one combination of microphone and sound source positions,
but this is probably possible in ideal room, which exhibit point symmetry around
the center of the room; in real rooms this is impossible; also the microphones must
be also placed symmetrically in the enclosure for this effect to occur).

While the RIRs and RTFs contain enough information to uniquely determine
the position of the source within an enclosure, in practice it is impossible to obtain
RIR without knowing the positions of the sound source and the microphone within
the room beforehand. RTFs are a viable option, utilized by Laufer-Goldshtein et al.

(2016).

1.6. Conclusions of the First Chapter and
Formulation of Dissertation Tasks

1. The Steered Response Power with Phase Transform (SRP-PHAT) algo-
rithm has been shown to be one of the most robust sound source localiza-
tion approaches operating in noisy and reverberant environments. The per-
formance of SRP-PHAT-based source localization algorithms deteriorate
considerable when compact microphone arrays are used. Learning-based
sound source localization methods might be further advantageous in such
circumstances.

2. There are several learning-based source localization approaches, based on
either semi-supervised or supervised learning paradigms. In both of these
approaches to work, a set of acoustic features from known sound source
positions (the labeled dataset) is needed.
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3. Labeled feature acquisition is very costly, although is relatively easy to
obtain a large dataset of unlabeled acoustic features. Unlabeled acoustic
features could be leveraged to improve the performance of learning-based
sound source localization methods.

4. High-dimensional acoustic features, such as room impulse response (RIR)
or room transfer function (RTF) contain a unique fingerprint of sound
source and microphone positions within an enclosure.

Three hypotheses were formulated as a result of the performed literature
survey:

1. Learning-based sound source localization approaches perform better in
terms of source position estimation error than geometrical or subspace-
based methods in adverse acoustic conditions.

2. High-dimensional acoustic features are more suitable to use in learning-
based scenarios than the low-dimensional acoustic features because they
contain more information about the acoustic scene and acoustic parameters
of the enclosure and thus such features are better suited when the acoustic
conditions are adverse.

3. It is possible to simultaneously localize more than one active sound source
in two and three spatial dimensions in the acoustic scene if the sources
exhibit W-disjoint orthogonality.

To test the formulated hypotheses, following tasks should be solved:
1. To propose and investigate the supervised learning-based sound source lo-

calization approaches for multiple sound source two-dimensional localiza-
tion within an acoustic enclosure.

2. To propose and investigate the supervised learning-based sound source lo-
calization approaches for multiple sound source three-dimensional local-
ization within an acoustic enclosure.

3. To propose and investigate the semi-supervised and/or unsupervised sound
source localization approaches for a single sound source localization within
an acoustic enclosure.



2
Theoretical Research of Learning
Based Sound Source Localization

Methods

In this chapter, the methods and results of the theoretical research of learning-based
sound source localization are presented. Firstly, an investigation on the effects of
signal thresholding on the accuracy of sound source localization is presented. Sec-
ondly, a simple supervised learning method for sound source location estimation
using sound intensity features and a wide aperture microphone array is presented.
Then an unsupervised learning method for acoustic feature embedding and map-
ping to the metric coordinate system is presented. Finally, a supervised learn-
ing methods for sound source localization in 2D (azimuth and elevation) and 3D
(Cartesian coordinates) localization using a CNN trained on noise signal STFTs
are presented.

The research results presented in this chapter are published in four papers
(Sakavičius et al. 2017; Sakavičius, Serackis 2019; Sakavičius 2021; Sakavičius,
Serackis 2021) and announced at the international “AIEEE” (Riga, 2017),
“eSTREAM” (Vilnius, 2017, 2019) and national “Science – Future of Lithuania”
(Vilnius, 2017, 2019) scientific conferences.

2.1. Analysis of Effects of Signal Thresholding

Even though the source localization is well understood and is comparatively re-
liable in a reflection-less environment, such as acoustically free field, the perfor-
mance of time difference of arrival (TDoA) based methods, such as generalized

31
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cross-correlation with phase transform (GCC-PHAT) or steered response power
with phase transform (SRP-PHAT) deteriorates considerably when the multipath
wave propagation due to the reflections of the sound waves at the boundaries of the
acoustic enclosure (Brandstein, Silverman 1997; Datum et al. 1996; DiBiase et al.

2001). When the acoustic wave propagation is analyzed in a real-world environ-
ment, additional factors such as: acoustic properties of the enclosure, the size and
geometry of the microphone array, the signal-to-noise ratio (SNR) of the micro-
phone array and the associated acquisition system, sampling rate and quantization
resolution, duration of the analysis window (in case of a digital signal processing
system), must be considered (Xiao et al. 2016).

Experimental studies with real sound data (Löllmann et al. 2018) yielded de-
pendencies on the accuracy of sound source direction determination, which aimed
to evaluate the influence of the following optional parameters: the sampling rate,
the oversampling rate, the type of voice activity detector and its parameters. Pre-
sented research shows that in order to increase the accuracy of audio source local-
ization, it is necessary to separate the segments of signals received by microphones
with and without a useful signal (speech), thus avoiding incorrect determination of
the direction of the source.

Audio source localization is performed by performing a cross-correlation of
the signals received in the two synchronized microphones, obtaining the peak of
the time lag function and the TDoA estimate, from which the angle of the source
with the section connecting the pair of microphones is then calculated. To evalu-
ate the accuracy of audio source localization, we have used an audio signals with
labeled source coordinates provided in the publicly available database LOCATA
(Löllmann et al. 2018); source coordinates were labeled with at a sampling fre-
quency of 120 Hz. We have used only one pair of microphones from the 32 micro-
phone array (Eigenmike). The distance between the microphones was 8 cm.

In the following section is presented the investigation of the factors that have
an impact of the accuracy of sound source direction of arrival (DoA) estimation
via microphone signals cross-correlation, namely, the length and the SNR of the
analysis frame. A measure is proposed for cross-correlation time-lag estimate re-
liability, called signal-to-minimum-error-amplitude ratio, SMEAR.

2.1.1. Application of Cross-Correlation of Two Microphones

The first phase of the study aimed to compare the location of the sound source
obtained from the displacement of the cross-correlation peak (that is, the time
lag) with the actual location of the sound source calculated from the change in
the ground truth coordinates of the speaker as labeled in the dataset. The coordi-
nates of each of the microphones and the coordinates of the sound source in three-
dimensional space were used to determine the actual location of the sound source.
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a) b)

c) d)

Fig. 2.1. Audio source localization results using different frame length;
LOCATA dataset Eigenmike signals, speech source; CC PTL is

cross-correlation peak time lag; GT TDoA is the ground truth TDoA; a) 1024
samples; b) 4096 samples; c) 16384 samples; d) 65536 samples

Since the speaker (sound source) was moving within the enclosure on a horizontal
plane and the microphone grid was not moving during the recording of the data set,
it was rational to use only two spatial coordinates (x, y), ignoring the vertical axis
(z). The sound wave time of arrival (ToA) between the sound source and the i-th
microphone ToAi is calculated for each microphone according to the Pythagorean
theorem:

ToAi =
√

(xs − xmi)2 − (ys − ymi)2/vs, (2.1)

where xmi, ymi are the coordinates of the i-th microphone, xs, ys are the coordi-
nates of the sound source, vs – speed of sound in air. After calculating the ToA
time for both microphones, we can calculate the time difference of arrival TDoAij ,
which should coincide with the displacement of the correlation peak:

TDoAij = ToAi − ToAj . (2.2)
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The results of the study (Fig. 2.1) were obtained using signal analysis frames
of different lengths. No frame selection algorithm was used in the study (i.e., based
on the signal Zero Crossing Rate (ZCR) or Short-Time Energy (STE)).

As can be seen from the presented trajectories of the sound source motion
(Fig. 2.1), the noise of the source DoA estimation from the TDoA obtained from
cross-correlation peak time lag decreases with increasing analysis frame length.
Nevertheless, the error remains considerable.

Longer frames of analysis can give a more accurate estimate of the delay time
difference compared to shorter frames. This can be attributed to the consideration
that the speech signal contains both periodic portions (Fig. 2.2a) and also has ex-
pressed transient envelopes (Fig. 2.3). For shorter analysis frames, a portion of a
signal might not contain a transient and only contain the periodic signal. If the
wavelength of such signal within the analysis frame is shorter than the distance be-
tween the microphones, the TDoA estimation from the cross-correlation time lag
becomes ambiguous, as one can not certainly determine whether the time lag was
obtained for the same period of the wave or if the time lag contained more than one
periods (Fig. 2.2b). If the analysis window is longer, there is a higher probability
that a non-periodic, transient envelope of the signal is contained within the frame,
for which the cross-correlation time lag estimate is robust (Fig. 2.4).

a) b)

Fig. 2.2. Comparison of synthetic signals; a) received by microphones; b) their
correlation result using 64 sample analysis frame; time lag estimation is

ambiguous

By calculating the correlation for the 64 sample analysis frame, we obtain a
clear correlation maximum corresponding to the signal delay (7 samples) (Fig. 2.4).
However, such transient might not be included in a frame of the same length; in this
case, an incorrect the correlation peak (incorrect time lag) (Fig. 2.2). The length
of the analysis frame is considered too small to calculate the correct difference
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a) b)

Fig. 2.3. Comparison of synthetic audio signals received by two microphones:
a) entire signal; b) transient portion of the signal

a) b)

Fig. 2.4. Comparison of synthetic signals; a) received by microphones; b) their
correlation result using 256 sample analysis frame; signal contains a transient

envelope

in delays from the envelope variation because the signal noise amplitude is larger
than the envelope variation in the analysis window (Fig. 2.3). The signal graph
shows that the time lag between the signals relative to each other is about 180◦,
and indeed more (several periods); in this situation it is impossible to determine
the correct time lag.

If the selected analysis frame is longer, there is an increased probability of a
transient occurring in such window, and the change in the signal envelope will be
greater than the amplitude of noise. The influence of the envelope of the signal on
the correlation result is greater than the influence of noise.
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2.1.2. Signal Amplitude to Minimum Error Amplitude Ratio

The speech signal has exhibits time-varying properties. Some phonemes in some
words are very similar to random noise while others exhibit signal periodicity.
Moreover, the amplitude of the speech signal is also inconsistent and contains tran-
sients. By analyzing and comparing the similarities and differences in the ampli-
tudes of the audio signals recorded by the two microphones, it was observed that
the influence of noise on the low amplitude signal can significantly affect the cal-
culated correlation result and lead to incorrect estimation of the cross-correlation
time lag. For this reason, it was decided to investigate how the accuracy of sound
source localization changes in correlation with selecting only those audio signal
frames in which the ratio between the signal amplitude range and the noise ampli-
tude range exceeds a certain threshold.

We speculate that selection of frames based on such threshold would increase
the accuracy of the source DoA estimation as the frames which produce unreliable
TDoA estimates would be filtered out. Rationale for this would be that some audio
frames would contain noisy audio signals. For such frames the cross-correlation
time lag can not be reliably obtained and such frame is unusable for DoA calcula-
tion.

We speculate that the cross-correlation time lag can be considered reliable for
a frame that exhibits a high coherence of signals at a single time lag. We select
amplitude of the difference of the signals (the error amplitude) as the coherence
measurement. Lower error amplitude of the signals within a frame indicates high
coherence of the signals. Since the real TDoA of the signals is unknown, we mea-
sure the signal coherence at every time lag within the limits set by the microphone
array geometry: the maximum time lag must be lower than the time a sound wave
takes to propagate between the microphones. We select the lowest error amplitude
and hereafter call it the minimum error amplitude (MEA).

We also consider that a reliable cross-correlation time lag can be obtained
for a frame which exhibits a large SNR, since, as it was shown previously, noisy
signals can lead to incorrect time lag estimates. We calculate the SNR of the frame
as the ratio of the signal amplitude to the MEA. We call this ratio hereafter the
SMEA ratio or SMEAR. We investigate the influence of SMEAR thresholding in
the following section.

2.1.3. Influence of Thresholding on the Localization Accuracy

The accuracy of the source DoA estimation using SMEAR thresholding with var-
ious threshold values: 2, 3 and 5 has been estimated.
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The DoA estimates were compared with the ground truth DoA obtained from
the dataset source position labels. The results of this investigation are presented in
Fig. 2.5.

a) b)

c) d)

Fig. 2.5. Illustrations of: a) SMEAR calculated for audio signal frames; audio
source positioning deviations by selecting different SMEAR threshold values:
b) two; c) three; d) five; LOCATA dataset Eigenmike signals, speech source;

frame size 4096 samples

Despite the fact that the introduction of thresholding of audio signal frames
has slightly improved the localization of the audio source, there is still too much
uncertainty (from one to several tens of degrees). The reason for this situation is
illustrated by the comparison of multiple signal analysis frames at different record-
ing locations (Fig. 2.6). It can be seen from the figure that even high-amplitude
signals, with low amplitude noise levels, can lead to an incorrect setting of the time
lag estimation, depending on the time of the signal it will be calculated.
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a) b)

Fig. 2.6. Comparison of signals recorded by two microphones at different times;
frame numbers: a) 800; b) 1831; LOCATA dataset Eigenmike signals, speech

source

Analysis of speech signal recordings received by a pair of microphones shows
that even at a small distance of 8 cm between two microphones, due to room acous-
tics, time-varying signal characteristics and other distortions, accurate localization
of the sound source is not possible with real world signals using signal cross-
correlation without additional processing. The study showed that by considering
the signal amplitude to noise amplitude ratio, some of the erroneous results of
the sound source localization can be eliminated, but other types of noise remain,
making signal analysis ineffective on the time axis.

2.2. Single Sound Source Localization Using
Multilayer Perceptron

In this section, a sound source localization system based on a MLP is investigated.
The proposed system uses four microphones array for sound recording, a feature
extraction stage, and an MLP for estimation (prediction) of sound source location.

Sound source propagation is subject to inverse-square decay of the sound in-
tensity with respect to the distance between the sound source and the sound re-
ceiver (microphone). This is true for point sources, which emit acoustic waves
that have a spherical wavefront. All acoustic sources can be approximated as point
sources if the distance between the receiver and the source D is much greater than
the dimensions of the sound source d: D >> d. For a spherical wavefront, the
area of the wavefront A is related to the distance from the source via the spherical
equation:

A = 4πr2. (2.3)
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The sound intensity I that is propagated through an unit area of the wavefront is
inversely proportional to the area of the wavefront sphere. Therefore, I ∝ 1

r2
. This

implies that sound intensity differences are expected at receivers that are placed at
different positions with respect to the sound source.

Since the distances between the sound source and each of the microphones are
different, it is theoretically possible to uniquely assign one position to one set of
amplitudes’ ratios. Neither TDoA nor signal phase information is not taken into
account.

Sound source localization by evaluating the amplitude ratios between signals
of spatially distant microphones is a multidimensional approximation problem. A
multidimensional function that is being approximated maps the microphones’ sig-
nal amplitude values to sound source coordinates.

This multidimensional mapping problem can be viewed as a regression prob-
lem and solved using an ANN. In this section, an evaluation of the suitability of
MLP as the regressor for the ILD feature regression to acoustic source coordinates
is presented.

It can be shown that the sound intensity decreases by approximately 6 dB for
each doubling of distance from the sound source. Therefore, the ILD obtained
by the microphone array depends on the distances between the microphones (the
array aperture, a) in the array as well as the distance between the sound source and
the microphone array. If a = D, ILD = 6dB. It is intuitive that by increasing D,
ILD becomes smaller:

lim
(D/d)→∞

ILD = 0. (2.4)

Therefore, the microphone array aperture size should not be a << D. Practically,
the minimum array aperture shall not be more than 10 times smaller than the max-
imum D. In the case of this investigation, a room of dimensions A square array of
four microphones was used in this investigation, situated on the same plane with
0.6 m distance between microphones on a perimeter of the square. The differences
in sound signal amplitude, commonly known as Interaural Level Difference, ILD,
between separate microphones were used as the main feature for sound source lo-
calization.

The amplitudes of the microphone array signals vary in time. Therefore, a
Root-Mean Square (RMS) estimates of the recorded signal frames have been used
as an input feature that were presented to the MLP. The only two outputs of MLP
were used as two estimated coordinates of the sound source on a plane.

2.2.1. Microphone Array Signal Modeling

Every i-th virtual sound source (i ∈ (1, 2 . . . , I), I is the number of sound sources)
was modeled as a discrete sine signal si(n) with frequency fi, amplitude Ai and
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sampling rate Fs (Fs = 48 kHz was used throughout this investigation):

si(n) =

{

Ai sin(2πfi
n
Fs
), 0 < n < Ni;

0, n < 0, Ni < n,
(2.5)

where Ni is the duration of the signal (number of samples).
The position of the i-th sound source is defined by vector

Si = (Si1 , Si2 , . . . , SiD). D is number of spatial dimensions. In this investigation,
D = 2.

Signal of the j-th virtual microphone (j ∈ (1, 2 . . . , J), J is the number of
microphones) mj(n) is created by scaling the signal if the i-th sound source si(n)
by value ∆i,j , proportional to distance between the j-th microphone and the i-th
sound source (to account for the sound level to distance inverse proportionality):

mj(n) = ∆i,j · si(n). (2.6)

Microphone position is defined by a vector of its coordinates
Mj = (Mj1 ,Mj2 , . . . ,MjD). Decay value for each pair of i-th sound source and
j-th microphone ∆i,j is

∆i,j =
1

d(Si,Mj)
, (2.7)

where d(·) denotes the Euclidean distance between the microphone and the sound
source position. Distances between the i-th sound source and the microphone
array and the corresponding decay values are shown in Fig. 2.7. In this figure,
O = (0, 0, 0) denotes the origin point of the coordinate system, which corresponds
to the center of the microphone array. ∆i,O denotes distance from the i-th sound
source to the origin of the coordinate system.

M1 M2

M4 M3

Si
∆i,1

O

∆i,2

∆i,4
∆i,3

∆i,O

Fig. 2.7. Distances between the sound source and the microphone array

In this investigation, the localization of non-static (moving or irregularly ac-
tive) sound sources is discussed. Thus, a static sound source position can only
be estimated for a short time Tτ , which we call a time frame duration. There are
Nτ = Tτ · Fs signal samples in one time frame.
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Each microphone’s signal is divided into non-overlapping time frames τj,k(nk) =
mj(nk);nk ∈ (k · Nτ , . . . (k + 1) · Nτ ) here k is time frame number, k ∈
(1, 2, . . . , N/Tτ ), here N is the total duration of the measurement. Incomplete
time frames are not discarded. For the experiment, a time frame duration Tτ of
0.2 s was chosen.

RMS value τRMSj,k
of time frame k of the signal of the j-th microphone is

calculated by

τRMSj,k
=

√

√

√

√

1

Nτ

(k+1)·Nτ
∑

n=k·Nτ

|τj,k(n)|2. (2.8)

A set of 4 RMS values (for each microphone) of k-th time frame Ak =
(τRMS1,k

, τRMS2,k
, . . . , τRMS4,k

) comprises one input sample to the MLP (MLP one
input per microphone).

2.2.2. Selection of the Neural Network Structure

The structure of the MLP is presented in Fig 2.8. Two hidden MLP layers were
selected because the previous research with only one hidden MLP layer did not
provide acceptable source localization results.

input
layer

hidden
layer 1

hidden
layer 2

output
layer

...

...

Ai SPi

4 [1, 2, 5, 10] [1, 2, 5, 10] 2

Fig. 2.8. Structure of the MLP

The input feature of the MLP are the 4 amplitudes obtained in the previous
step.

MLP has 2 outputs, at which the predicted coordinates SPi = (xPi, yPi) are
presented. The signal flow is illustrated in Fig. 2.9.
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Fig. 2.9. Signal flow diagram of the simulation (6-th time frame is selected)

Positions of the source, predicted by the MLP, were compared to the ground
truth sound source positions. A relative error of the i-th sound source position
prediction was calculated by

ereli =

(

d(SPi
,O)

d(Si,O)
− 1

)

· 100%. (2.9)

To separately evaluate the ability of the MLP to predict the direction of the
sound source relative to the orientation of the microphone array, and the distance
from the center of the array to the sound source, the angular error eangi and the
distance error edisti were calculated:

eangi =

∣

∣

∣

∣

θPi

θi

∣

∣

∣

∣

; edisti =
rPi

ri
, (2.10)

where θPi
= tan−1 (yPi

/xPi
) · 180/π and θi = tan−1 (yi/xi) · 180/π (angles

expressed in degrees); rPi
=
√

x2Pi
+ y2Pi

and ri =
√

x2i + y2i . These error values

were calculated for every of the testing samples.

In order to test the concept of the proposed system, computer-based simula-
tions were performed at first and experiments with real-world microphone array
recordings were performed afterwards, that are presented at length in Section 3.1.
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2.3. Sound Source Localization Using Graph
Regularized Neural Network

Labeled feature acquisition is considered to be very costly. It is relatively easy to
obtain a large dataset of unlabeled audio features. Considering our setting, it is
relatively easy to collect a large amount of acoustic features without labels (in our
case – coordinates of the sound source), and it is very tedious to provide labels
for such data. As for the unsupervised learning approaches, while some proposed
algorithms are able to find the relative source distance, they are not bound to any
physical dimensions. Therefore, it is desired to leverage the unlabeled data as much
as possible. Thus, it is here focused on semi-supervised learning approaches. In
this section, a theoretical background for this investigation is provided.

As stated in the previous section, it is assumed, that high dimensional acoustic
features lie on a low-dimensional manifold, embedded in a high-dimensional fea-
ture space. Since the acoustic features are only dependent on the coordinates of the
sound source, it is expected that the manifold would represent the spatial relations
between the acoustic features. Acoustic features that may be used for sound source
localization are reviewed in Section 1.5.1. In this investigation, SRP-PHAT feature
was chosen because of its high dimensionality and exhibited spatial smoothness.

2.3.1. Acoustic Feature Acquisition

The most important property of all acoustic features in this investigation is the
spatial smoothness of feature space. In other words, acoustic features are similar to
each other for sound source positions that are close together. In this investigation,
SRP-PHAT spatial spectra are used as acoustic features. Acoustic features were
obtained within an acoustic enclosure using a single sound source, z coordinate
was fixed at height ms. NM circular microphone arrays were used for acoustic
signal acquisition, each with Nm microphone elements and radius mM. Planes of
the microphone arrays were parallel to the ground. Both arrays were held at a fixed
height mM. Signals of the microphones are recorded at a fixed sampling frequency
fs and a fixed resolution Q.

The unlabeled dataset may be obtained from an array audio recording where
the sound source is slowly moving inside the acoustic enclosure. The maximal
speed of the sound source movement vsmax should be lower than the maximum
expected localization error distance emax per frame duration Tτ :

vsmax =
emax

Tτ
. (2.11)
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The labeled dataset may be obtained from an array audio recordings where the
sound source is stationed at a known position s(x,y,z), described by coordinates
(x, y, z) in Cartesian coordinate system within the acoustic enclosure and is pro-
ducing signal (speech or noise) for a period of Ts seconds. A collection of n ∈ Ns

recordings at fixed source positions may be obtained.

Audio signals obtained from the microphone arrays are split into frames of
duration Tτ seconds to obtain Nτ frames.

For each audio frame j ∈ Nτ and for each microphone array i ∈ NM, a set of
time-frequency representations of the microphone signals is calculated with NSTFT

FFT points, without frame overlap and no windowing function.

A SRP-PHAT spatial spectrum SRPSRP-PHAT(j,i) is obtained for each frame
and for each array. SRPSRP-PHAT(j,i) is a vector with NSRP elements, representing
the received acoustic power at a particular DoA and covering an azimuth angle
θM ∈ [0◦; 360◦]. SRP-PHAT spectra of all arrays are then concatenated per frame
to obtain the acoustic feature SRPj of NM ·NSRP elements.

If the audio recording has an associated location label (known coordinates), a
frame is assigned the position label s(x,y,z).

It is considered that the sound source might not be active at all times, and that
the signal is non-stationary (in the case of a speech signal, it might be considered
quasi-stationary for frames that contain only one phoneme or a part of a phoneme).
Thus, in case of an audio frame where the source is not active, the DoA of a sound
source can not be determined, and the acoustic feature is considered to contain
only noise. Such frames are to be discarded. For the selection of the audio frames
in which the acoustic feature is usable, a thresholding algorithm was used. A
metric pi,j = f(SRPSRP-PHAT(j,i)) is calculated for and compared to the threshold
level Lthr. which is the scaled mean of the metric of all obtained frames Lthr. =
kp

1
Nτ

∑

j∈Nτ
pj , where kp is the scaling coefficient used to control the threshold

value. Metric pi,j is calculated per array to address the fact that the arrays might
be not identical in terms of audio signal gain, signal-to-noise ratio, and frequency
response. The metrics used to evaluate the fitness of the acoustic feature of a
particular audio frame are:

1. Root-mean-square value of the SRP-PHAT spectrum:

pRMS,
i,j (SRPSRP-PHAT(j,i)) =

√

〈

SRP2
〉

. (2.12)

2. Crest factor of the SRP-PHAT spectrum:

pCF
i,j (SRPSRP-PHAT(j,i)) =

|max(SRPSRP-PHAT(j,i))|

pRMS,
i,j (SRPSRP-PHAT(j,i))

. (2.13)
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After determining pi,j of the SRPSRP-PHAT(j,i) per array per frame, feature vec-
tors SRPj are selected of those frames j for which pi,j > Lthr. for all microphone
arrays i ∈ NM.

The labeled dataset is split into training and testing subsets by randomly se-
lecting samples from Nts. source positions for training and the rest of the source
positions Ntr. = Ns − Nts. for testing from the entire set of labeled source posi-
tions. The following operations are performed separately for training and testing
labeled datasets.

2.3.2. Acoustic Manifold Embedding Learning

Manifold embedding can be learned using a Nonlinear Dimensionality Reduction
(NLDR) algorithm, such as isometric mapping (ISOMAP), t-distributed stochastic
neighbor embedding (t-SNE) or locally linear embedding (LLE), among others.
ISOMAP NLRD algorithm was employed to obtain the high-dimensional feature
embeddings in low-dimensional space, that is, learn the acoustic feature manifold.

One of the earliest approaches to manifold learning is the ISOMAP algorithm.
ISOMAP can be viewed as an extension of Multi-dimensional Scaling (MDS) or
Kernel Principal Component Analysis (PCA). ISOMAP seeks a lower-dimensional
embedding which maintains the geodesic distances between all points Pedregosa
et al. (2011).

SRP-PHAT features from both labeled and unlabeled training datasets are em-
bedded into Demb.-dimensional embedded space using ISOMAP, with kemb. near-
est neighbors considered. For each SRPj feature, an embedding
Zj = [zd1 , zd2 , . . . , zdDemb.

]. This way, a low-dimensional representations of the
high-dimensional acoustic features are obtained. Moreover, the learned manifold
corresponds to the spatial structure of the acoustic feature space. Thus, the rela-
tive distances in the embedded space of unlabeled features to labeled features are
known.

2.3.3. Preparation of the Graph dataset

The combined dataset for training the neural network is comprised of two datasets:
Nu acoustic feature samples without source position labels (the unlabeled dataset)
and Nl acoustic feature samples with source position labels (the labeled training
dataset). Each sample feature SRPu,l

j in the combined dataset also has a corre-

sponding ISOMAP embedding Z
u,l
j . In order to train the GRNN with graph

regularization, the dataset must be preprocessed: for each sample, regardless of
whether it is a labeled or an unlabeled sample, alongside the main feature, neigh-
bor features SRPn

j and their weights an where n ∈ n must be introduced. n
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denotes the neighborhood of the sample feature in the embedded space. This is
done by first determining the kG nearest neighbors of a particular sample in the
embedded feature space and then appending those features as well as their weight
coefficients to the training sample.

The dataset for training the neural network is comprised of N source position
and SRP-PHAT feature vector pairs.

In the embedded space, Euclidean distances are calculated between every
point. The distances between each data sample constitute the distance matrix,
which is in turn used to calculate the affinity matrix.

In the embedded space, Euclidean distances are calculated between every fea-
ture. The distances between each data sample constitute the distance matrix D,
which is in turn used to calculate the affinity matrix. Affinity matrix A is cal-
culated by subtracting D from 1: A = 1 − D. The distance matrix contains the
Euclidean distances between each sample in the low-dimensional embedded space:

D = (dij); (2.14)

dij = ‖pi − pj‖
2
2, (2.15)

where pi = (αi, βi) is the point coordinate vector in the embedded space (in case
of NISO = 2), α and β are the Cartesian coordinates in the embedded space.

Neighbor weights are inversely proportional to the Euclidean distances be-
tween the main feature and the neighbor features in the low-dimensional embedded
space. Affinity matrix is scaled to the range of [0; 1]. An example of an affinity
matrix is presented in Fig. 2.10.

For the training of the GRNN, each training sample must contain the main
SRP-PHAT feature and kG neighbor SRP-PHAT features (used for calculating the
graph loss). Additionally, each neighbor feature is associated with its weight a,
which is the corresponding element in the affinity matrix. To obtain the kG neigh-
bors of each sample, each row of the affinity matrix is thresholded so that only the
kG highest-valued elements remain their values, while the other row elements are
set to zero. The dataset is then expanded so that each sample now has associated
neighbor SRP-PHAT features (the indices of which are the non-zero elements in
the rows of the affinity matrix).

For the training dataset, a flag m denoting whether the sample is labeled or
unlabeled is introduced. This flag holds the value of either “True” or “False” (1 or
0). The content of this field is interpreted by the GRNN during the calculation of
the loss function. Effectively, the supervised loss component is multiplied by the
flag. In the case of an unlabeled sample, the supervised loss is ignored, and only
the graph loss is considered. In real-world scenarios, GRNN expects all fields,
including the target feature (the label, the coordinates of the source) to be passed
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Fig. 2.10. Example of an affinity matrix for 50 samples

during training. In the case of the unlabeled sample (whether during the training
phase or during the prediction phase), the supervised loss is not calculated, the
label is ignored, and thus it can be set to random values or to zero.

One might wish to train the GRNN using as few as possible labeled samples.
It was found that the network is trained more effectively when the labeled samples
are introduced more times (more often) than the unlabeled samples. It might be
called “dataset balancing” . Labeled samples (those with m = 1) are repeated NR

times (NR ∈ [1, . . . , 199]) and appended to the training data subset.

2.3.4. Graph-Regularized Neural Network

Proposed here is a neural network that is trained considering not only the labeled
samples, but also neighboring labeled and unlabeled samples.

Any neural network can be converted to graph-regularized neural network
(GRNN) by introducing additional inputs for neighboring features as well as mod-
ifying the loss function to accommodate the graph loss.

A general architecture (one of possibilities) of a GRNN model is provided in
Fig. 2.11. In this figure, dotted lines encompasses the input vectors. Dashed lines
inside the GRNN block denote prediction (a forward pass). The loss function is
given by L = m(ŷ0−y)+

∑

i∈kg
ai(ŷ0−ŷ1). The loss function is discussed further

in more detail. x0 is the main input feature, x1..4 are neighbor input features, a1..4
are corresponding neighbor input feature weights, y0 is the target feature, m is the
labeled/unlabeled flag, ŷ0 is the label prediction for main input feature, ŷ1..4 are
the label predictions for the neighbor input features.
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Fig. 2.11. General architecture of a graph regularized neural network
(considering 4 neighbor features)

Apart from the introduction of additional inputs (neighbor features, weights,
and flags), the actual neural network is just a multilayer perceptron. During the
prediction phase, only the main input contributes to the prediction.

In this experiment, several multilayer perceptron architectures were used. The
summary of the architectures are presented in Table 2.1. This architecture was
found during a previously performed hyperparameter optimization.

Table 2.1. Summary of neural network architectures used for the experimentation

Architecture
1 2 3 4 5 6

Layer Act. f. Size Act. f. Size Act. f. Size Act. f. Size Act. f. Size Act. f. Size
input linear 720 linear 720 linear 720 linear 720 linear 720 linear 720

hidden 1 linear 14 linear 4 linear 10 linear 10 linear 10
Leaky
ReLU

10

hidden 2 sigmoid 2 sigmoid 32 ReLU 31 ReLU 15 ReLU 15
Leaky
ReLU

15

hidden 3 tanh 24 tanh 23 ReLU 15 ReLU 15
Leaky
ReLU

15

hidden 4 sigmoid 33 sigmoid 54 ReLU 15
Leaky
ReLU

15

hidden 5 linear 50 linear 37 ReLU 15
Leaky
ReLU

15

output linear 2 linear 2 linear 2 linear 2 linear 2 linear 2

Nearby source positions produce similar acoustic features. Therefore, the pre-
dicted source positions for the nearby acoustic features should also be similar If
they are similar, the graph loss is small. If they are not similar, one would need to
penalize the predictor with a large graph loss.

The loss function used for the GRNN training is comprised of two parts: the
supervised loss (the difference between the ground truth label and the predicted
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label) and the graph loss (the difference between the main input feature label pre-
diction and the weighted sum of neighbor input features label predictions). It can
be expressed as

L = µm
∑

i∈Nb

(ŷi − yi)
2 + (1− µm)

∑

i∈Nb

∑

j∈kg

aij(ŷi − ŷj)
2, (2.16)

where Nb – number of samples in one training batch, kg – size of the neighbor-
hood, aij is the neighbor weight, equal to the corresponding element in the affinity
matrix, yi is the target output, ŷi is the predicted output for main input feature, ŷj is
the predicted output for neighbor input feature, m is the labeled feature indicator,
and µ is the supervised-to-unsupervised loss ratio.

2.3.5. Analysis of the Baseline Algorithms

To evaluate the proposed algorithm against existing approaches, two algorithms
were selected as a baseline: a geometric algorithm based on finding the intersection
point of two DoA radii, and an intensity map algorithm, based on finding a peak
value in a two-dimensional signal intensity map.

The geometric sound source localization is based on finding the intersection
of the two DoA radii for each frame. The angle of each of the radii to the positive
x axis of the coordinate system is the index of the maximum of the 360 element
SRP-PHAT spatial spectrum vector calculated for a particular array.

Knowing the angles of the DoA φ0 and φ1 of the sound source at the respective
microphone arrays, the coordinates m0 and m1 are found using following:

mi = tanφi; (2.17)

bi = Mi,y −miMi,y; (2.18)

sx =
bi,x − bi,y
mi,x −mi,y

; (2.19)

sy = mi,0sx + bi,x, (2.20)

where i ∈ [0, 1], mi is the inclination of the i-th DoA radii, Mi,(x,y) are the coor-
dinates of the center of the i-th microphone array.

In the intensity map approach, the SRP-PHAT spectra of each of the micro-
phone arrays are mapped from polar to Cartesian coordinate system and superim-
posed after shifting them accordingly with respect to the origin of the coordinate
system. The peak value of the resulting two-dimensional intensity map is then
found in two ways:

1. By finding the indices of the maximum value of the intensity map.
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2. By finding the peak of the intensity map using local peak finding algo-
rithm.

Let us consider the following example. A frame is taken of the real-world
speech signal, which is known to satisfy the thresholding condition described in
Section 2.1. SRP-PHAT spectra of both arrays are presented in Fig. 2.12. Consider
that these spectra are presented in the polar coordinate system. It can be seen that
the DoAs for the first and second arrays are 188◦ and 204◦ respectively.
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Fig. 2.12. SRP-PHAT spectra of two arrays of a frame, real-world speech signal

0 1 2 3 4 5
y, m

0

1

2

3

4

5

ground truth
prediction, argument of maximum
prediction, position of peak

a)

0 1 2 3 4 5
y, m

0

1

2

3

4

5

ground truth
prediction, argument of maximum
prediction, position of peak

b)

0 1 2 3 4 5
y, m

0

1

2

3

4

5

ground truth
prediction, argument of maximum
prediction, position of peak

c)

Fig. 2.13. Two-dimensional SRP-PHAT power maps for: a) 1st microphone
array, b) 2nd microphone array; c) the combined SRP-PHAT power map

Both of these spectra are mapped from the polar to the Cartesian coordinate
system and obtain a two-dimensional SRP-PHAT power maps for both of the arrays
(Fig. 2.13a and Fig. 2.13b). two-dimensional SRP-PHAT intensity map as a result
of superimposed SRP-PHATspatial spectra of the microphone arrays transformed
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from polar to Cartesian coordinate system. After superimposing both maps, the
position of the peak value of the resulting map is considered the position of the
sound source (Fig. 2.13c). In the figure, green dot represents the real source posi-
tion, the red cross represent the predicted source position as the argument of the
maximum of the map; the magenta cross represent the predicted source positions
as the position of the most prominent peak of the map.

Experimental evaluation of the performance of the proposed method and the
results of the evaluation are presented in Section 3.2.

2.4. Multiple Sound Source Localization using
Correlation Features

The method of single sound source localization using a MLP, presented in the
previous section, raises a natural question whether it is possible to localize more
than a single sound source within a single array audio frame.

As presented in Section 1.4, a prerequisite for signal demixing or separation is
W-disjoint orthogonality. Since one wishes to localize two separate sound sources,
it is theorized that the sources must be W-disjoint orthogonal. Since the source
might be active simultaneously, which means, both present within a single time
sample, the other condition W-disjoint orthogonality must be met – the sources
must be active in separate frequency bands. To determine the frequency bands
occupied by the source’s signal, one must obtain an acoustic feature that carries
frequency information. This is the motivation behind the CCFB feature: instead of
calculating the cross-correlation for the entire signal, the signal is first split into fre-
quency bands, and then the cross-correlation is calculated in each of the frequency
bands. Thus, it is possible to determine the time lag of the cross-correlation peak
in each separate frequency band and in turn determine the TDoA of a sound source
active in that particular frequency band.

In this section, a method for multiple sound source localization employing a
convolutional neural network and Cross-Correlation in Frequency Bands (CCFB)
feature is presented.

The investigation described in this section is based on the previous research
by the author, presented in (Sakavičius, Serackis 2019), which in turn is based
on the investigation by He et al. (2018a). In this investigation, multiple sound
source DoA estimation (azimuth and elevation) is performed by using a 2D DoA
heatmap, and without the need to know the number of active sound sources prior
the measurement. This research differs from the one presented by (He et al. 2018a)
because in such way that a 2D DoA heatmap is used for azimuth and elevation
representation instead of a 1D vector – azimuth only representation.
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Main goals of this research were:
1. To present a method for multiple SSL using CNN with CCFB per unique

microphone pair as input features and DoA map as output feature.

2. To present a method for semi-synthetic dataset generation for CNN train-
ing.

3. To present a method and a set of metrics for the evaluation of the perfor-
mance of a CNN for multiple SSL in reverberant environment.

4. To evaluate the performance of the CNN, trained on a semi-synthetically
generated data on a real-world data.

2.4.1. Justification of the Tetrahedral Array Geometry

It can be shown that utilizing a co-planar array, it is impossible to uniquely esti-
mate the azimuth and elevation of the source, since there are two valid candidate
positions for every source elevation, that is not co-planar with the array Weng,
Guentchev (2001). To overcome this, a non-co-planar microphone array is pro-
posed to be used in this investigation. The simplest non-co-planar geometry is a
tetrahedron. Vertex coordinates M = [A,B,C,D] of a tetrahedron that is centered
at mc and has a side length of mside are calculated as follows:

A =

[

mc(x)−
mside

2
,mc(y)−

sin (π/3) ·mside

2
,mc(z)−

sin (π/3) ·mside

2

]

;

(2.21)

B =

[

mc(x),mc(y) +
sin (π/3) ·mside

2
,mc(z)−

sin (π/3) ·mside

2

]

; (2.22)

C =

[

mc(x) +
mside

2
,mc(y)−

sin (π/3) ·mside

2
,mc(z)−

sin (π/3) ·mside

2

]

;

(2.23)

D =

[

mc(x),mc(y),mc(z) +
sin (π/3) ·mside

2

]

. (2.24)

2.4.2. Preparation of the Neural Network Training Data

For sufficient training of a CNN, a vast amount of data samples is needed. While
there are some datasets for such task available (He et al. 2018a; Löllmann et al.

2018), it was found them to be rather limited for the task investigated in this section,
regarding the number of simultaneously active sound sources and sound source
positions, as well as the microphone array and room geometry and acoustic prop-
erties. There are some methods proposed for the simulation of acoustic data for
SSL experiments. In (Vera-Diaz et al. 2018), the simulation method only accounts
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Table 2.2. Position of the array microphones used for training data generation

Microphone index, i mix miy miz

1 3.06 4.77 2.28
2 3.30 4.63 2.28
3 3.54 4.77 2.28
4 3.30 4.70 2.14

for the amplitude and TDoA of the sound source, and also is described for only
one sound source. In (He et al. 2019), a method involving a room impulse response
(RIR) generator is proposed. A RIR is generated for a particular room geometry
and acoustical properties, the position of the sound source and the microphone.
Here a very similar method is presented, but instead of using RIR generator, de-
scribed in (Habets 2006), a pyroomacoustics Python library (Scheibler et al.

2018) is used. Both tools are based on the image source model.
Training data is generated in 3 steps:

1. Semi-synthetic room audio data generation (auralization of the dry signal
in a virtual room);

2. Calculation of the CCFB (the input features);

3. Calculation of the DoA map (the target data).

To account for room acoustics, which may degrade the received audio signals,
but which may also provide additional acoustic cues for SSL, a dry speech signal is
auralized using RIRs obtained using an image source model Scheibler et al. (2018).
In the experimentation, the dry speech signal was the close-miked meeting signal
obtained from AMI Corpus (Carletta et al. 2006). An excerpt of the dry speech
signal is taken from 30 s to 100 s of the file AMI_Corpus/ES2016a.Mix-

Headset.wav.
Auralization is performed in a virtual room of size

L = [Lx, Ly, Lz] = [10.05, 12.1, 4.1] m using a virtual tetrahedral microphone
array M = [m1,m2,m3,m4]; mi = [mix,miy,miz], center of which MC is
positioned at MC = [MCx,MCy,MCz] = [3.3; 4.7; 2.21] with the side length
of 0.487m. The exact positions of the array microphones used for training data
generation are listed in Table 2.2.

Microphone array signals with one and two intermittently active sound sources
are simulated in a virtual environment.

The position of each p-th sound source sp = [spx, spy, spz] is uniformly ran-
domly selected so that sp ∈ L for each of the simulation cases. In the experi-
ments, auralization RIRs are simulated with 5th order reflections, with wall ab-
sorption coefficient set to 0.5. We have selected sampling rate Fs = 44 100Hz
for all of the simulations. In this experimentation the value of the speed of sound
vs = 340m s−1 is used. A set of four (one for each microphone) audio signals
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A = [A1, A2, A3, A4] is created during the auralization process. The audio sig-
nals are divided into N time frames with length FN = 2048 samples, with overlap
FO = 1024 samples (50%) The n-th audio frame is An, n ∈ N .

Cross-correlation in frequency bands (CCFB) is calculated for each audio
frame, for each unique pair of microphones. In our case of 4 microphones, 6
CCFB channels are calculated.

Audio frames An are filtered using a filterbank of K = 16 bandpass fil-
ters of 5th order to obtain K bandpass-filtered signals Afnk

= Fk(An), where
Fk(·) denotes signal filtering using k-th bandpass filter in the time domain. Center
frequencies fFBk of the filterbank filters are linearly spaced on mel scale in the
frequency range ∆f = [0, fkmax

] so that fkmax
= (2595 · log10(1 + (Fs/2)/700))

and the difference between the center frequencies of the bandpass filters of adja-
cent frequency bands is δf = fkmax

/K. Center frequency of the k-th filter of the
filterbank fFBk is calculated using the following equation:

fFBk
= (700× (10(k/2595) − 1)), (2.25)

where k ∈ [0, δf . . . fkmax
] is the mel frequency.

The cross-correlation Ci,j,k,n(τ) = (Afi,n,k⋆Afj,n,k)(τ) between each unique
pair i, j of filtered audio frame signals Af(τ)nk

is calculated for each correspond-
ing frequency band k for each frame n. The output feature is constructed for each
frame. (⋆)(τ) denotes cross-correlation function; τ is the time lag. The maximum
positive and negative τ of the CCFB sample is limited to [−64;+64] samples, as
it is impossible for the time lag to be larger than 64 samples with a given geometry
of the microphone array, the sampling rate and the speed of sound. The example
of one channel of CCFB is provided in Fig. 2.14a.

Target data sample (a DoA map) is obtained for each audio frame as follows.
Firstly, the direction of arrival is calculated geometrically for each p-th source
using the following equations:

xp, yp, zp = sp −MC ; (2.26)

rp =
√

x2p + y2p + z2p ; (2.27)

θp = arccos
zp
rp

; (2.28)

ϕp = arctan
yp
xp

. (2.29)

The direction θ, ϕ = [0, 0] coincides with the positive x axis. Obtained θp
and ϕp values are mapped onto the DoA map with a certain resolution RDoA. The
resolution of the DoA, RDoA is equal to the number of divisions of the elevation
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Fig. 2.14. Example of one sample of training data; a) input CCFB; b) target
DoA map; two active sound sources, σ = 2, RDoA = 18

angle range ∆φ = ±π/2 rad; and half of the number of divisions of the azimuth
range ∆θ = ±π rad. A RDoA = 18 results in a DoA map with 36× 18 elements,
each point on the DoA map representing a 10◦ × 10◦ DoA angle. This is used to
limit the size of the output layer of the CNN.

The DoA map is obtained by placing onto a 2D grid a 2D Gaussian kernel
(equation (2.30)) centered at the calculated DoA (θ0 and φ0 respectively) with
amplitude A equal to the RMS value of the audio frame (the dry audio signal at
the virtual source, before the auralization), and the spread σ.

K(θ, θ0, φ, φ0) = A exp

(

−

(

(θ − θ0)
2 + (φ− φ0)

2

2σ2

))

, (2.30)

where θ ∈ [−18, 18], ϕ ∈ [−9, 9] represent the DoA map grid. An example of a
DoA map with two active sound sources, RDoA = 18 and σ = 2 is presented in
Fig. 2.14b.

2.4.3. Selection of the Neural Network Architecture

Two distinct CNN architectures are considered for evaluation: CONV-WE-CCFB
and CONV-CCFB-DOA, which had the same input and output layers for using the
same input features and target data, but the inner structure is different.

CONV-WE-CCFB architecture is based on the CNN, proposed by He et al.

(2018a), with the output layer changed from a 360-dimensional vector to a
(36 × 18)-dimensional array, representing the DoA map. The architecture of the
CNN is presented in Fig. 2.15. In each of the convolutional (Conv2D) layers, a
5 × 5 kernel with 2 × 2 stride and a ReLU activation was used. Also, there is
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Fig. 2.15. Architecture of the CONV-WE-CCFB network
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Fig. 2.16. Architecture of the CONV-CCFB-DOA network

a batch normalization (BN) layer after each of the convolutional layers. The last
layer is a fully-connected output layer with sigmoid activation.

In this work, a CNN architecture is proposed (CONV-CCFB-DOA, presented
in Fig. 2.16) with 3 convolutional layers, each with 128, 96 and 72 filters respec-
tively. For the first layer, both kernel and stride are one-dimensional (kernel size
(1,4), strides (1,2)), thus preventing the convolution between frequency bands. For
following layers we have used 4× 4 kernels with 2× 2 strides. A fully-connected
layer with 256 neurons follows the last convolutional layer. The output layer is of
the same shape as the DoA map (36× 18 in our case). For all except the last layer,
the activation function was ReLU. A batch normalization layer follows each layer
except the output layer. The last layer has a sigmoid activation function. We have
introduced a dropout layer (DO) after the first and the third convolutional blocks.

For both networks, a stochastic gradient descent (SGD) optimizer with Nes-
terov momentum of 0.9 is selected.

A method for multiple sound source localization (azimuth and elevation es-
timation) using a CNN with CCFB features and DoA heatmap as an output was
proposed. It is expected that the CNN would learn the mapping between the CCFB
input features and the DoA heatmap – the desired output. Method for input and
output feature acquisition and training/testing dataset generation was proposed.
Two CNN architectures were presented for further evaluation, which is described
in Section 3.4.
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2.5. Multiple Acoustic Sources Localization using
Spectrum Phase Features

Following up on the previous investigation using GCC-FB features for 2D sound
source localization, it was postulated that the GCC-FB feature was not information-
rich enough to allow the localization of a sound source. Moreover, assuming the
fact that the acoustic features exhibit spatial smoothness, and that the complex
acoustic reflection structure within the room is embedded in the acoustic features,
which might also help to localize the sound source more robustly, an investiga-
tion sound source localization using CNNs trained with such features was carried
out. STFT phase components of the array audio frames were used as the input fea-
tures for the CNN, while the output feature was the same as described in previous
section.

A method proposed here is for multiple acoustic source azimuth and elevation
estimation using CNN. The neural network trained using the phase component of
the STFT, estimated from the microphone array signals, as the input feature and
a two-dimensional map of DoA posterior probability, referred to as DoA heatmap
from now on, as the output feature. The proposed method is based on the idea
of the azimuth estimation for multiple acoustic sources proposed by Chakrabarty,
Habets (2019b). However, here the method is extend to estimate the elevation
of the acoustic source besides the azimuth angle. This work is an extension of
previous research, presented in the Section 2.4, where the same approach was uti-
lized regarding the tetrahedral microphone array geometry and the structure of the
target 2D DoA heatmap feature. However, instead of features based on a cross-
correlation of frequency bands, now the phase component of the STFT, obtained
from the microphone array signals, is used. Thus, the explicit feature extraction
step is omitted and the method relies on the CNN to learn the feature extraction
during the training.

Acoustic source positions can be estimated from the acoustic signals received
by a microphone array. A CNN-based method is proposed to obtain the estimates
of the azimuth and elevation of the acoustic sources in respect to the position and
orientation of the microphone array. The CNN must be trained by providing train-
ing samples consisting of the input features and the corresponding outputs. After
training, the CNN provides an estimate of the azimuth and elevation angle for a
current set of features presented to the input.

2.5.1. Estimation of the Spectrum Phase Input Features

Extending the work of Chakrabarty, Habets (2019b), the phase component of the
STFT calculated for microphone array signals is used as the input feature for the
CNN. However, the W-disjoint orthogonality of the microphone array signals was
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not explicitly took into account. According to the authors, in case of a NS-source
scenario, each of the source is simulated using the image-source method separately.
Then the STFTs of the receiver signals are concatenated and randomly permuted in
both time and frequency domains (leaving only the channel order unchanged). In
our case, the STFTs are permuted in time and frequency domains, only preserving
the original order of the channels, and all the NS acoustic sources are simulated
at once, so their respective spectral components are present in each time frame.
The same microphone array geometry was used as was presented in Section 2.4.
The preparation of input features is carried out in several steps. First, the STFTs
of the simulated microphone signals are calculated. For each of the NM = 4
microphone channels were set the number of Fast Fourier Transform (FFT) points
equal to NSTFT = 512, with 256 point overlap and a Hanning windowing function.
The number of frequency bins in the STFT was Nf = NSTFT/2 + 1 = 257. For
each simulation NT = 4 temporal STFT frames were obtained. As a result, an
array of size (NS ×NM )×Nf ×NT is created.

Next, the concatenated STFT is randomly permuted along the time and fre-
quency dimensions, keeping the original order of elements only in the channel
dimension.

Examples of the prepared input features are presented in Fig. 2.17. There are
presented STFT frames for 4 microphones; training STFT sample (noise signal)
on the left and testing STFT sample (speech sample) on the right.

As the input features, a single temporal frame of the resulting data structure – a
matrix with NM×Nf = 4×257 elements – is used. Each matrix of input features
in the training dataset has an associated desired output – a two-dimensional DoA
heatmap.

2.5.2. Preparation of the Two-Dimensional Desired Outputs

In the scope of the proposed method, a 2D DoA heatmap is used as a desired output
for each matrix of input features. The heatmap is a matrix of N × M elements,
where each element represents a certain azimuth and elevation angle range. The
value of each element represents the probability of an acoustic source being active
at a particular azimuth and elevation. Total range of the DoA heatmap represents
a 360◦ azimuth range along θ axis and a 180◦ elevation range along φ axis. The
number of elements of the heatmap per azimuth and elevation axes, respectively
Qθ and Qφ, represent the angular resolution of the DoA heat map.

During the generation of the training dataset, to reduce the sparsity of the
target feature, Gaussian blurring is additionally applied to the DoA heatmap using
a 2D Gaussian kernel with separately controllable spread parameters σθ and σφ on
the θ and φ axes respectively. Acoustic features exhibit spatial smoothness that is
reflected in the feature space (Laufer-Goldshtein et al. 2016). Conversely, an ANN



2. THEORETICAL RESEARCH OF LEARNING BASED SOUND SOURCE . . . 59

a) b)

c) d)

Fig. 2.17. Examples of STFT input features; a) STFT magnitude of a noise
signal frame; b) STFT phase of a noise signal frame; c) STFT magnitude of a

speech signal frame; d) STFT phase of a speech signal frame
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Fig. 2.18. Examples of 2D DoA heatmap: a) Q = 5◦, σ = 20◦; b) Q = 10◦,
σ = 5◦; ground truth DoAs are marked with magenta crosses

is expected to classify such neighboring input features to neighboring classes in the
output. Therefore, it is speculated that the DoA heatmap blurring operation would
allow the CNN to learn to map features that are nearby in the feature space to
neighboring DoA classes. The values at the output layer of the ANN represent the
posterior probability of a feature being obtained for a sound source at a particular
DoA. A feature for a source with a particular DoA can be viewed as having lower
but non-zero posterior probability of being obtained for a source with a slightly
different (neighboring) DoA. Thus it can be implied that this angular smoothing
of the DoA heatmap would be beneficial for the learning of the ANN as well as its
robustness.

The values at each grid element are determined by first calculating the azimuth
and elevation of the simulated acoustic source with respect to the center of the
microphone array. An empty DoA heatmap grid is created, on which a Gaussian
kernel centered at exact azimuth and elevation is superimposed for each source
DoA. The position of each of the Gaussian peaks corresponds to the 2D DoA of
the source.

During the training, CNN learns to extract features from the STFT phase com-
ponent and to map those extracted features to the DoA heatmap.

Examples of the prepared desired outputs at respectively Q = 5◦ and σ = 20◦

and Q = 10◦ and σ = 5◦ are presented in Fig. 2.18.

2.5.3. Post-processing of the Outputs

To obtain the DoAs of the acoustic sources from the DoA heatmap, a peak detec-
tion is performed on the heatmap and the indices of the NS most prominent peak
elements of the heatmap are converted to azimuth and elevation angles for each of
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the NS peaks. These angles correspond to the 2D DoA of the acoustic source with
respect to the center of the microphone array.

A simple algorithm is used to find a local maxima. This operation dilates the
original DoA heat map. After comparison of the dilated and original image, this
function returns the coordinates or a mask of the peaks where the dilated heat map
equals the original image.

2.5.4. Neural Network Output Layer Shape Modification

In this investigation, a similar architecture of the CNN is used, to as provided by
Chakrabarty, Habets in their work (Chakrabarty, Habets 2019b), but the number of
elements in each convolutional layer is altered , as well as adjusted the number of
output nodes to match the number of elements in the target DoA heatmap.

Chakrabarty, Habets give an explanation that the architecture of the CNN used
with NM -channel STFT phase features can have at most NM − 1 convolution
layers, where NM is the number of microphones (4 in our case), since after NM −
1 layers, performing 2D convolutions is no longer possible as the feature maps
become vectors. They have also experimentally demonstrated that indeed NM − 1
convolution layers are required to obtain the best DOA estimation performance for
a given microphone array. In the convolution layers, small filters of size 2× 1 are
applied to learn the phase correlations between neighboring microphones at each
frequency sub-band separately. These learned features for each sub-band are then
aggregated by the fully connected layers for the classification task.

A CNN with three convolutional layers was proposed as a base architecture
for the research, after which a dropout layer is used, and two deep fully-connected
layers, followed by a dropout layer. The output layer has the size of NDoA =
Qθ × Qφ. The dropout rates were fixed to 0.125 and the Binary cross-entropy is
used as the loss function.

As in the previous investigation, the output of the CNN is the 2D DoA heatmap,
representing the posterior probability of an acoustic feature belonging to a partic-
ular spatial class. Spatial classes are arranged as a 2D grid and correspond to
the DoA of a sound source. Multiple peaks might be present in a DoA heatmap,
meaning that the input feature contains information about two simultaneously ac-
tive sound sources. Methods for obtaining the input and target features for the
training and evaluation of the CNN are presented. CNN architecture consisting of
3 convolutional layer followed by six fully-connected layers and a 2D output layer
is described. The experimental evaluation of the proposed method is presented in
Section 3.5.
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Fig. 2.19. A schematic diagram of the CNN architecture, used for the
experimental investigation

2.6. Multiple Sound Source Localization in Three
Dimensions

In this section, a method is presented for estimating the position of a single acoustic
source or the positions of multiple acoustic sources within an enclosure using a
CNN with microphone array signals’ STFT phase component as an input feature.

This research is extended on the previous research of 2D DoA heatmap esti-
mation using CNN and STFT phase input features, presented in Section 2.5.

2.6.1. Preparation of the Input Features

The preparation process of input features is analogous to the one presented in Sec-
tion 2.5. In the figure, STFT magnitude and phase feature examples of noise and
speech signals, 1 and 2 simultaneously active acoustic sources; 4 channel (tetrahe-
dral) microphone array; input features are the STFT phase component. No further
preprocessing is carried out for the input features. This is viewed as the foremost
advantage of the proposed method, as it leaves for the CNN to abstract the in-
put features implicitly. Moreover, STFTs are considered high-dimensional features
that contain a lot of information about the propagation of the acoustic waves within
an enclosure. This information is inevitably lost if the input feature dimensional-
ity is reduced, thus prohibiting the CNN to learn to use this information for its
advantage.

As the input features, we use a single temporal frame of the resulting data
structure – a matrix with NM × Nf = 4 × 257 elements. STFT features are
generated for each source position (or a set of positions in case of NS > 1) for
each audio frame.
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2.6.2. Preparation of the Three-Dimensional Desired Outputs

In the proposed method, a 3D grid of elements is used as a desired output for each
matrix of input features. The grid is a matrix of K × L × M elements, where
each element represents a point in the metric space, and the value of the element
represents the posterior probability of a sound source being active at that point
of space. The volume covered by the 3D grid is chosen arbitrarily, and in this
investigation coincided with the volume of a cuboid-shaped acoustic enclosure.
The number of elements of the 3D grid along x, y and z axes, respectively, can be
expressed in terms the density of elements per length unit Qx, Qy and Qz , which
represent the spatial resolution of the 3D grid, and the lengths of the sides of the
volume X , Y and Z that is represented by the 3D grid:

[K,L,M ] = [X,Y, Z] ◦ [Qx, Qy, Qz]. (2.31)

In this investigation, the spatial resolution was equal on all axes: Qx = Qy =
Qz = Q.

A target feature for CNN training was generated in the following steps:

1. An empty 3D matrix was created. The number of elements in the matrix
along each axis defines the spatial resolution of the target feature.

2. A 3D Gaussian kernel function was evaluated on the 3D matrix with the
center of the kernel positioned at s = [sx, sy, sz]. The spread of of the
Gaussian kernel σ determines the spatial smoothness factor of the target
feature. A 3D Gaussian kernel has 3 spread values, one along each axis:
σx, σy, σz . In this investigation, spread along all axes were the same:
σx = σy = σz = σ.

3. Step 2 is repeated for NS times.

The resulting 3D grid contains a Gaussian kernel with a particular σ placed at the
coordinates of the sound source.

CNN then would be trained to estimate such 3D grids for the provided STFT
phase input features.

Acoustic features exhibit spatial smoothness that is reflected in the feature
space (Laufer-Goldshtein et al. 2016). Conversely, an ANN is expected to classify
such neighboring input features to neighboring classes in the output. Therefore,
here is speculated that the 3D grid blurring operation would allow the CNN to learn
to map features that are nearby in the feature space to neighboring spatial classes.
The values at the output layer of the ANN represent the posterior probability of a
feature being obtained for a sound source at a particular point in space. A feature
for a source at a particular spatial position can be viewed as having a lower but
non-zero posterior probability of being obtained for a source at a slightly different
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(neighboring) position. Thus, we believe that this angular smoothing of the 3D
grid would be beneficial for the learning of the ANN as well as its robustness
against multipath propagation.

Examples of the prepared desired outputs at respectively Q = 0.5m and σ = 1
with single active source and Q = 0.25m and σ = 0.5 with two active sources are
presented in Fig. 2.20.
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Fig. 2.20. Examples of 3D DoA heatmap: a) Q = 0.5m, σ = 1, single source
with coordinates s = [1.2, 2.1, 1.3] m; b) Q = 0.25m, σ = 0.5, two sources

with coordinates s1 = [1.2, 2.1, 1.3] m and s2 = [3.1, 3.2, 2.3] m; ground truth
source positions are marked with blue circles

It can be observed, that while the finer grid resolution might provide for better
source localization accuracy, the number of the elements in the grid is also greatly
increased (by a power of 3). If such grid is used as the desired output for the
artificial neural network, the number of training parameters of the network is also
increased, which might result in need for longer training times and greater amount
of training data.

2.6.3. Modification of the Neural Network Architecture

The architecture of the CNN used in this investigation was based on the CNN
architecture used in the previous research, presented in Section 2.5, which is in
turn was derived from the one presented by Chakrabarty, Habets (2019b).

The proposed CNN architecture consists of three 2D convolutional layers with
128, 64, and 32 units, respectively, with the convolution kernel size of (2 × 1)
elements. Convolutional layers are followed by a dropout layer with a fixed dropout
rate of 0.125. Following the dropout layer are three fully-connected layers each
containing (257 × 4) units, followed again by a dropout layer with a dropout rate
of 0.125. Finally, there are a 1028-element fully connected layer and a K×L×M
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fully connected layer which is reshaped into K × L×M 3D array of elements at
the output of the CNN, with each element of this last layer representing a spatial
position in a 3D output grid. Exponential Linear Unit (ELU) as the activation
function was used in every layer of the CNN. Binary cross-entropy is used as the
loss function and Adaptive Moment Estimation (Adam) optimizer. The diagram of
the architecture of the CNN is presented in Fig. 2.21.

Fig. 2.21. Diagram of the architecture of the CNN

The number of neurons in the output layers of the CNN depends on the number
of elements in the 3D output array, which in turn depends on the resolution Q if
the spatial 3D grid and the dimensions of the acoustic enclosure. The CNN has to
be trained for each different Q, σ of the 3D grid and [X,Y, Z] of the enclosure.

2.6.4. Source Coordinate Estimation from a Three Dimensional
Grid

For single source localization, coordinates of the element with maximal value were
found and converted to Cartesian coordinates by dividing by the resolution of the
3D grid.

For multiple source localization, the 3D field was thresholded by element val-
ues, removing elements that had a value lower than the mean of the entire field.
Then the remaining elements were clustered using k-means clustering to NS clus-
ters. NS can be an arbitrary number, and the algorithm is supposed to find NS

most probable source positions. Center coordinates of the clusters correspond to
the source coordinates. Since the thresholding value is arbitrary, several threshold
values are selected, and the centers of the clusters are estimated multiple times;
the estimated coordinates of each source are the arithmetic mean of each cluster
center estimated at different threshold values. The experimental evaluation of the
proposed method is presented in Section 3.6.
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2.7. Conclusions of the Second Chapter

1. Microphone array signals’ frame thresholding based on signal-to-minimum-
error-amplitude ratio (SMEAR) is beneficial for the precision of TDoA es-
timation, which heavily influences the performance of TDoA-based source
DoA and position locators, such as GCC-PHAT or SRP-PHAT.

2. It is possible to use the ILD acoustic feature for a single sound source lo-
calization when a large aperture microphone array is used and the acoustic
enclosure is not reverberant.

3. The results of the investigation of the high-dimensional acoustic feature
dimensionality reduction showed that it is possible to learn the acoustic
feature manifold using ISOMAP NLDR algorithm:

3.1. SRP-PHAT features obtained in a reverberant acoustic enclosure can
be embedded into R

2 space and the embeddings exhibit almost no over-
lap.

3.2. The embeddings of the SRP-PHAT features exhibit the spatial structure
of the sound source positions locally when the reverberation time of the
acoustic enclosure is longer.

3.3. The SRP-PHAT spectra contains information about the structure of
the reflections within an enclosure and it can be viewed as an unique
acoustic footprint of the sound source location.

4. It is possible to localize multiple sound sources in more than one spatial
dimension using a convolutional neural network with trained on synthetic
noise signals if the sound sources exhibit W-disjoint orthogonality. To
ensure that the W-disjoint orthogonality is pertained within the acoustic
feature, this feature must contain multiple values along either time or fre-
quency dimension.

4.1. Feature which contains multiple values along frequency dimension is
the proposed Cross-Correlation in Frequency Bands (CCFB) feature.

4.2. STFT of an audio frame contains multiple values along both time and
frequency axis and thus can be used for sound source localization if
the source signals are considered W-disjoint orthogonal.

5. Sound source localization can be viewed as a problem of acoustic feature
classification to spatial classes. Thus, it is possible to classify the acous-
tic features to a 2-dimensional or 3-dimensional matrix of array classes
that represent 2-dimensional (azimuth and elevation) or 3-dimensional (az-
imuth, elevation, distance or Cartesian) coordinates of the sound source.
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5.1. The domain of the elements of such matrices are the posterior proba-
bility of an acoustic feature belonging to one or more classes.

5.2. Since the acoustic features are shown to exhibit spatial smoothness,
such smoothness is reflected in the outputs of the classifiers, where
the posterior probability of an acoustic feature to belong to a particular
spatial class is also non-zero in adjacent spatial classes.

5.3. A single acoustic feature can be classified to several non-adjacent spa-
tial classes, thus indicating that the feature was obtained for an audio
frame in which more than one sound sources were active at different
locations.





3
Experimental Investigation of Sound

Source Localization

Investigations presented in this chapter aimed the performance estimation of the
learning-based sound source localization algorithms proposed in the previous chap-
ter. Experimental investigation results are compared with the baseline state of the
art methods.

These objectives were formulated to achieve the aim of the investigation:

1. Evaluation of a performance of the method for a single sound source lo-
calization using multi-layer perceptron.

2. Experimental investigation of sound source localization using
graph-regularized neural network.

3. Acquisition of a real-world tetrahedral microphone array audio datasets
comparison with simulated data.

4. Experimental evaluation of CNN application with CCFB features for sound
source azimuth and elevation estimation

5. Experimental evaluation of CNN application with STFT phase features for
sound source azimuth and elevation estimation

6. Experimental evaluation of CNN application with STFT phase features for
sound source three-dimensional position estimation.

These objectives were achieved via experimentation. The description of the
experimental setups and the results are presented in the following sections of this
chapter.

69
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The research results presented in this chapter are published in five papers
(Sakavičius et al. 2017; Sakavičius, Serackis 2019; Sakavičius 2020; Sakavičius 2021,
Sakavičius, Serackis 2021) and announced at the international “AIEEE” (Riga,
2017), “eSTREAM” (Vilnius, 2017, 2019) and national “Science – Future of Lithua-
nia” (Vilnius, 2017, 2019) scientific conferences.

3.1. Single Sound Source Localization Using
Multilayer Perceptron

In this section, the evaluation of performance of a sound source localization sys-
tem based on a MLP that is described in Section 2.2, is presented. The proposed
system uses four microphones’ array for sound signal acquisition, an ILD feature
extraction stage, and an MLP for estimation (prediction) of sound source location.

3.1.1. Computer Based Simulations of Multilayer Perceptron

Computer simulation was carried in MATLAB programming environment.

In the computer simulation, MLP was trained using a rectangular array of
virtual sound sources, placed around the origin of the coordinate system, and a
square virtual microphone array consisting of 4 virtual microphones.

Virtual sound source positions were selected on a rectangular grid, with a step
of 1 m and side length of 4 m. The plane of the grid of sound sources corresponded
to the plane of the microphone array (see Fig. 3.1).

A square array of 4 virtual microphones were placed around the origin of the
Cartesian coordinate system so that the center point of the array was at the origin.

We have tested the variations of the structure of the MLP with the number of
neurons in each of the hidden layers being 1, 2, 5, and 10. Thus, we have tested 16
MLP configurations.

For MLP training in simulation, a grid of sound sources was produced, micro-
phone signals were calculated, and the MLP is trained on these signals, with the
actual sound source positions as training targets. MLP performance is evaluated
using the sound source at a random (unseen) position (in the range of the dimen-
sions of the grid of the positions of the sound sources used for the training of the
MLP). Position of the source, predicted by the MLP, is compared to the actual
sound source positions. The relative error of the prediction is calculated by

ereli =
d(SPi

,O)

d(Si,O)
. (3.1)
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Fig. 3.1. Microphone and sound source setup for computer simulation

Each configuration of the MLP was evaluated 10 times, and the mean values of
the relative, angular and distance errors were calculated afterwards, respectively,
Ereli , Eangi and Edisti . These values were used to estimate the performance of the
MLP for sound source localization.

3.1.2. Localization Experiments using Multilayer Perceptron

Practical experimentation was carried out in a rectangular room with partially
damped acoustics with windows in one wall. The dimensions of the room was
(5.7× 6.26× 3.3) m.

A small loudspeaker, consisting of two mid-high-range drivers, each of 7 cm
diameter, were used as a point sound source. Speakers in the loudspeaker are
arranged on one side of the loudspeaker, next to each other.

A 1000 Hz sine signal was used as the test signal. 25 test points were selected
on a rectangular 5 by 5 point grid in the room. Grid step was 1 meter, thus the
positions of sound source ranged from -2 meters to 2 meters on both x and y axis.
The center of the grid was at the center of the room and corresponded to the center
of the microphone array.

Microphone array consisted of 4 Rode MP-5 cardioid condenser microphones.
Microphones were mounted on microphone stands, and their capsules were placed
in a rectangular array with side length of 60 cm. The microphone array was placed
in the middle of the room, so that the center of the array was at (2.85; 3.13; 1.65) m
(see Fig. 3.2). Capsules were pointed upwards, so that the microphones were om-
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nidirectional to the plane of array. Microphones’ signals were recorded to PC using
a Tascam US-20x20 digital audio interface.

Loudspeaker was held statically in each of the marked points (triangles in
Fig. 3.2), directed to the center of the array, for about 5 seconds. For each test
point, a 4 channel recording was produced.
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Fig. 3.2. Layout of the room for practical experimentation (microphones’
locations marked with circles, sound source locations marked with triangles);

dimensions in meters

For MLP training in practical experimentation, 70% of randomly selected real
microphone signals were presented to the structure presented in Fig. 2.9 for MLP
training, with the actual source positions as training targets. Performance of the
MLP was evaluated using previously unused recordings. Same parameters for
MLP training were used both in simulation and in practical experimentation, as
well as the method for calculating the prediction errors (relative, angular and dis-
tance).

The results of the computer based simulation and the practical experimentation
of sound source localization using concept of the proposed system are presented in
Table 3.1. Best results are highlighted.

In computer simulation, the mean relative prediction error for all configura-
tions was Ērel = 5.5%, mean angular prediction error for all configurations was
Ēang = 5.23 degrees, mean distance prediction error for all configurations was
Ēdist = 1.85 m. In practical experimentation, mean relative prediction error for all
configurations was Ērel = 8.52%, mean angular prediction error for all configura-
tions was Ēang = 3.66 degrees, mean distance prediction error for all configura-
tions was Ēdist = 0.96 m.
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Table 3.1. Results of the computer based simulation and the practical experimentation

Computer Simulation Practical Experimentation
h1 , h2 E

h1,2

rel E
h1,2
ang E

h1,2

dist E
h1,2

rel E
h1,2
ang E

h1,2

dist
% degrees m % degrees m

1, 1 5.244 2.710 2.209 5.219 1.871 1.874
1, 2 5.095 11.522 2.000 7.262 5.441 1.537
1, 5 5.908 8.216 1.756 22.686 3.877 0.770
1, 10 5.312 2.416 2.027 5.556 2.936 1.432
2, 1 5.963 7.105 1.736 9.760 1.050 0.556
2, 2 4.008 8.524 1.958 1.884 5.548 1.355
2, 5 6.069 7.292 1.799 7.896 0.097 0.410
2, 10 3.993 4.421 1.753 10.949 1.614 1.411
5, 1 4.592 14.644 2.089 6.887 6.378 1.453
5, 2 4.566 0.120 1.759 6.499 4.911 0.729
5, 5 6.190 2.109 1.577 4.417 3.329 0.389
5, 10 4.074 5.106 1.600 6.068 5.102 0.733
10, 1 8.000 1.483 1.752 11.319 3.014 0.639
10, 2 6.003 3.238 1.791 4.770 0.984 0.800
10, 5 6.353 4.149 1.913 10.261 7.815 0.446
10, 10 6.625 0.690 1.836 14.904 4.650 0.839

As can be seen from the Table 3.1, in computer simulation, the least angular
prediction error (eangi = 0.12◦) was achieved with the MLP configuration h1 = 5,
h2 = 2, while least distance prediction error was achieved with the MLP configura-
tion h1 = 5, h2 = 5. Least relative prediction error was 4 % for MLP configuration
with h1 = 2, h2 = 10. In practical experimentation, least angular prediction error
(eangi = 0.097◦) was achieved with the MLP configuration h1 = 5, h2 = 2, while
least distance prediction error was achieved with the MLP configuration h1 = 5,
h2 = 5. Least relative prediction error was 1.9 % for MLP configuration with
h1 = 2 , h2 = 2.

It was found that in the simulated (no reverberation) environment, the sound
source localization mean position error was received as good as 1.58m for MLP
configuration with h1 = 5, h2 = 5. In addition, the practical experimentation
showed even better results, with for MLP configuration with localization a mean
position error as low as 0.41m with h1 = 2, h2 = 5. Moreover, it was found that
MLP based sound source localization system could be trained more efficiently us-
ing real-world array signals.

3.2. Experimental Investigation of Graph
Regularized Neural Network

In this section an investigation of the performance of a GRNN and suitability of its
application for SSL. The performance of the presented GRNN-based sound source
localization method was evaluated using both synthesized array audio signals and
a real-world array signal dataset.
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Simulated array audio dataset was acquired in a simulated enclosure with di-
mensions l = 10m, w = 12m, h = 3m. The acoustic scene was modeled for
simulation using image-source RIR simulation method. The origin of the Cartesian
coordinate system corresponds with the front left bottom corner of the simulated
enclosure.

A single source position was selected uniformly randomly from the entire x−
y plane of the enclosure and the z coordinate was fixed to the same height as
the microphones. Band-limited uniform noise was selected as the signal of the
simulated sound source. The signal was obtained by filtering a passage with the
duration T of uniform white noise using a 5th order Butterworth band-pass filter
between the frequencies f1 and f2. Initially, values of f1 = 500Hz and f2 =
1000Hz, T = 1 s were used.

Inside the enclosure, NM circular microphone arrays, each with Nm micro-
phone elements and radius rM were modeled. Planes of the microphone arrays
were parallel to the ground (the normals of the circles coincided with the z axis of
the enclosure model). The arrays were modeled at a fixed height hm = 2m. Each
of the circular microphone arrays had a radius of rM = 0.116m and 9 elements
(Nm = 9).

3.2.1. Position Estimation using Steerd Response Power
Features

The investigation of the ability of GRNN to learn the R2 manifold of the SRP-PHAT
dataset embedded in high-dimensional feature space is presented following.

A dataset of SRP-PHAT features and their corresponding ground truth source
position coordinate sets were generated using Pyroomacoustics Python package.
ISOMAP embeddings were then obtained via the method described in Section 2.3.
Hyperparameter optimization of the entire solution was performed and the optimal
(by evaluating the source position prediction Cartesian MSE) parameter set was
found. Minimum and maximum values of each parameter search space, as well as
best performing parameter values are presented in Table 3.2.

To gain a better insight on what is the magnitude of the influence of each of
the hyperparameters on the performance of the proposed SSL method, a hyperpa-
rameter correlation matrix is presented in Fig. 3.3.

The evaluation of the performance of the proposed method starts with using
ISOMAP to obtain embeddings of the high-dimensional SRP-PHAT features into
low dimensional (2-dimensional in this particular case) space. As can be seen
from Fig. 3.4, the ISOMAP embeddings form a circle with input features ordered
by their DoA with respect to the microphone array. In the figure, the red, green and
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Table 3.2. Parameters used in parameter optimization/search, one microphone
array

Variable Parameter in code Description Min. Max. Best
Nkemb.

isomap_nbrs number of ISOMAP
nearest neighbors

2 50 44

f1, Hz f1 band-pass filter bot-
tom cutoff frequency

253 999 659

f2, Hz f2 band-pass filter top
cutoff frequency

1028 7922 2474

fs, Hz fs sampling rate 8110 43923 25792
a absorption absorption coefficient 0.0031 0.9984 0.7871
lr learning_rate learning rate 0.001 0.0198 0.0172
T , s T frame duration 0.1033 3.9886 3.3441
Or order acoustic simulation or-

der
3 10 5

Nm mic_arr_mic_n number of micro-
phones in array

2 10 9

Ng gnbrs number of graph near-
est neighbors

1 50 1

Rrep k_rep labeled samples repeti-
tion rate

1 200 147

NE n_epochs number of training
epochs

5 60 53

NB batch_size training batch size 1 64 53
µ mu supervised-to-

unsupervised loss
ratio

0.01 0.999 0.392

rM mic_arr_radius microphone array ra-
dius

0.0401 0.4982 0.1162

blue color components of each point correspond to x, y and z coordinates of the
sound source position for which the corresponding acoustic feature was obtained

Secondly, ISOMAP embeddings were mapped to the metric coordinate sys-
tem using a GRNN. By evaluating the proposed method using synthesised audio
data, it was found that with only a single microphone array being used, GRNN
was only able to learn the DoA mapping of the SRP-PHAT feature (see Fig. 3.5).
Naturally, a question arises whether using two microphone arrays instead of one
would yield better results.

Multiple experiments with simulated and real-world audio data have been con-
ducted using a setup of two circular microphone arrays, each with radius r =
45mm and Nm = 4 microphone elements placed at 0◦, 90◦, 180◦ and 270◦ with
respect to the positive x axis of the coordinate system.
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Fig. 3.3. Hyperparameter correlation matrix (1 microphone array)

A dataset for the evaluation of the proposed method with variable N , T , Nm,
f1, f2, a, rM and Or parameters was created. The dataset consist of N samples,
each is a pair of vectors: (NM × 360)-dimensional concatenated SRP-PHAT fea-
ture vector and a 3-dimensional coordinate feature vector (x and y coordinate ran-
domly selected, z coordinate fixed). The process to obtain the dataset is described
in Section 2.3.3.

SRP-PHAT spatial spectra was calculated using pyroomacoustics inbuilt func-
tion, from the simulated microphone audio signals, using FFT length of 512. The
spectrum is a 360-element vector, that covers a 360◦ azimuth, thus the resolution
of the spectra is 1◦. For each of the NM microphone arrays, a separate SRP-PHAT
spectrum is obtained. To form a feature vector for a single source position, all
SRP-PHAT spectra are concatenated.

The dimensionality of SRP-PHAT feature vectors was reduced to 2 dimensions
using ISOMAP NLDR algorithm, considering k = 16 nearest neighbors. The
mapping is presented in Fig. 3.6.

The performance of the GRNN is evaluated by calculating the Mean Squared
Error (MSE) between the ground truth coordinates and the GRNN predicted coor-
dinates:

MSE =
1

Nts.

∑

i∈Nts.

(yi − ŷi)
2, (3.2)

where Nts. is the number of samples in the testing dataset.
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Fig. 3.4. ISOMAP SRP-PHAT feature embedding, features obtained using one
circular microphone array with 9 elements; simulated data

For the evaluation of the performance, only samples unseen by the model dur-
ing the training phase are used (the testing data subset). The results of the source
position prediction by the best performing model are presented in Fig. 3.5.

3.2.2. Experimental Tests on Real-World Array Audio

A real-world audio dataset was acquired using 2 circular microphone arrays in an
acoustically untreated room with approximate dimensions of 5 m × 5 m, with a
height of 3.75 m (see Fig. 3.10 for exact geometry of the room) and a reverberation
time T60 = 0.311 s. The microphone arrays had 4 electret elements each and the
radius rM = 45mm (see Fig. 3.7). Microphone arrays were placed on tripods at
the approximate height of 1.3m. The exact coordinates of the first microphone
array were M1 = [2.913, 3.699, 1.313] m and M1 = [2.960, 2.512, 1.309] m (see
Fig. 3.9). All distances were measured using a laser rangefinder with a measuring
accuracy of 0.5mm.

Microphone array signals were digitized and transferred to a computer using
Tascam US-20x20 digital audio interface. Signals were captured at a sample rate
fs = 44 100Hz and quantization resolution Q = 24 bits. The schematics of a
simple electronic interface that allows to connect the electret microphone elements
to the digital audio interface’s microphone inputs and to power the electret micro-
phone elements using 48V Phantom power is presented in Fig. 3.8.

The dataset consists of a set of unlabeled (unknown source position) micro-
phone array audio data, a set of audio data from the labeled source positions (34
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Fig. 3.5. Sound source position estimates by best performing GRNN model and
ground truth source positions; single microphone array

points), and a set of audio data of known source trajectories. Each set consists of
audio signals obtained using a white noise and a dry speech source signal. The
boundaries of the room as well as the known sound source positions are presented
in Fig. 3.10. In the figure, the red, green and blue color components of the point
color correspond to their x, y and z coordinate respectively.

SRP-PHAT features were obtained using previously described steps. SRP-
PHAT features’ dimensionality was reduced to 2 components using ISOMAP al-
gorithm and embeddings of the features were obtained. To compare with the sim-
ulated acoustic features embeddings presented in Fig. 3.4, the embeddings of a
real-world acoustic features are presented in Fig. 3.11.

It can be seen that the distribution of the embeddings is much more complex.
This can be attributed to the more complex structures of reflections that are present
in a real-world acoustically untreated room versus a simulated room with nothing
more than walls. It can be speculated that the reflections that are present in a real-
world acoustic enclosures and that are reflected in the acoustic features obtained
within such enclosures act as a acoustic fingerprint, being unique in structure at
any particular location within the enclosure, as opposed to simulated enclosures,
where there are, for example 8 points within a cuboid room where the reflection
structure is identical (due to symmetry of the simulated enclosure). This implies
that the proposed GRNN-based source localization method would perform better
in a real-world acoustic scenarios than in simulated ones.



3. EXPERIMENTAL INVESTIGATION OF SOUND SOURCE LOCALIZATION 79

4 2 0 2 4
component a

3

2

1

0

1

2

3

4

co
m

po
ne

nt
 b

ISOMAP embedding of the 1080-dimensiontal data to 
 2-dimensional embedded space, 41 neighbors
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Fig. 3.7. Geometry of the one of the two microphone arrays used to capture
real-wold array audio signals for the GRNN experimentation

Since the presented method is intended to localize a speaker within an acoustic
enclosure, it was necessary to evaluate the performance of the proposed method
using a real-world speech dataset. The audio data that was obtained from the mi-
crophone arrays was split into frames with duration of Tτ . For each frame, a 360-
element SRP-PHAT spectra was obtained for each array (Fig. 3.12). In the figure,
the maximum value of each SRP-PHAT spectrum is marked with a red dot; the
color of each point corresponds to a and b embedded coordinates (red component:
a; green component: b, blue component constant).

Since the speech signal is not continuous and contains silent passages , some
of the frames of the array audio signals do not contain the signal of the source,
and only the noise signal. Using these silent frames, it is not possible to localize
the (inactive) sound source. The effects of audio signal frame thresholding are
presented in Section 2.1. Therefore, such silent frames must be discarded.
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Fig. 3.8. Schematics of a simple electronic interface that allows to connect the
electret microphone elements to the digital audio interface’s microphone inputs

Fig. 3.9. Diagram of the physical setup of the microphone arrays used to capture
real-wold array audio signals for the GRNN experimentation

In this investigation, two simple frame thresholding algorithms were used:

1. RMS-based; for each frame, the RMS value of the SRP-PHAT spectra is
calculated and then compared to the mean value of all SRP-PHAT RMS
values obtained from a particular microphone array.

2. Crest factor-based; same as above, but using the crest-factor instead of
RMS values of each frame.

The frame is kept only if both arrays SRP-PHAT spectra meet the conditions. The
mean value of either the RMS or the crest factor is multiplied by a constant to give
further fine-tuning of the thresholding.

The results of sound source localization using the baseline geometric source
localization approach are presented in Fig. 3.13. It can be seen, that in some cases
the source position estimation errors are large and the source position is estimated
outside the enclosure. This happens when the DoA estimates for both microphone
arrays are very close, and thus the intersection of the DoA radii is approaching
infinity.
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Fig. 3.11. 2-dimensional ISOMAP embeddings of the unlabeled SRP-PHAT
features of the real-world signals; a) noise signal; b) speech signal

Using the GRNN sound source localization method presented in this section
and in Section 2.3, the positions of the sound source were estimated for real-world
speech audio data. The results of the localization are presented in Fig. 3.14. It
can be observed in the figure, that the source position estimates are much more
accurate than in the previous experiment.

After assembling the training dataset with 2 nearest neighbors, and training
the neural network for 50 epochs, the predictions of the source position were more
accurate than using the baseline methods.

The summary of source location prediction errors for different source local-
ization methods are presented in Table 3.3. In this table, the results from all
experiments were aggregated, and a global source position estimation MAE and
STD values are presented. Table 3.4 presents MAE of different source localization
methods when evaluated with the best-performing GRNN parameter set.
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Fig. 3.12. SRP-PHAT spatial spectra of microphone array signals; a) 1st array b)
2nd array; marked actual DoA (green) and SRP-PHAT peak value (red),

real-world speech source
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Fig. 3.13. Real-world speech source positions estimated using SRP-PHAT
geometric localization algorithm; a) lines represent the DoA radii of each array;

b) lines represent localization error

The results of the source location prediction using a GRNN are presented in
Fig. 3.14. The distributions of the prediction errors for different source localization
methods are presented in Fig. 3.15. It can be seen, that while the source position
estimation MAE is similar to all methods, GRNN produces less error variance. Af-
ter performing a Bayesian hyperparameter optimization for 169 iterations, source
position estimation error estimates were obtained.
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Fig. 3.14. Predicted real-world speech source positions using the SRP-PHAT
intensity map approach; a) source positions is the argument of the maximum of
the intensity map, b) source positions is the location of the most prominent local

peak of the intensity map

Table 3.3. Summary of source location prediction errors for different localization
methods (aggregated from all experiments)

Method MAE, m STD, m Improvement, %
Geometric 1.95 1.62 80.1
Intensity Map, argmax 1.13 0.66 4.9
Intensity, peak location 1.12 0.69 3.5
GRNN 1.08 0.51 –

The parameters which influence on the source localization accuracy was in-
vestigated were: acoustic feature thresholding level, number of nearest neighbors
considered for ISOMAP embedding, number of nearest neighbors considered dur-
ing graph dataset creation, the reintroduction rate of labeled samples during GRNN
training, the ratio of supervised to unsupervised loss used during GRNN training
and training sample batch size. The relation between the estimated prediction error
and the parameters are presented in Figs 3.16–3.19 with further explanation.

As can be seen from the experimental results, the presented method outper-
forms the baseline methods for almost all parameter configurations. The presented
method produces a position estimation error that is 24.2% lower than using a ge-
ometrical source localization method, and 19.1% lower than using the intensity
map method at low feature fitness threshold levels. When the acoustic feature se-
lection threshold is high, the performance of all methods becomes comparable. It
needs to be addressed that it is impractical to use high threshold values because it
is possible that the sound source would not be localized at all (all its features are
below the threshold).
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Table 3.4. Summary of source location prediction errors for different localization
methods (compared to best-performing GRNN parameter configuration)

Method MAE, m STD, m Improvement, %
Geometric 3.06 4.50 68.57
Intensity Map, argmax 1.17 0.74 17.97
Intensity, peak location 1.14 0.75 15.94
GRNN 0.96 0.62 –
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Fig. 3.15. The distributions of the prediction errors for different source
localization methods; a) all experiments; b) best performing GRNN

parameter set

As seen from the Fig. 3.16b, parameter Nkemb.
does not affect the performance

of the baseline algorithms. This is the expected case, since this parameter is not
involved in obtaining the source position estimation using the baseline methods.
As for the GRNN approach, it can be observed that Nkemb.

has little impact on
the position estimation. Nevertheless, the presented method performed on aver-
age 20.3% better than the baseline methods when considering the source position
estimation RMSE.

Considering the number of the nearest neighbors of the samples in the embed-
ded space when constructing the training graph dataset, Fig. 3.17 shows that the
smallest source position estimation error is obtained when only a small number of
graph nearest neighbors are selected. This might be due to the non-linearity of the
embedded space. The larger the number of considered neighbors, the further the
samples are in the embedded space, and the larger the error. As can be seen from
the Fig. 3.17b, the number of the nearest graph neighbors considered is influencing
the source distance estimation variance the most. The source distance estimation
error is the smallest when the proposed algorithm considers 10 neighbors.
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Fig. 3.16. Dependency between the source position estimation error and: a) the
acoustic feature thresholding level; b) the number of nearest neighbors

considered for ISOMAP embedding (y axis clipped to 1× 102 for better
visibility of GRNN estimates)
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Fig. 3.17. Dependency between the number of nearest graph neighbors
considered during the training dataset construction and: a) the source position

estimation error; b) source distance estimation error

As can be seen from the Fig. 3.18, the labeled sample repetition rate is not
influencing the source position estimation error considerably. The angular error
is reduced at high repetition rates, but the source distance estimation error is in-
creased. This might be due to the condition where the labeled sample positions
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are condensed around the center of the enclosure, and the supervised loss function
forces the network to predict the source positions towards the center. This produces
large estimation errors for the sound sources that are further away from the center
of the enclosure.
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Fig. 3.18. Dependency between the labeled samples repetition rate during
GRNN training and: a) the source position estimation error; b) source DoA

estimation error
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Fig. 3.19. Dependency between the source position estimation error and the
ratio between the supervised and unsupervised loses considered during the

GRNN training
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The most suitable ratio of supervised to unsupervised loss, as can be seen from
the Fig. 3.19, is µ = 0.6, which means that the supervised loss has slightly stronger
influence during the training of the GRNN. It can be speculated that since there
are much more unlabeled samples than labeled ones, the influence of the labeled
samples (which contribute during the calculation of the supervised loss) needs to
be higher than the influence of the unlabeled samples to achieve a balanced training
pattern.

The presented method outperforms the baseline methods for almost all hyper-
parameter configurations. The presented method produces a position estimation
MAE that is averagely 5 times lower than using a geometrical source localiza-
tion method, and averagely 3.5% lower than using the SRP-PHAT intensity map
method at low feature fitness threshold levels. The most suitable ratio of super-
vised to unsupervised loss is found to be µ = 0.6. Overall smallest source position
error is achieved with 1 nearest graph neighbor considered during graph training
dataset creation.

1. Using an ISOMAP NLDR algorithm, it is possible to embed SRP-PHAT
acoustic features to a R

2 space and the embedded dimensions correspond
to the spatial dimensions of the acoustic enclosure.

2. Embeddings themselves correspond to the x and y coordinates of the sound
source.

3. It is possible to localize a single sound source within an acoustic enclosure
with a data-driven algorithm that:

• Is semi-supervised learning based;

• Is trained on a an unbalanced (Nl << Nu) training dataset.

3.3. Real-World Tetrahedral Microphone Array Audio
Dataset

For evaluation of the simulation results, a dataset of real-world microphone array
signals with one or multiple sound sources present within the acoustic enclosure is
needed. There are several audio datasets presented earlier (Le Roux et al. 2015), fo-
cused on the sound source localization and separation tasks. The LOCATA dataset
(Löllmann et al. 2018), presented as a part of IEEE-AASP Challenge on Acous-
tic Source Localization and Tracking, consists of audio recordings of one or two
moving and up to 4 static sound sources, captured with a multitude of microphone
arrays, with number of microphone per array ranging from 2 to 32. The shortcom-
ing of the LOCATA dataset is that neither the room dimensions nor the distance of
the origin of the coordinate system to a corner of the room is not presented, which
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imposes a limitation of usage of the LOCATA dataset for evaluation of learning-
based SSL methods, such as presented by He et al. (2018a, 2019), where the model
is trained on semi-synthetic data. Furthermore, the moving sound sources were the
human subjects, walking in front of the microphone array and talking, thus there
are limited variance of the height of the sound sources relative to the origin of
the coordinate system. The Sound Source Localization for Robots (SSLR) Dataset
is a collection of real robot audio recordings for the development and evaluation
of sound source localization methods, recorded using Softbank robot Pepper, in-
cluding robot ego-noise and overlapping multiple speech sources (He et al. 2018a).
The origin of the coordinate system for this dataset is the center of the micro-
phone array. Moreover, the sound sources remain stationary, while the robot head
is panning to sides, thus the microphone-room spatial relationship is constantly
changing, which is not the case in many ambient intelligence and surveillance sys-
tems, where the array is stationary for the duration of operation. Therefore, this
dataset may not be well suited for evaluation of the performance of static arrays.
Drone Egonoise and localization (DREGON) dataset (Strauss et al. 2018) is aimed
at evaluating SSL using microphone arrays embedded in an unmanned aerial ve-
hicle (UAV). The dataset contains both clean and noisy in-flight audio recordings
continuously annotated with the 3D position of the target sound source using an
accurate motion capture system. The dataset includes the description of the room
geometry and its reverberation time. In addition, the speech signals were emitted
by a static sound source. The downside of this dataset is that the microphone array
is mounted on the UAV and is not stationary or vice versa, the sound source is sta-
tionary. Considered the shortcomings of the aforementioned datasets, we present
a dataset for the evaluation of the performance of sound source localization algo-
rithms that is captured by a static tetrahedral microphone array with one and two
static, simultaneously active sound sources. The presented dataset includes thor-
ough and explicit measurements of the room and the positions of the microphones
and the sound sources with the origin of the coordinate system coinciding with one
corner of the room.

3.3.1. Description of the Experimental Setup

For all audio recordings, a Tascam US20x20 USB audio interface was used. All
recordings were performed with a sampling rate of 44 100 Hz and 16 bit quantiza-
tion resolution. All spatial measurements were made manually using a measuring
tape with a precision of ±0.005 m. The dataset consists of audio files (4 channel
audio files for microphone array signals and mono audio files for the correspond-
ing source signal), impulse response measurement data in MATLAB® compatible
format (.mat) and in .WAV file and a spreadsheet file with the corresponding infor-
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mation about the positions of the sound sources, the microphone and the signals
of the sound sources.

3.3.2. Properties of the Room

The dimensions of the room were 5.40×5.86×2.64 m. The origin of the coordinate
system of the dataset coincided with a corner of the room. Three of four of the
walls of the room were made of painted masonry, while the fourth wall was a
plaster wall. The volume of the room was 89.869m3 and the total surface area of
the room was 145.048m2.

The furniture of the room consisted of three plywood tables, three chairs, sev-
eral computers and computer monitors, which were not taken into account to not
over-complicate the process of dataset acquisition. The absorption coefficients of
each of the wall were not directly measured but rather calculated from the mea-
surement of the T60 reverberation time value using Sabine’s equation:

T60 =
24 ln 10

c20

V

Sa
≈ 0.1611

V

Sa
, (3.3)

where c20 is the speed of sound at 20 ◦C, V is the volume of the cuboid room, S
is the total surface area of the room, and a is the average absorption coefficient of
the surfaces of the room.

The reverberation time can be calculated using Schroeder’s method of back-
ward integration of the room impulse response (RIR) (Schroeder 1965):

Fc ≈ 2000

(

T60

V

)0.5

. (3.4)

For the RIR measurements, a Mackie Thump12 powered loudspeaker was used
as a sound source (axis of the loudspeaker directed to the capsule of the micro-
phone). The measurement microphone was Sonarworks XREF20. RIRs were cap-
tured using a MATLAB® tool Room Impulse Measurer. Provided by the tool are the
two most widely used IR measurement techniques: Maximum-Length-Sequence
(MLS) and Swept Sine. MLS technique is based on the excitation of the acoustical
space by a periodic pseudo-random signal. The impulse response is obtained by
calculating a circular cross-correlation between the measured output of the system
and the excitation signal. The Swept Sine measurement technique uses an expo-
nential time-growing frequency sweep as and the excitation signal. The output of
the system is recorded and deconvolution is used to recover the impulse response
from the swept sine tone. The impulse response of the room was measured at three
different combinations of the signal source and the measurement microphone po-
sitions (positions are presented in Table 3.5).
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Table 3.5. Position of the impulse response measurement loudspeaker and
microphone and the results of the T60 measurements

Source Microphone
No. x, m y, m z, m x, m y, m z, m IR measurement signal T60, ms
1 4.16 3.74 1.03 1.395 0.73 1.52 MLS 576

Sine Sweep 526
2 4.49 2.43 2.95 3.825 1.145 1.49 MLS 607

Sine Sweep 533
3 4.98 1.4 1.03 4.765 3.275 0.34 MLS 520

Sine Sweep 551

The T60 reverberation time was calculated using Schroeder’s backwards inte-
grated room impulse decay method and calculating the intersection of the slope
with the −60 dB (Hak et al. 2012; Schroeder 1965). The T60 time for each of the
6 trials and used the average of the results as a single value, T60 = 0.552 s.

3.3.3. Properties of the Microphone arrays

For the acquisition of the real-world audio data, two tetrahedral microphone ar-
rays with different baseline lengths B were used: B = 0.3m and B = 0.6m,
called ARRAY30 and ARRAY60 respectively. This approach was chosen to allow
the evaluation of the influence of the baseline length of the microphone array on
the performance of the sound source localization algorithms. Since tetrahedral ar-
rays were used, B is the distance between each of the microphones. The center of
the microphone array mC is the mean of the coordinates of the microphones mi

of the array:

mC =
1

Nm

Nm
∑

i=0

mi. (3.5)

Maximum TDoA ∆TAmax , observable using the array of baseline length B is

∆TAmax =
B

c20
. (3.6)

For ARRAY30, TAmax30 = 8.82× 10−4 s. At fs = 44 100Hz, this corre-
sponds to 38 samples. For ARRAY60, the TAmax60 = 1.76× 10−3 s or 77 sam-
ples.

The coordinates of the microphones of the array with B = 0.3m and the
coordinates of the microphones of the array with B = 0.6m are provided in Ta-
ble 3.6 and Fig. 3.20. Note that the geometry of the array does not exactly match a
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tetrahedron. This is due to the error of manually placing the microphones onto the
microphone stands.

Table 3.6. Position of microphones of the ARRAY30 array microphones (30 cm
aperture) and the ARRAY60 array microphones (60 cm aperture)

Microphone coordinate
Array Microphone index i x, m y, m z, m
ARRAY30 1 1.45 1.14 1.42

2 1.425 0.84 1.42
3 1.58 0.975 1.63
4 1.295 1.025 1.63
Array center mC 1.4375 0.995 1.525

ARRAY60 1 1.49 1.325 1.36
2 1.385 0.715 1.34
3 1.72 0.975 1.78
4 1.12 1.055 1.78
Array center mC 1.429 1.018 1.565

Fig. 3.20. The positions of the ARRAY30 and ARRAY60 microphones; dashed
lines denote the edges of the tetrahedrons

Each tetrahedral array consists of four identical conndenser microphones
(RØDE M2). Since the directivity pattern of the RØDE M2 microphone is car-
dioid shaped, we have positioned the microphones in such a way that the acoustic
axes of the microphones were oriented up-wards, so that the directivity of the mi-
crophones would be close to omnidirectional in a horizontal plane. The position
reference point of each microphone coincided with the center of its membrane.
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3.3.4. Setting of the Sound Sources

The real-world audio data was recorded using each of the previously described ar-
rays with one or two simultaneously active sound sources. The sound sources were
represented by two small loudspeakers: battery-powered JBL GO loudspeaker
(Source 1, SJ), mounted on a tripod to allow for a convenient positioning; and
Yamaha MSP3 amplified two-way compact monitor loudspeaker (Source 2, SY),
placed on a portable pedestal or a table. The position of the sound source is deter-
mined by a reference point.

For both sound sources the reference points were located in the center of the
front grid of the speakers.The speech signals that were reproduced through the
speakers were obtained from the AMI Corpus (Carletta et al. 2006), headset mi-
crophone mix (file ES2019a.Mix-Headset.wav). To allow for the two simultane-
ously active sound sources to reproduce different signals, we have selected two
excerpts from the file, each with a duration of 60 s. The first excerpt (E1) began at
the 70-th second of the source audio file, and the second excerpt (E2) began at the
310-th second of the file. Ten positions for Source 1 were randomly selected from
a uniform distribution in the entire volume of the room.

While all three coordinates were randomly chosen for the tripod-mounted
Source 1, Source 2 could only be placed on a fixed height pedestal or the table.
Thus its z coordinate z2 is limited to two values: 0.85 m and 0.865 m above ground;
x and y coordinates are the same for both source positions. The coordinates of the
Source 1 (x, y, z1) and Source 2 (x, y, z2) of the selected positions are presented
in Table 3.7. As can be seen from the Table 3.7, the average of coordinates of
all source positions are very close to the geometric center of the room and differs
from it no more than 8.25% (for x coordinate). The positions of the sources and
the centers of both arrays are also presented in Fig. 3.21.

By converting the Cartesian coordinates of the positions of the sound sources
to polar coordinates, with the centers of the microphone arrays at the origin of
the polar coordinate system, DoAs of sound sources were obtained (presented in
Fig. 3.22). DoA with azimuth θ = 0 and elevation φ = 0 corresponds to the
positive x axis of the Cartesian coordinate system.

For the single active sound source case, only Source 1 was used, and it was
placed at all ten positions (coordinates of which are expressed as (x, y, z1)). For
the two active sound source case, ten positions of the Source 2 were selected from
the Table 3.7 sequentially, while the positions of the Source 1 were selected from
the Table 3.7 and randomly permuted, resulting in 10 combinations presented in
Table 3.8. The speech signal excerpts were assigned to the sound sources in an
alternating manner.
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Table 3.7. Sound source positions of used for the acquisition of the dataset

Position No. x, m y, m zJ, m zY, m
1 4.0 4.85 1.3 0.85
2 4.2 2.7 1.665 0.85
3 1.81 5.55 1.57 0.85
4 3.02 3.38 0.57 0.85
5 0.43 3.7 2.42 0.865
6 1.06 2.14 0.94 0.85
7 0.43 1.04 1.72 0.865
8 2.71 2.15 1.665 0.85
9 3.47 0.38 0.84 0.85
10 1.33 5.08 2.38 0.865
Standard deviation 1.423 1.734 0.613 0.007
Average coordinate 2.246 3.097 1.507 0.8545
Room center coordinate 2.69 2.925 1.42 1.42

Fig. 3.21. Positions of the sources (SJi and SYi where i = 1, 2, . . . , 10 denotes
the positions of Source 1 (JBL GO) and Source 2 (Yamaha MSP3) respectively,

as presented in Table 3.7) and the centers of ARRAY30 (MAC301) and
ARRAY60 (MAC601) within the room

3.3.5. Estimation of the Room Additional Acoustic Properties

To obtain the average absorption coefficient of the room a, a value of the T60

reverberation time is needed. This value was calculated from the impulse response
of the room. The reverberation time T60 was calculated for each of the obtained
RIRs using Schroeder’s backward integration method. The results are presented in
Fig. 3.23. The average T60 value was T60 = 552ms, with standard deviation of
33.6ms.
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Fig. 3.22. DoAs for source positions presented in Table 3.7, relative to the
center of the ARRAY30

Table 3.8. Positions of sound sources in case of two simultaneously active sound
sources and sources’ corresponding signals

Source 1 Source 2
Position number Signal excerpt Position number Signal excerpt

1 E2 2 E1
2 E1 6 E2
3 E2 7 E1
4 E1 3 E2
5 E2 10 E1
6 E1 1 E2
7 E2 5 E1
8 E1 9 E2
9 E2 4 E1
10 E1 8 E2

The absorption coefficient was calculated using (3.3) with T60 = 0.552 s:

a = 0.1611
V

S · 0.552
= 0.206. (3.7)

Schroeder’s frequency was calculated using a measured room volume and T60:

Fc ≈ 2000

(

0.552

89.869

)0.5

= 156.79Hz. (3.8)

The measurements of RIRs were compared with the computer simulation of
a virtual room with the same dimensions and the placement of the IR measure-
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a) b)

c) d)

e) f)

Fig. 3.23. Results of the T60 estimation using Schroeder’s backward impulse
response integration; a) MLS, position 1; b) Swept Sine, position 1; c) MLS,

position 2; d) Swept Sine, position 2; e) MLS, position 3; f) Swept Sine,
position 3

ment sound source and microphone, using Python programming language and py-
roomacoustics package, which uses image-source method for impulse response
calculation (Scheibler et al. 2018). For the simulation, the absorption coefficient a,
calculated in (3.7) was used, while the maximum order of reflection was set to 10.
By performing the Fast Fourier Trans-form (FFT) of the RIRs, transfer functions
of the room were obtained (magnitude spectra of the transfer functions presented
in Fig. 3.24).

As can be observed from the magnitude spectra of the transfer functions in all
RIR measurement positions, the simulation is relatively accurate only in the ap-
proximate frequency range from 60 Hz to 500 Hz. This range starts at a frequency
that is more than twice lower than Schroeder’s frequency of the room and does not
encompass the widely used telephone band (ITU-T, Rec. P.342, 2009).
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a)

b)

c)

Fig. 3.24. Magnitude spectra of the transfer functions obtained from the RIR
measurements (using Sine Sweep and MLS methods and computer simulation)
at positions of sources and microphones presented in Table 3.5; a) position 1; b)

position 2; c) position 3
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Thus, the auralization results using simulated RIRs might be inaccurate and
unsuitable for reliable evaluation of the performance of sound source localization
algorithms using speech signals. For all three measurement positions, the ampli-
tude of the simulated transfer function is significantly higher in the low-frequency
range than in the measured RIRs. This can be addressed to a) the unsuitability of
the image source for RIR simulation in the low frequency range (wave-based phe-
nomena, such as diffraction and interference, are not properly recreated (Siltanen
et al. 2010)) and b) inaccuracy of the real-world RIR measurements, as it relies
on the linearity of the transfer functions of the transducers (measurement sound
source and microphone, which are not linear. The diffraction effect is stronger at
low frequencies where the wavelength is longer than or comparable to the dimen-
sions of the reflecting objects (Siltanen et al. 2010), that is, lower than Schroeder’s
frequency.

The frequency response of Thump12 loudspeaker presents a steep roll-off in
the sound pressure level below 70 Hz and above 6 kHz, so it is impossible to
obtain a fully accurate RIR using neither Swept Sine nor MLS method using such
loudspeaker. Considering these findings, it is advisable to evaluate SSL algorithms
not only synthetic or semi-synthetic audio data but also on real-world audio data
as the simulated audio signals might not accurately reflect the real-world situation.

To sum up this section, a dataset of four different scenarios (two tetrahe-
dral microphone arrays with different baseline lengths, one and two active sound
sources for each type of array) was created, with ten different source positions (in
case of two active sound sources – 10 two source position combinations) for each
scenario. Positions of sound sources were distributed evenly in the room, with av-
erage of coordinates of all sources differing from the geometric center of the room
no more than 8.25% (for x coordinate).

A set of 6 room impulse responses was measured using three different com-
binations of source-microphone positions, using two IR acquisition techniques:
MLS and Swept Sine. The reverberation time T60 was estimated from the RIR us-
ing Schroeder’s method, and the average reverberation time T60 was determined to
be 0.552 s. The average surface absorption coefficient was derived from the rever-
beration time and the geometry of the room and was determined to be a = 0.206.
The Schroeder’s frequency of the room was calculated to be Fc = 156.76Hz.

A computer simulation of a virtual room with the same geometry and acous-
tical parameters as the real-world room was performed. From the comparison of
results, it was determined that the magnitude spectra of real-world and simulated
RIRs differ considerably both in low and high-frequency ranges, and the simula-
tion is relatively accurate only in the approximate frequency range from 60 Hz to
500 Hz. Thus, if a sound source localization method or algorithm is being de-
veloped, its evaluation on real-world audio data is crucial as the simulated audio
signals might not accurately reflect the real-world situation.
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3.4. Source Localization using Correlation Based
Features

In this section, presented is the process of the generation of the training datasets
and the training of the CNN. First, the training/testing dataset format and dataset
creation process are presented. Then, the CNN training procedure is outlined.
Finally, the results are provided and discussed.

3.4.1. Synthesis of the Dataset Records

In total, 3 training/testing datasets have been generated, each containing 20000
samples, differing in the number of sound sources and the Gaussian kernel spread.
Summary of the datasets is presented in Table 3.9. All other parameters regarding
the auralization, training and target data generation were as described in Section
2.4.2. For all datasets, the resolution of the DoA map was RDoA = 18, resulting in
a 36× 18 DoA map elements.

Table 3.9. Summary of different datasets used for CNN evaluation

Dataset No. of sources σ
dataset1 1 2
dataset2 2 1
dataset4 2 2

Training data was generated in 2 second duration cases. For each case, the
virtual sound sources were simulated at random positions and remained stationary
throughout the case. With the frame length of 2048 samples with 1024 sample
overlap, one case produced 84 samples. Thus, there were 238 different cases of
sound source position.

3.4.2. Training of the Convolutional Neural Network

Each CNN architecture was trained for 100 epochs on 20000 samples, with 4
samples per batch. We have evaluated the performance of two CNN architec-
tures, CONV-WE-CCFB and CONV-CCFB-DOA, described in section 2.4, using
3 datasets, created by the method described in the same section. We have evaluated
the performance of both CNN architectures with learning rates of lr = 0.001 and
lr = 0.01.

The mean absolute angular error (MAE) and the standard deviation of the
absolute angular error (ESD) were evaluated for a grid of points inside the volume
of the virtual room with grid spacing in all directions being 1m. For evaluation of
the absolute angular error, we have found the centroids of the blobs in the DoA map
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using connected components labeling with thresholding and for both the ground
truth and the estimation and calculated the Euclidean distance between them. In
case of N > 1 sources, N blobs were located in the ground truth and the estimation
DoA map. Euclidean distances between all centroids of the blobs were calculated,
and N smallest values were observed. After iterating through all grid points, MAE
and ESD were calculated. For MAE and ESD evaluation, we have used newly
generated samples and not the samples from the training dataset.

3.4.3. Evaluation of Source Localization using Correlation
Features

The ground truth and the estimation of a single active sound source DoA map
with σ = 2 using CONV-WE-CCFB network is presented in Fig. 3.25, and using
CONV-CCFB-DOA network – in Fig. 3.26. Also in these figures present are the
markers (×) representing the coordinates of the centroids of the blobs, detected
in the DoA maps (indicated in red). In the estimation, the azimuth and elevation
error is also indicated. A pattern caused by overfitting may be observed in CONV-
CCFB-DOA estimation, while CONV-WE-CCFB does not present such property.
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Fig. 3.25. Ground truth and estimation of a single sound source DoA map with
σ = 2, CONV-WE-CCFB network
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Fig. 3.26. Ground truth and estimation of a single sound source DoA map with
σ = 2, CONV-CCFB-DOA network
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In Fig. 3.27 and Fig. 3.28 the ground truth and estimation of a two sound
sources DoA map with σ = 1 by CONV-WE-CCFB and CONV-CCFB-DOA net-
works respectively are presented. There are no distinct patterns in any of the DoA
map estimates, indicating that both neural networks may have learned to gener-
alize. Results of estimation if the DoA map of two simultaneously active sound
sources with a CNN (CONV-CCFB-DOA) trained on a dataset in which was only
one active sound source, are presented in Fig. 3.29. As can be seen from the figure,
CNN was unable to produce more than one distinct blob in the estimation.
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Fig. 3.27. Ground truth and estimation of a two sound sources DoA map with
σ = 1, CONV-WE-CCFB network
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Fig. 3.28. Ground truth and estimation of a two sound sources DoA map with
σ = 1, CONV-CCFB-DOA network

In Table 3.10, the results of CNN training and the estimation error evaluation
are presented. We have separately selected the best results for single sound source
cases and for two sound source cases. For a single active sound source, CONV-
CCFB-DOA architecture performed better regarding all metrics.
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For two sound source cases CONV-CCFB-DOA had smallest MAE when
trained with learning rate lr = 0.01. Second best result was achieved using CONV-
WE-CCFB network, trained with lr = 0.001, and in this case, the ESD was small-
est, thus suggesting that such architecture is the most suitable for multiple sound
source localization using of all evaluated cases.
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Fig. 3.29. Ground truth and estimation of a two sound sources DoA map with
σ = 2, CONV-CCFB-DOA network trained on dataset with single active sound

source

Table 3.10. Results of the CNN training and estimation error evaluation (best
results highlighted)

No. of sources σ Learning rate Model MAE, ◦ ESD, ◦

1 2 0,001 CONV-WE-CCFB 29.97 57.64
1 2 0,001 CONV-CCFB-DOA 22.67 48.02

2 1 0,001 CONV-WE-CCFB 25.61 19.58

2 1 0,001 CONV-CCFB-DOA 27.17 36.75
2 2 0,001 CONV-CCFB-DOA 31.44 34.08
2 1 0,01 CONV-WE-CCFB 28.30 34.98
2 1 0,01 CONV-CCFB-DOA 25.22 29.29

Least CNN test loss was achieved with CONV-CCFB-DOA network, but the
MAE and ESD were moderate for this case. Highest training accuracy was achieved
with CONV-CCFB-DOA when the target DoA map was generated with σ = 2.

For CNNs trained on dataset1 with the same learning rate, the differences in
MAE and ESD for the two different CNN architectures were not significant, with
32.1% MAE difference and 32.1% ESD difference. For CNNs trained on dataset2
with the same learning rate, MAE difference was 5.7% and ESD difference was
46.7%. Tenfold increase of the learning rate generally increased the training ac-
curacy for both networks, but decreased the test accuracy for CONV-WE-CCFB
by 1.4% while increasing the test accuracy for CONV-CCFB-DOA by 26.6%.
Also, the increase of the learning rate increased the MAE by 10.5% and ESD by
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78.7% for CONV-WE-CCFB network, while decreasing MAE by 7.2% and ESD
by 20.3% for CONV-CCFB-DOA network.

Further investigation is needed on the preparation of the input features and the
training data (audio frame sizes, number of filterbank bands, filter order, DoA map
resolution, mapping of the probability density values, and other parameters).

Further research on optimal ANN architectures for SSL is needed. Usage of
depthwise convolution layers and depth-separable convolutional layers might be
of benefit, since the information between channels of the CCFB feature would be
preserved. Also, an investigation of using separate convolutional layers for each
channel, merging them at a later point might be of interest. Usage of multiple
types of features (complex hybrid network architecture with merging of several
sub-networks) could be investigated. To sum up, an ANN hyperparameter search
and optimization might provide a deeper insight on the solution of multiple sound
source localization using ANNs. A research on training the model in different
acoustic spaces to obtain a generalized estimator for sound source DoA, that works
in any acoustic situation, might be of interest.

CCFB as input features can be utilized for multiple sound sources DoA map
estimation, which can in turn be used for sound source localization and separation.
A method for obtaining the training data for the CNN (CCFBs and DoA maps)
was proved to be effective.

From the results presented in Section 3.4.3, these main points can be con-
cluded:

1. DoA map estimation using CCFB as input features is a viable method for
SSL. Both CNN architectures may be used for sound source localization.
Sound source DoA estimation absolute angular error best case for single
active sound source was 22.67◦ and the worst case was 29.97◦. For two ac-
tive sound sources, best case MAE was 25.22◦ and worst case was 31.44◦.

2. CNN trained on a dataset in which one source was intermittently active
may be used to estimate the DoA of a single source, while CNN trained
with a dataset in which two sources were intermittently active may be used
to estimate the DoAs of both one and two simultaneously active sound
sources.

3. The proposed CNN architecture (CONV-CCFB-DOA) outperforms the ar-
chitecture, adapted from He et al. (2018a) (CONV-WE-CCFB) for a sin-
gle sound source localization. This may be addressed to the greater num-
bers of trainable parameters of the CONV-CCFB-DOA network, (total of
24 204 380 parameters, versus CONV-WE-CCFB total of 651 972 param-
eters).
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4. Generally, a larger and more complex CNN performs better for single
sound source localization and benefits from higher learning rates, but the
effects of overfitting may become apparent.

3.5. Two-Dimensional Source Localization using
Phase Based Features

In this section, experiments to estimate the azimuth and elevation of single and
multiple sound sources using a CNN with STFT input features and the results of
such experimentation are presented.

Firstly, the creation of the training/testing dataset that is used for the evaluation
of the performance of the CNN is presented. Then, the procedure of the evaluation
is described. Lastly, the results of the experimentation are provided and discussed.

3.5.1. Preparation of the Training and Testing Dataset

To evaluate the performance of the proposed method, a set of datasets for train-
ing and testing were synthesized. Training datasets were synthesized with white
noise as the sources’ signals and the target DoA maps were synthesized with
Q ∈ [5, 10, 20]◦ and σ ∈ [5, 10, 15, 20]. Training datasets contain 100000 samples
each. Training datasets were created with the STFT frequency random permuta-
tion, also without permutation, with one, two, or three active sound sources. Each
sample in the datasets contains a matrix of input features and a desired output.

The testing datasets were created with speech signals from AMI Corpus Car-
letta et al. (2006) without STFT scrambling, assuming W-disjoint orthogonality of
speech signals.

The proposed structure of CNN was trained on each of the training datasets
and evaluated its performance using a testing dataset with the corresponding DoA
heatmap grid resolution and Gaussian spread. A Keras implementation of CNN
training was used during experimental investigation.

The microphone array’s signals were synthesized using an image source model
implemented in Pyroomacoustics package (Scheibler et al. 2018). The acoustic sig-
nals were simulated in a cuboid shaped acoustic enclosure with dimensions match-
ing a real room described in Section 3.3. The tetrahedral microphone array was set
to have an arbitrarily selected side length of 0.4m and its center was placed at an
arbitrary location within an acoustic enclosure.

For all experiments the geometry of the microphone array, its position, and ori-
entation remained constant. Simulated acoustic source coordinates were selected
from an uniform random distribution within the volume of the simulated acoustic



104 3. EXPERIMENTAL INVESTIGATION OF SOUND SOURCE LOCALIZATION

enclosure. CNN was trained on a training dataset with 100000 samples during 5
epochs with learning rate of 0.001.

3.5.2. Evaluation of the Performance of the Proposed Method

To compare the performance of the proposed method with alternatives, the Steered
Response Power Phase Transform (SRP-PHAT) algorithm was used as a baseline.
pyroomacoustics Python package implementation was used for SRP-PHAT
calculation, which allows to estimate the response power of the beamformer and
present it as a 2D (azimuth and elevation) heatmap, which is compatible with the
output of the proposed method. SRP-PHAT DoA heatmaps were estimated at the
same resolution as with the proposed CNN-based method.

The Mean Average Error (MAE) of source 2D DoA predictions were obtained
using the proposed method and the baseline method. DoA estimation error is the
Euclidean distance in the polar coordinate system between the estimated source
DoA and the ground truth DoA.

The ground truth DoA is calculated geometrically from known source and mi-
crophone array positions. The estimated DoA is obtained from the DoA heatmap
using a simple 2D peak detection algorithm. The DoA estimation errors are ob-
tained in 2 steps:

1. Euclidean distances between all pairs or ground truth and estimated DoAs
are calculated.

2. NS smallest errors are selected as the DoA prediction errors for NS sources.

This two-step approach allows to determine the angular distance between the
ground truth and the estimated closest candidate positions.

During the experimental investigation, for each STFT input frame the DoA
heatmaps and DoA prediction errors were estimated to test the proposed method
and the baseline method. If the peak detection algorithm locates the number of
peaks under inequality NEst. < NS , only NEst. errors are calculated.

The MAE is calculated using the following equation:

MAE =
1

NT

∑

i∈NT

∑

j∈NEst.

eij . (3.9)

The performance of the proposed method was evaluated using several DoA
heatmap resolutions and Gaussian kernel spreads (σ). Azimuth and elevation res-
olution were equal: Qθ = Qφ = Q, as well as azimuth and elevation Gaussian
kernel spreads: σθ = σφ = σ. Experiments were performed at resolution values
Q ∈ [5, 10, 20] and Gaussian kernel spread values σ ∈ [5, 10, 15, 20] with three
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active souns sources. The results are presented in Fig. 3.30. In this figure, MAE
of DoA prediction for each testing sample is presented.

a) b) c)

Fig. 3.30. Errors of DoA estimation of three sound sources using the proposed
and the baseline method: a) STFT not permuted; b) STFT with permuted time

and frequency dimensions; c) SRP=PHAT; data was unavailable for CNN
trained on STFT features with permuted time and frequency dimensions with

σ ∈ [5, 10] and CNN trained on regular STFT features with σ = 5

To evaluate the performance of the proposed method when subjected to back-
ground and acquisition system noise, experimentation with the best-performing Q
and σ configuration was carried out with varying Signal-to-Noise Ratio (SNR) of
the simulated microphone array signals. For the evaluation, the training dataset
was augmented by adding an uncorrelated noise signal sampled from the uniform
distribution to the original signal to obtain a signal with a specific SNR. The MAE
of DoA estimation of three simultaneously active speech sources was obtained
with testing signals with SNR = [30, 20, 10] dB, and the results are presented in
Fig. 57. It can be seen that the angular MAE of three sound source DoA estima-
tion increases with increased noise level (decreased SNR) for both the proposed
method and the baseline method. Nevertheless, the method has reached DoA es-
timation MAE as low as 23.13◦ with 30 dB SNR and 27.21◦ with 10 dB SNR.
To compare, SRP-PHAT method gives MAE 51.6◦ and 52.36◦ at respective SNR
values. To sum up, the proposed method allows to achieve at least 48 % lower DoA
estimation angular MAE than SRP-PHAT at all evaluated SNR values.

To determine the influence of the CNN architecture on the performance of
the proposed method, 3 architecture variations were additionally evaluated, hav-
ing only a single convolutional layer, two convolutional layers and the originally
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a) b)

Fig. 3.31. Angular errors of source DoA estimation at different input signal
SNR values: a) the proposed method; b) the baseline method; Q = 5◦, σ = 20
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Fig. 3.32. Angular errors of source DoA estimation at different number of CNN
convolutional layers; Q = 10◦, σ = 10

proposed architecture with three convolutional layers, with 10◦ angular resolution
output layer (36x18 elements), trained on a dataset with target feature σ = 10.
After evaluation of these CNN architecture variations on a dataset with 3 active
speech sources, it was discovered, that higher number of convolutional layer con-
tributes positively in reducing the MAE of source DoA estimation, as shown in
Fig. 58. With only a single convolutional layer in the CNN, source DoA estimation
MAE was 19.8◦, while increasing the number of convolutional layers to 3 allowed
to achieve source DoA estimation MAE of 18.14◦, which is a 8.4 % improvement.

Examples of DoA heatmaps are presented in Fig. 3.33. These examples were
obtained for an array audio frames with two speech sources active at DoAs situated
respectively at (−153.1◦,−23.8◦) and at (46.3◦,−22.6◦). An example of a spatial
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a) SRP-PHAT estimation
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c) CNN Estimation

Fig. 3.33. Examples of DoA heatmap output: a) SRP-PHAT spatial power
spectrum; b) ground truth (used as a target for training of the CNN;

Qθ = Qφ = 5◦); c) CNN estimated DoA heatmap (Qθ = Qφ = 5◦); same
STFT input feature was used for both SRP-PHAT and the proposed method

power spectrum extracted using SRP-PHAT algorithm is presented in 3.33a. Here
the SRP objective function is evaluated on a grid with an angular resolution Qθ =
Qφ = 5◦). An example ground truth DoA heatmap that is used to train the CNN
is presented in Fig. 3.33b. The angular resolution of the DoA heatmap is the same
as SRP-PHAT spatial spectrum. The Gaussian spread selected to prepare the the
desired outputs for this CNN training was σθ = σφ = 10. An example of CNN
DoA heatmap estimation using the proposed method is presented in Fig. 3.33c.

As can be seen from the Fig. 3.30, the proposed CNN-based source local-
ization method outperforms the baseline SRP-PHAT algorithm in estimating the
azimuth and elevation of multiple acoustic sources. While the lowest source DoA
estimation MAE was 25◦ for the baseline method, at Q = 5◦ and σ = 20, pre-
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sented CNN-based method achieved MAE of 16◦ with the same Q and σ values.
This can be interpreted as performance increase by 36%.

Generally, the method presented here outperformed the baseline in all experi-
ments by at least 29%, with the largest performance increase by 70% at Q = 5◦

and σ = 10. Thus, it can be concluded that the proposed CNN-based multiple
acoustic source 2D DoA estimation algorithm allows for a more precise source
DoA estimation than the SRP-PHAT-based method.

3.6. Three-Dimensional Source Localization using
Phase Based Features

In this section, the experimental evaluation of CNN application with STFT phase
features for sound source 3D position estimation is presented. As in the previous
sections, first, the dataset format and its creation procedure is outlined. Then the
training of the CNN is briefly presented. Lastly, the results of the CNN perfor-
mance evaluation are presented and discussed.

3.6.1. Preparation of the Training and Evaluation Datasets

To train the CNN and to evaluate the performance of the CNN at various Q and σ
as well as the number of sound sources, multiple datasets were generated.

The performance of the CNN trained on datasets with one or two simultane-
ously active sound sources is evaluated with 3D grid resolution Q ∈ [0.25, 0.5, 1]
and Gaussian blurring of the 3D grid σ ∈ [0.25, 0.5, 1]. Source positions were
selected randomly within the limits of a simulated acoustic enclosure with dimen-
sions of 5.4m, 5.86m and 2.84m in x, y and z dimensions, respectively. Micro-
phone positions mi = [mix,miy,miz], i ∈ [1, 2, 3, 4] of a tetrahedral microphone
array are presented in Table 3.11.

Table 3.11. Positions of the microphones of the tetrahedral microphone array

Microphone index, i mix, m miy , m miz , m
1 3.0 2.0 2.0
2 3.4 2.0 2.0
3 3.2 2.35 2.0
4 3.2 2.12 2.35

For a particular NS , source positions were generated once and used to generate
dataset variants with different signals (noise or speech), Q and σ; 2 datasets in
total. These are the source positions ground truth datasets (see Fig. 3.34).
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For the two-source dataset, source positions were generated in sets of two
source positions per set, and the array audio was simulated for each of the source
position sets. For one position set, multiple frames (samples) are generated.
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b)

Fig. 3.34. Source positions used for dataset generation; a) single source; b) two
sources (lines connect source positions for the same position set)

STFT datasets were created once for each NS , with noise and speech sig-
nals, 4 datasets in total. These are the input feature datasets. Synthetic STFT
datasets with noise and speech signals were generated using image-source method
Scheibler et al. (2018). Example STFT features are shown in Fig. 3.35.

Training/testing target 3D grids were generated for each NS and for each Q
and σ; 18 datasets in total (9 for a single source, 9 for two sources). These are the
training target datasets.

Training input and target feature datasets were generated only using noise sig-
nals at 1× 105 source positions, with one STFT frame per position, resulting in
1× 105 training samples. Noise signals were generated dynamically during the
dataset creation; samples of these signals were sampled randomly from an uni-
form distribution and a gain of 0.9 was applied, creating a white noise signal.

Evaluation datasets were generated using both noise and speech signals at 100
source positions with 314 STFT frames at each position, resulting in 31400 evalu-
ation samples. Multiple frames per single source position were generated because
the speech signal is non-stationary and the prediction result for an input frame de-
pends on the audio content of a particular audio frame from which the input feature
was generated; thus it is desired to evaluate each source position using more than
one speech signal frame. For the creation of the speech evaluation dataset, speech
signals were randomly selected for each source position from the AMI Corpus
(Carletta et al. 2006), from a subset of dry microphone recordings that are of 5 s or
greater duration (longer records were truncated to 5 s).
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Fig. 3.35. STFT feature examples of noise and speech signals; a) Single noise
source STFT magnitude; b) Single noise source STFT phase; c) Two speech

sources STFT magnitude; d) Two speech sources STFT phase

For the noise signal evaluation STFT dataset, white noise signals were gener-
ated in the same manner as described earlier and saved to files for reuse, in contrast
with the training dataset, where white noise signals were generated on fly.

3.6.2. Evaluation of the Convolutional Neural Network

Same CNN architecture, except with different output layer shape (to accommodate
the number of 3D grid elements dictated by the Q of the grid), was trained on
noise signal datasets containing 1× 105 samples that were created for each of the
Q ∈ [0.25, 0.5, 1] and σ ∈ [0.25, 0.5, 1] as described in Section 3.6.1. CNN were
trained for 100 epochs. For each Q and σ, CNN was trained anew and the model
saved separately for later performance evaluation.

To evaluate the performance of each trained CNN model, testing datasets were
used. For each of the testing datasets, a 3D grid output feature was predicted by
the CNN for each STFT phase input feature of the dataset.



3. EXPERIMENTAL INVESTIGATION OF SOUND SOURCE LOCALIZATION 111

Table 3.12. Source position estimation MAE values at different Q and σ; mini-
mum MAE highlighted

3D grid maximum k-means clustering
1 source 2 sources

Noise Speech Noise Speech Noise Speech
Q, m σ, m MAE, m MAE, m MAE, m MAE, m MAE, m MAE, m
0.25 0.25 2.51 2.60 0.79 0.94 2.74 2.74
0.25 0.50 1.26 1.39 0.62 0.76 1.10 1.09
0.25 1.00 0.99 1.10 0.81 0.91 1.18 1.17
0.50 0.25 2.18 2.32 0.67 0.86 1.19 1.17
0.50 0.50 2.29 2.35 0.69 0.82 1.08 1.08

0.50 1.00 1.05 1.14 0.84 0.94 1.18 1.18
1.00 0.25 2.73 2.73 0.97 1.10 1.41 1.40
1.00 0.50 1.92 2.00 0.81 0.91 1.17 1.16
1.00 1.00 1.11 1.22 0.89 0.99 1.20 1.20

From the predicted 3D grid, the source coordinates were estimated using the
methods described in Section 3.6. For a single sound source, 3D grid maximum or
k-means cluster centers were estimated; for two sound sources, only the k-means
clustering approach was used.

After evaluating all trained CNN architectures, MAEs were calculated be-
tween the estimated source(s) position(s) and the ground truth source(s) posi-
tions(s). The results are provided in Table 3.12.

Source position estimation errors are presented in box-plot representation in
Fig.s 3.36, 3.37 and 3.38, respectively, for 1 source position estimation from 3D
grid maximum, 1 source position estimation from 3D grid thresholding and k-
means clustering, and 1 sources position estimation from 3D grid thresholding and
k-means clustering. It can be seen from the Fig. 3.36, that the dispersion of the
source position estimation error is higher for small σ values and decreases with
increased σ. This tendency can be interpreted as the evidence of the ability of
the CNN to learn the spatial smoothness of the acoustic features. The σ of the
Gaussian function that is used during the creation of the desired output features
for CNN training represents the probability density function of acoustic feature
classification. Larger σ translates to higher spatial smoothness of the acoustic
feature classification. It can be concluded that σ values that are higher than the
spatial resolution Q of the CNN predicted 3D grid allows to achieve lower source
position estimation errors and lower dispersion of these errors.

The same tendency can be observed in two sound source localization scenario
when the source positions are estimated using thresholding and k-means clustering,
although only when the spatial resolution of the predicted 3D grid is fine
(Q = 0.25m).
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Nevertheless, when the source positions are estimated from thresholded and
clustered predicted 3D grid, the influence of the σ and even the resolution is much
smaller compared to when the source positions are estimated from the 3D grid
global maximum. This can be attributed to the fact that the thresholding level de-
pends on the mean of all predicted 3D grid values, and while higher σ values result
in more high-valued elements in the grid, the thresholding level rises accordingly,
and the relative number of thresholded grid elements to the total number of grid
elements remains relatively constant for the same number of active sound sources.

It is also worth noting that using the clustering-based source position estima-
tion method, the uncertainty of source position can be lower than the resolution
of the output grid, because the coordinates of the estimated cluster centers are not
quantized to this resolution – cluster center coordinates are continuous.

a)

b)

Fig. 3.36. Single source position estimation errors at different resolution and
sigma values; a) noise source; b) speech source; coordinates obtained from 3D

grid maximum
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Additionally, as can be seen from Table 3.12 and Figs 3.36, 3.37 and 3.38, the
single source position estimation error is smaller for noise sources compared to the
speech sources. This can be attributed to the fact that the CNN was trained using
samples with noise sources, so the features learned by the convolutional layers of
the CNN might be better suited for the classification of input features obtained
with an active noise source.
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Fig. 3.37. Single source position estimation errors at different resolution and
sigma values; a) noise source; b) speech source; coordinates obtained via

k-means clustering

On the other hand, for two source scenario, the source estimation errors for
both noise and speech signals differ only up to 1%. It can be speculated that with
more speech sources present in the acoustic scene, the spectra of the microphone
array signals become less sparse and thus becomes more similar to the spectra
of the microphone array signals, obtained with the noise sources present in the



114 3. EXPERIMENTAL INVESTIGATION OF SOUND SOURCE LOCALIZATION

acoustic scene. Thus, the acoustic features presented to the CNN are more similar
for noise and speech source localization scenarios.

An illustration of a ground truth 3D grid with a single active source (Q =
0.25m, σ = 1m) and the corresponding 3D grid, predicted by the CNN, is shown
in Fig. 65 (noise source). The center of the Gaussian blob in the ground truth
3D grid corresponds to the position of the sound source. In the predicted 3D
grid, the coordinates of the element with the maximum value, converted to metric
coordinates using Q factor, are considered the estimated source coordinates (in
case of the 3D grid maximum coordinate acquisition method).

Source position estimation via 3D grid thresholding and k-means clustering is
illustrated in Fig. 3.40. Clustering method is available for both single source and
multiple source scenarios.

a)

b)

Fig. 3.38. Source position estimation errors at different resolution and sigma
values; a) noise sources; b) speech sources
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Fig. 3.39. Examples of CNN output 3D grid for single noise source; a) ground
truth; b) CNN estimation
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Fig. 3.40. Examples of CNN output 3D grid for two sound sources; a) ground
truth; b) CNN estimation

3.6.3. Discussion of the Experimental Investigation

As can be seen from the Table 3.12, the lowest estimation MAE for single noise
source localization using 3D grid maximum finding as the coordinate estimation
method was 0.99m with grid resolution Q = 0.25m and σ = 1m.

For single speech source localization, the lowest MAE of 1.1m was achieved
at the same Q and σ values. When the k-means clustering source coordinate
estimation method is used, the lowest MAE for both noise (0.62m) and speech
(0.76m) signals are achieved at Q = 0.25m and σ = 0.5m, which is a 37 % im-
provement for noise source localization and 31 % improvement for speech source
localization.

For 2 source localization, the smallest MAE is 1.08m for both noise and
speech signals were achieved at Q = 0.5m and σ = 0.5m.
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1. It was shown, that it is possible to localize one or two sound sources within
a 3-dimensional space using a CNN with STFT phase component of the
tetrahedral microphone array signals as the input feature.

2. Using thresholded CNN output 3D grid k-means cluster centers as the
source position estimate

2.1. it is possible to estimate the position of single noise source with esti-
mation MAE of 0.62m and of speech source with estimation MAE of
0.76m with grid resolution Q = 0.25m and σ = 0.5m.

2.2. it is possible to estimate the position of two noise or speech sources
with estimation MAE of 1.08m, with grid resolution Q = 0.5m and
σ = 0.5m.

3. Using thresholded CNN output 3D grid k-means cluster centers as the
source position estimate instead of 3D grid maximum coordinates, there
is at least 31 % decrease in mean absolute error of a single sound source
position estimation.

3.7. Conclusions of The Third Chapter

1. Moderate precision of single sound source localization may be received
using a MLP with only ILD features sent to the input of the network, with
estimated sound source position prediction mean absolute error was as low
as 1.58m in computer simulation and 0.41m in practical experimentation.

2. Semi-supervised GRNN trained on SRP-PHAT features can localize a sin-
gle sound source with source position estimation MAE that is averagely 5
times lower than using a geometrical source localization method, and aver-
agely 3.5% lower than using the SRP-PHAT intensity map method at low
feature fitness threshold levels. The most suitable ratio of supervised to
unsupervised loss is found to be µ = 0.6. Overall smallest source position
error is achieved with 1 nearest graph neighbor considered during graph
training dataset creation.

2.1. Using an ISOMAP NLDR algorithm, it is possible to embed SRP-PHAT
acoustic features to a R

2 space and the embedded dimensions corre-
spond to the spatial dimensions of the acoustic enclosure.

2.2. Embeddings themselves correspond to the x and y coordinates of the
sound source.

2.3. It is possible to localize a single sound source within an acoustic en-
closure with a data-driven algorithm that:
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• Is semi-supervised learning based;

• Is trained on a an unbalanced (Nl << Nu) training dataset.

3. A CNN with CCFB as input features can be used to estimate single sound
source DoA with mean absolute angular error as low as 22.67◦ and two
sound sources with mean absolute angular error as low as 25.22◦.

4. A CNN with an STFT phase input feature can estimate azimuth and ele-
vation of two sound sources with mean absolute angular error as low as
16◦ with DoA heatmap resolution Q = 5◦ and σ = 20◦, and outperform a
baseline SRP-PHAT algorithm by 36%.

5. It is possible to localize one or two sound sources within a 3-dimensional
space using a CNN with STFT phase component of the tetrahedral micro-
phone array signals as the input feature.

5.1. Using centers of k-means clusters of thresholded CNN output 3D grid
as the source position estimate:

i) it is possible to estimate the position of single noise source with
estimation MAE of 0.62 m and of speech source with estimation
MAE of 0.76 m with grid resolution Q = 0.25 m and σ = 0.5 m.

ii) it is possible to estimate the position of two noise or speech sources
with estimation MAE of 1.08 m, with grid resolution Q = 0.5 m and
σ = 0.5 m.

5.2. Using thresholded CNN output 3D grid k-means cluster centers as
the source position estimate instead of 3D grid maximum coordinates,
there is at least 31 % improvement in the accuracy of single sound
source position estimation.





General Conclusions

The hypotheses were confirmed by the investigation of the results presented in this
dissertation.

1. Using a graph regularized artificial neural network trained with a semi-
supervised learning strategy with SRP-PHAT input features it is possible
to achieve up to 5 times lower mean absolute error of a single sound source
localization than using SRP-PHAT-based geometrical source localization
method.

2. Using a convolutional neural network with cross-correlation in frequency
bands as an input feature, the mean absolute localization error of two sound
sources remains above 25◦.

3. Phase component of the spectra of the microphone array signals can be
successfully used as an acoustic feature to localize multiple sound sources
in two-dimensional and three-dimensional space using artificial neural net-
works.

4. Using a convolutional neural network with microphone array signal spec-
trum phase component as an input feature, it is possible to estimate the
direction of arrival of three sounds sources with a mean absolute error of
16◦, with the angular resolution of the network output Q = 5◦ and Gaus-
sian kernel spread σ = 20◦, which is a 36% improvement compared to
SRP-PHAT evaluated on a grid of same resolution.

119
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5. It is possible to localize one and two sound sources in a three-dimensional
space using a convolutional neural network with spectrum phase compo-
nent of the tetrahedral microphone array signals as the input feature. Using
the k-means clustering-based method for the source position estimation in-
stead of the convolutional neural network three-dimensional output grid
maximum coordinates, there is at least 31 % decrease in the mean absolute
error of the estimation of a single sound source position.
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Summary in Lithuanian

Įvadas

Problemos formulavimas

Garso šaltinio lokalizavimas yra svarbus elementas tokiose srityse kaip žmogaus ir kom-
piuterių sąveika, robotika, autonominės transporto priemonės, saugumas, telekonferencijų
sistemos, garso inžinerija ir kitose. Garso šaltinio lokalizavimas apima kalbėtojo vietos
nustatymą auditorijoje, įvykių aptikimą aplinkoje ir jų stebėjimą, robotų navigaciją neži-
nomose aplinkose (Argentieri et al. 2015; Kotus 2013).

Dažnai reikia lokalizuoti garso šaltinį tokiu tikslumu, kuris yra artimas ar net lenkia
žmogaus gebėjimus lokalizuoti garso šaltinį – nustatyti garso šaltinio kryptį (angl. Direc-

tion of Arrival) 15◦ tikslumu. Be to, dažnai reikia nustatyti ne tik garso sklidimo kryptį,
bet ir atstumą nuo šaltinio iki imtuvo. Užduotis tampa sudėtingesnė, kai yra poreikis loka-
lizuoti kelis garso šaltinius aktyvius vienu metu. Dažniausiai žinomi metodai veikia arba
pasirinkdami vieną stipriausią garso šaltinį ir slopindami kitus (toks scenarijus vadinamas
„vienas prieš daugelį“), arba lokalizuodami kelis garso šaltinius, kurie aktyvūs tuo pačiu
metu.

Darbo aktualumas

Didėjantį susidomėjimą mokymu grįstais garso šaltinių lokalizavimo metodais galima iliust-
ruoti šioje srityje publikuotų mokslinių straipsnių skaičiumi, kuris nuo 2011 iki 2019 metų
didėjo eksponentiškai (S0.1 pav.).

Šiuolaikiniai garso šaltinio lokalizavimo metodai nėra pakankamai atsparūs aplinkos
triukšmams, nepalankioms akustinėms aplinkos sąlygoms, tokioms kaip aidus kambarys,
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S0.1 pav. Publikacijų disertacijos tematikoje skaičiaus kitimas 2011–2021 metais

reverberacija. Šiuolaikiniai garso šaltinio lokalizavimo metodai yra pagrįsti sklidimo laiko
skirtumo matavimu, tačiau nepakankamai dėmesio skiriama aplinkos triukšmo įvertini-
mui, reverberacijos ir specifinių akustinių reiškinių mažinimui, kurių didžiausias poveikis
metodo rezultatams pastebimas uždaroje erdvėje (?). Esamų garso šaltinio lokalizavimo
metodų, grįstų sklidimo laiko skirtumo nustatymu, tikslumas mažėja kai aplinkoje pasi-
reiškia reverberacija ir kai aplinkoje yra triukšmo šaltiniai. Todėl pastaruoju metu aktyviai
tyrinėjami mokymu grįsti garso šaltinio lokalizavimo metodai. Šiuo metu žinomais mo-
kymu grįstais garso šaltinio lokalizavimo metodais galima nustatyti kelių garso šaltinių
sklidimo kryptį, bet ne atstumą iki jų. Taip pat negalime nustatyti garso šaltinių koordina-
čių trimatėje erdvėje.

Galima bandyti nustatyti kelių garso šaltinio koordinates trimatėje erdvėje formuluo-
jant regresijos uždavinį, tačiau tam iš anksto turi būti žinomas šaltinių skaičius akustinėje
scenoje. Taikant prižiūrimo mokymo strategiją, reikalingas didelis kiekis žymėtų pavyz-
džių. Tačiau pavyzdžių žymėjimas yra sudėtingas ir imlus laikui uždavinys. Neprižiūrimo
mokymosi arba pusiau prižiūrimo (hibridinio) mokymo strategijos leistų sumažinti arba
atsisakyti mokymo pavyzdžių žymėjimo, taip sumažinant sprendimų konkrečiai akustinei
scenai kūrimo trukmę ir kainą.

Tyrimų objektas

Šio darbo tyrimo objektai yra mokymu grįsti metodai vieno ir daugelio garso šaltinių lo-
kalizavimui, gebantys veikti atsižvelgiant į erdvės akustines savybes, foninį triukšmo lygį,
garso šaltinių signalų parametrus ir garso šaltinių judėjimą.

Darbo tikslas

Šio darbo tikslas – pasiūlyti originalius mokymu grįstus metodus garso šaltinio lokaliza-
vimui aidžiose aplinkose.
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Darbo uždaviniai

Disertacijos tikslui pasiekti suformuluoti du uždaviniai:

1. Pasiūlyti prižiūrimu mokymu grįstus metodus kelių garso šaltinių dvimačiam lo-
kalizavimui aidžioje aplinkoje ir ištirti jų veikimą;

2. Pasiūlyti prižiūrimu mokymu grįstus metodus kelių garso šaltinių trimačiam lo-
kalizavimui aidžioje aplinkoje ir ištirti jų veikimą;

3. Pasiūlyti hibridiniu mokymu grįstus metodus vieno garso šaltinio lokalizavimui
aidžioje aplinkoje ir ištirti jų veikimą.

Tyrimų metodika

Šios disertacijos rengimo metu atlikti tyrimai padalinti į dvi dalis. Pirmoje dalyje buvo
bandoma lokalizuoti kelis garso šaltinius aidžioje aplinkoje dvimatėje ir trimatėje erdvėje.
Pirmiausia buvo aptartos naujausios garso šaltinių lokalizavimo technologijos ir metodai,
o vėliau pasiūlyti mokymu grįsti metodai kaip alternatyva dabartiniams geriausiai vei-
kiantiems algoritmams. Pateikiamas akustinių požymių, kurie gali būti naudojami garso
šaltinio padėties nustatymui, tyrimas. Kaip minėto tyrimo dalis buvo pristatyti mokymo
metodai, skirti daugelio garso šaltinių lokalizavimui dvimatėje ir trimatėje erdvėje, naudo-
jant dviejų ir trijų matmenų dirbtinio neuronų tinklo (DNT) išėjimo sluoksnio struktūras ir
eksperimentiškai įvertintas jų veikimas.

Antroje dalyje buvo ištirtas pusiau prižiūrimu mokymu grįstas garso šaltinio lokaliza-
vimo metodas, apimantis grafu reguliarizuotą DNT (GRDNT). Tai perspektyvi alternatyva
šiuo metu žinomiems neprižiūrimu ir pusiau prižiūrimu mokymu grįstiems garso šaltinio
lokalizavimo metodams.

Eksperimentiškai siūlomi garso šaltinio lokalizavimo metodai įvertinti atlikus mikro-
fonų gardelių signalų kompiuterinį modeliavimą naudojant atspindžių (angl. Image Sour-

ce) metodą, o taip pat realių mikrofonų gardelių signalų įrašymą ir apdorojimą kompiu-
teryje. Buvo sukurti imitaciniai mikrofonų gardelių signalai ir DNT modeliai, kurie bu-
vo apmokyti „Python“ aplinkoje su „pyroomacoustics“ akustinio modeliavimo paketu ir
„TensorFlow“ mašininio mokymo paketu. Kitos kompiuterinio modeliavimo užduotys ir
skaičiavimai buvo atlikti „Matlab“ arba „Python“ aplinkose. Realūs mikrofonų gardelių
signalai buvo gauti naudojant keturių elementų plokščias mikrofonų gardeles ir keturių
elementų tetraedrines gardeles , keičiant jų apertūrą.

Darbo mokslinis naujumas

Rengiant šią disertaciją, buvo sukurta nemažai naudingos programinės įrangos, surinkti
garso signalų duomenų rinkiniai ir pasiūlyti nauji, originalūs garso šaltinio lokalizavimo
metodai:

1. Paruoštas ir viešai paskelbtas tetraedrinių mikrofonų gardelių signalų rinkinys
vieno ir dviejų garso šaltinių lokalizavimui aidžioje aplinkoje tirti.
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2. Pasiūlyti sąsūkos DNT grįsti metodai kelių garso šaltinių sklidimo krypties nusta-
tymui (dvimatėje erdvėje) naudojant mikrofonų signalų koreliaciją dažnių juosto-
se ar spektro fazės komponentės požymius ir ištirtas jų veikimas.

3. Pasiūlytas sąsūkos DNT grįstas metodas kelių garso šaltinių pozicijos nustatymui
trimatėje erdvėje naudojant mikrofonų gardelės signalų spektro fazės komponentę
ir išėjimo sluoksnio verčių grupavimą.

4. Ištirtas hibridiniu mokymu ir grafu reguliarizuotu DNT grįstas metodas vieno
šaltinio lokalizavimui dvimatėje erdvėje.

Darbo rezultatų praktinė reikšmė

Surinktas ir viešai paskelbtas tetraedrinų mikrofonų gardelių signalų duomenų rinkinys
su vienu ir dviem aidžioje aplinkoje esančiais garso šaltiniais: pažymėta ne tik šaltinių ir
mikrofonų vieta, bet ir pateikta informacija apie patalpos matmenis bei akustinius para-
metrus. Šis duomenų rinkinys leidžia palyginti realius ir imituotus mikrofonų gardelių sig-
nalus ir nustatyti signalų imitavimo tikslumą. Pateikta imituotų akustinių signalų duomenų
rinkinių kūrimo metodika grafu reguliarizuotų neuronų tinklų tyrimams. Pasiūlytas nau-
jas būdas keliems garso šaltiniams lokalizuoti trimatėje erdvėje atsisakant skaičiavimams
imlaus požymių išskyrimo. Pasiūlyta metodika garso šaltinių koordinačių nustatymo tri-
matėje erdvėje tikslumui padidinti naudojant grupavimą.

Ginamieji teiginiai

1. Naudojant GRDNT, mokytą taikant hibridinę mokymo strategiją ir SRP-PHAT
požymius įėjime, galima sumažinti vieno garso šaltinio lokalizavimo dvimatėje
erdvėje vidutinę paklaidą iki 4% lyginant su SRP-PHAT intensyvumo žemėlapio
maksimumo nustatymo metodu.

2. CCFB požymius galima taikyti garso šaltinio krypties nustatymui dvimatėje erd-
vėje ir pasiekti 23 laipsnių vidutinę paklaidą vieno garso šaltinio atveju ir 26
laipsnių vidutinę paklaidą dviejų garso šaltinių atveju.

3. Taikant spektro fazės komponentę kaip požymį ir naudojant sąsūkos DNT gali-
ma pasiekti iki 36 % mažesnę trijų garso šaltinių lokalizavimo dvimatėje erdvėje
klaidą nei taikant plačiai taikomą SRP-PHAT algoritmą.

4. Naudojant pasiūlytą sąsūkos DNT išėjimo sluoksnio pakeitimą ir spektro fazės
komponentę kaip požymį, aidžioje aplinkoje galima pasiekti 1,08 m vidutinę pa-
klaidą trimatėje erdvėje lokalizuojant du kalbėtojus.

Darbo rezultatų aprobavimas

Darbo rezultatai paskelbti šešiuose moksliniuose straipsniuose. Trys publikacijos atspaus-
dintos recenzuojamuose mokslo žurnaluose, trys publikacijos atspausdintos Lietuvos ir
tarptautinių konferencijų straipsnių rinkiniuose. Pagrindiniai disertacijos rezultatai pas-
kelbti penkiose konferencijose:
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• Dviejose Lietuvos jaunųjų mokslininkų konferencijose „Mokslas - Lietuvos atei-
tis“, 2017 ir 2019 metais Vilniuje, Lietuvoje;

• Dviejose tarptautinėse konferencijose „Electrical, Electronic and Information Scien-
ces (eStream)“, 2017 ir 2019 metais, Vilniuje, Lietuvoje;

• Tarptautinėje konferencijoje „Advances in Information, Electronic and Electrical
Engineering (AIEEE)“, 2017 metais, Rygoje, Latvijoje.

o

Disertacijos struktūra

Disertaciją sudaro: įvadas, trys skyriai, bendrosios išvados. Darbo apimtis yra 150 pusla-
pių kuriuose yra pateikta: 97 formulės, 69 paveikslai ir 19 lentelių. Disertacijoje remtasi
101 kitų autorių literatūros šaltiniais.

1. Garso šaltinio lokalizavimo metodų apžvalga

Šiame skyriuje pateikiamos pagrindinės akustikos sąvokos, naudojamos visoje disertaci-
joje. Čia minimas akustinis scenarijus yra akustinių parametrų rinkinys parametrų terpės,
akustinės erdvės, garso lauko, garso šaltinių, imtuvų (mikrofonų) ir susijusių apdorojimo
sistemų, o taip pat lokalizavimo užduotis, kurią ketinama atlikti. Šie parametrai bus išsa-
miai aptarti šiame skyriuje.

Akustinė erdvė – tai bet kokia erdvė, užpildyta akustine terpe, kurioje gali sklisti
akustinės bangos. Ideali akustinė erdvė yra izotropinė ir begalinė. Tokiose erdvėse akus-
tinės bangos keliauja nekeisdamos greičio ar krypties (t. y. be lūžio ar atspindžio). Be to,
kadangi nėra akustinių ribų, kiti bangų sklidimo reiškiniai (sklaida, difrakcija ir difuzija)
taip pat nepasireiškia.

Kita vertus, akustinės erdvės, kurias riboja sienos, laikomos akustiškai uždaromis.
Garso šaltinio lokalizavimas akustiškai uždarose erdvėse (patalpose) yra daug sudėtinges-
nis, palyginti su lokalizavimu atvirose erdvėse. Patalpose garso bangos, kurias skleidžia
garso šaltinis, yra linkę atsispindėti nuo sienų, taip sukuriant atspindžius (S1.1 pav.).

S1.1 pav. Šaltinio atvaizdai, sukuriami garso bangų atspindžių nuo patalpos ribinių

paviršių
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Ryškiausias akustinių atspindžių produktas yra aidas arba reverberacija. Reverberaciją
galima vertinti kaip daugelio atsispindėjusių akustinių bangų sumą imtuve, kurių kiekvie-
nas turi skirtingą delsos trukmę ir signalo slopinimą dėl skirtingų sienų garso energijos
absorbcijos savybių.

Įprastinių sklidimo laiko vertinimu grįstų garso šaltinio lokalizavimo metodų veiki-
mas žymiai prastėja, kai akustinėje scenoje yra stipri reverberacija – garso bangų atspin-
džiai neleidžia užtikrintai nustatyti sklidimo vėlinimo trukmės ir to pasekoje lokalizuoti
šaltinių. Tai riboja jų taikymą aidžiose aplinkose, ypač kai dominantis signalas yra šneka,
ir kai negalima įvertinti ar kompensuoti kanalo efektus prieš įvertinant laiko uždelsimą
(Brandstein, Silverman 1997; Silverman et al. 2005).

Valdomos kryptingumo charakteristikos (angl. Steered Beamformer) pagrindu vei-
kiantys garso šaltinio lokalizavimo metodai yra pagrįsti principu, kad mikrofonų gardelės
kryptingumas gali būti valdomas matematiškai naudojant mikrofonų signalų delsą ir su-
mavimą (arba filtravimą ir sumavimą). Patį paprasčiausią tokio tipo garso šaltinio loka-
lizavimo metodą galima įgyvendinti skaičiuojant dviejų mikrofonų signalų koreliaciją ir
ieškant vėlinimo laiko pagal tai, kur gaunama didžiausia koreliacijos reikšmė. Taip veikia
paprasčiausias bendrosios kryžminės koreliacijos (angl. Generalized Cross-Correlation,
GCC) garso šaltinio lokalizavimo metodas. Taikant fazės transformaciją (angl. PHAse

Transform, PHAT), sudaromas plačiai žinomas GCC-PHAT garso šaltinio lokalizavimo
metodas. Tobulinant metodus toliau, galima naudoti ne vieną, o daugiau mikrofonų po-
rų, apskaičiuojant laiko skirtumus visoms poroms. Tam, kad būtų maksimaliai padidintas
mikrofono gardelės jautrumas norima kryptimi, sukuriamas valdomas atsako galios garso
šaltinio lokalizavimo metodas (angl. Steered Response Power, SRP). Analogiškai, pritai-
kius fazės transformaciją, gaunamas SRP-PHAT garso šaltinio lokalizavimo metodas.

Kita garso šaltinių lokalizavimo algoritmų klasė yra aukštos raiškos spektro analize
pagrįsti algoritmai, tokie kaip MUSIC (angl. MUltiple SIgnal Classification) ir ESPRIT
(angl. Estimation of Signal Parameters via Totational Invariance), kurie leidžia tiksliai
lokalizuoti kelis garso šaltinius vienu metu, tačiau yra neatsparūs aplinkos triukšmams ir
reverberacijai, o taip pat yra imlūs skaičiavimams.

Siekiant išvengti minėtų garso šaltinio lokalizavimo metodų trūkumų, pastaruoju me-
tu tyrinėjami mokymu grįsti garso šaltinių lokalizavimo metodai. Tokie metodai yra pa-
grįsti sąryšio tarp akustinių požymių ir garso šaltinio vietos mokymu. Garso šaltinio loka-
lizavimo problema gali būti formuluojama kaip regresijos arba kaip klasifikavimo užda-
vinys. Regresijos atveju, algoritmo išėjime sukuriamos vertės, atitinkančios vieno ar kelių
garso šaltinių koordinates. Tokio tipo garso šaltinio lokalizavimo metodų trūkumas yra tas,
kad jie gali būti taikomi tik riboto ir fiksuoto šaltinių skaičiaus lokalizavimui. Kita moky-
mu grįstų garso šaltinio lokalizavimo metodų grupė yra klasifikatoriai, kurie klasifikuoja
akustinius požymius į akustines klases, kurios atitinka erdvinius šaltinio parametrus: skli-
dimo kryptį arba koordinates.

2. Mokymu grįstų garso šaltinių lokalizavimo metodų teoriniai
tyrimai

Ruošiant disertaciją, buvo atlikti šeši eksperimentiniai tyrimai: vieno garso šaltinio loka-
lizavimo taikant daugiasluoksnį perceptroną kaip požymį naudojant tarpimtuvinio signalų
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lygio skirtumą, signalo analizės kadrų trukmės įtakos garso šaltinio lokalizavimo tikslu-
mui, vieno garso šaltinio lokalizavimo taikant grafu reguliarizuotą neuronų tinklą ir pusiau
prižiūrimą mokymo strategiją su ribotos apimties žymėtų duomenų rinkiniu, sąsūkos ne-
uroniniu tinklu grįsto metodo daugelio garso šaltinių lokalizavimui dvimatėje erdvėje su
koreliacijos dažnių juostose požymiu, sąsūkos neuroniniu tinklu grįsto metodo daugelio
garso šaltinių lokalizavimui dvimatėje erdvėje su spektro fazės komponentės požymiu ir
sąsūkos neuroniniu tinklu grįsto metodo daugelio garso šaltinių lokalizavimui trimatėje
erdvėje su spektro fazės komponentės požymiu. Toliau glaustai pristatomi minėti tyrimai
ir jų rezultatai.

Erdvėje sklindančios garso bangos frontas gali būti aproksimuojamas sferos paviršiu-
mi. Sferos paviršiaus plotas yra kvadratu proporcingas jos spinduliui, taigi ir atstumui nuo
garso šaltinio iki bangos fronto. Garso intensyvumas yra lygus garso galiai ploto vienetui.
Imtuvui tolstant nuo garso šaltinio, garso intensyvumas (taip pat ir garso slėgis) mažėja
kvadratine priklausomybe. Išnaudojant šią garso bangų sklidimo savybę, buvo pasiūlyta
naudoti mikrofonų gardelės signalų kadrų galią kaip akustinį požymį. Akustinių požymių
ryšys su šaltinio koordinatėmis gali būti išmoktas daugiasluoksnio perceptrono struktū-
ros DNT. Lokalizavimo uždavinys šiuo atveju formuluojamas kaip regresijos problema.
Naudojant plokščią apskritiminę mikrofonų gardelę su keturiais elementais, galima gauti
keturis garso galios požymius vienam gardelės signalų analizės kadrui. Atstumai nuo garso
šaltinio iki kiekvieno iš gardelės mikrofonų yra skirtingi, todėl skiriasi ir juos pasiekiančio
garso signalo intensyvumas.

Tyrime naudotas DNT turi keturis įėjimus akustiniams požymiams, du paslėptuosius
sluoksnius ir išėjimo sluoksnį su dviem neuronais. Išėjimo sluoksnyje norima gauti garso
šaltinio dvimates koordinates. Du paslėptieji sluoksniai buvo pasirinkti todėl, kad su vienu
paslėptuoju sluoksniu DNT negalėjo išmokti sąryšių tarp įėjimo požymių ir norimo atsako.
Pasiūlyto metodo veikimas buvo išbandytas taikant imituotus mikrofonų gardelės signalus
ir realius, mikrofono gardele įrašytus garso signalus. Tiek imituoti, tiek realūs gardelės
signalų įrašai buvo surinkti garso šaltiniui esant viename iš dvimatės erdvinės gardelės
taškų, kurios centre buvo mikrofonų gardelė, o dvimatės gardelės žingsnis buvo 1 m.

Eksperimentiniai tyrimai su realiais mikrofonų gardelių signalais (Löllmann et al.

2018) parodė, kad yra priklausomybė tarp garso šaltinio lokalizavimo tikslumo ir tokių
signalo parametrų kaip: diskretizavimo dažnis, perteklinio diskretizavimo santykis, šne-
kos aptiktuvo tipas ir jo parametrai. Disertacijoje pateiktas Signalo kadrų atrinkimo įtaka
garso šaltinio lokalizavimo tikslumui tyrimas parodo, kad norint padidinti garso šaltinio
lokalizavimo metodo tikslumą, būtina iš garso signalo išskirti atkarpas, kuriose yra lo-
kalizuojamo garso šaltinio signalas, atmetant tokias atkarpas, kuriose vyrauja aplinkos
triukšmai.

Šnekos signalai pasižymi laike kintančiomis savybėmis. Kai kurios šnekos fonemos
yra panašios į triukšmo signalą, kai tuo tarpu kitose signalas yra periodinis. Taip pat nepa-
stovi yra ir šnekos signalo amplitudė. Tyrime buvo aiškinamasi, kaip kinta garso šaltinio
lokalizavimo tikslumas parenkant iš mikrofono signalo tik kai kuriuos kadrus, kuriuose
signalo ir triukšmo amplitudžių santykis viršija pasirinktą slenkstinę vertę. Spėjama, kad
signalo kadrų atrinkimas gali padidinti šaltinio sklidimo krypties nustatymo tikslumą. Lai-
koma, kad kadrams, kuriuose vyrauja atsitiktinis signalas, neįmanoma nustatyti sklidimo
laiko trukmės, o kadruose su periodiniu signalu – galima. Tyrime pasiūlytas kadrų atrinki-
mo kriterijus – signalo amplitudės ir vidutinės triukšmo signalo amplitudės santykis (angl.
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Signal Amplitude to Mean Error Amplitude Ratio, SMEAR). Metodas buvo patikrintas
naudojant LOCATA (Löllmann et al. 2018) šnekos duomenų rinkinį su trimis SMEAR
slenkstinėmis vertėmis: 2, 3 ir 5. Šaltinio sklidimo krypties įverčiai palyginti su žinoma
šaltinio sklidimo kryptimi. Tyrimas parodė, kad atrenkant signalo kadrus pagal SMEAR
kriterijų, klaidingų šaltinio sklidimo krypties nustatymo atvejų sumažėja, tačiau didinant
SMEAR slenksčio vertę, prarandamas didelis kiekis signalo kadrų.

Žymėtų garso signalų duomenų rinkinių sudarymas yra sudėtingas ir imlus laikui. Ki-
ta vertus, gana nesudėtinga gauti didelį nežymėtų pavyzdžių garso duomenų rinkinį. Todėl
tokių duomenų panaudojimas apmokyti DNT taikant neprižiūrimo ar pusiau prižiūrimo
(hibridinio) mokymo strategijas yra patrauklus ir vertas detalesnio tyrimo. Daroma prie-
laida, kad daugiamačiai akustiniai požymiai yra išsidėstę sumažinto matiškumo daugda-
ros (angl. Manifold), esančios daugiamatėje požymių erdvėje. Ši prielaida buvo pasiūlyta
Laufer-Goldshtein et al. (2016).

Akustiniai požymiai, gauti erdvėje gretimoms garso šaltinio padėtims, yra artimi ir
požymių erdvėje. Be to, daugiamačių požymių matiškumas gali būti sumažintas iki keleto
matmenų taikant matiškumo mažinimo algoritmus, pvz., ISOMAP. Tuo atveju, jei akusti-
nės scenos visi parametrai yra fiksuoti, ir keičiasi tik šaltinio padėtis, akustinių požymių
koordinatės perskaičiuotoje (angl. Embedded) erdvėje atitinka šaltinių, kuriems veikiant
buvo gauti akustiniai požymiai, fizines koordinates (tačiau šis sąryšis nėra tiesinis). Ma-
noma, kad šis netiesinis sąryšis tarp akustinių požymių koordinačių sumažinto matiškumo
erdvėje ir šaltinio koordinačių fizinėje erdvėje gali būti išmoktas DNT taikant hibridinę
mokymo strategiją (grafu reguliarizuotas DNT – GRDNT).

Tyrime siūloma DNT įėjime kaip akustinius požymius naudoti SRP-PHAT erdvinius
spektrus. SRP-PHAT spektrai gaunami mikrofonų gardelės signalų analizės kadrams. Sie-
kiant mokyti GRDNT taikant hibridinę mokymo strategiją, siūloma taikyti reguliarizavimą
grafu. Reguliarizavimo grafu esmė yra ta, kad GRDNT mokant su dideliu kiekiu nežymėtų
pavyzdžių, tinklo išėjimas reguliarizuojamas (šio tyrimo atveju – į metrinę erdvę siekiant
prognozuoti garso šaltinio koordinates) naudojant nedidelį kiekį žymėtų pavyzdžių.

Žymėti ir nežymėti pavyzdžiai yra susieti grafu. Grafo kraštinės atitinka atstumus tarp
mokymo pavyzdžių akustinių požymiu sumažinto matiškumo erdvėje (t. y. ant daugdaros
paviršiaus). Mokymo duomenų rinkinyje kiekvienam (žymėtam ar nežymėtam) pavyz-
džiui yra nurodomi jo artimiausi kaimyniniai pavyzdžiai sumažinto matiškumo erdvėje
(ant daugdaros paviršiaus).

Mokant GRDNT, kartu su pagrindiniu pavyzdžiu pateikiami ir kaimyniniai pavyz-
džiai. Laikantis prielaidos, kad akustiniaims požymiams pasireiškia erdvinis glodumas,
norima, kad GRDNT išėjimo vertės pagrindiniam požymiui būtų artimos išėjimo ver-
tėms kaimyniniams požymiams. Taip siekiama, kad GRDNT išmoktų požymių erdvinį
glodumą, tuo pačiu išmokdamas teisingą sąryšį tarp akustinių požymių ir garso šaltinio
koordinačių. DNT mokomas naudojant specialią tikslo funkciją, sudarytą iš dviejų dalių:
prižiūrimo mokymo klaidos, gaunamos žymėtiems pavyzdžiams, ir neprižiūrimo mokymo
klaidos, gaunamos nežymėtiems pavyzdžiams:

L = µm
∑

i∈Nb

(ŷi − yi)
2 + (1− µm)

∑

i∈Nb

∑

j∈kg

aij(ŷi − ŷj)
2, (S2.1)



SUMMARY IN LITHUANIAN 141

čia Nb – pavyzdžių skaičius vienoje mokymo imtyje, kg – kaimyninių požymių skaičius,
aij – kaimyninio požymio svorio (atstumo) koeficientas, yi – norimas atsakas žymėtam
požymiui, ŷi – tinklo atsakas žymėtam požymiui, ŷj – tinklo atsakas nežymėtam kaimy-
niniam požymiui, m – žymėto požymio indikatorius, µ – tikslo funkcijos komponenčių
žymėtiems ir nežymėtiems požymiams santykis.

Sprendžiant kelių garso šaltinių lokalizavimo uždavinį taikant prižiūrimo mokymo-
si strategiją, pasiūlytas kelių garso šaltinių lokalizavimo dvimatėje erdvėje (skirtas ieškoti
azimuto kampo ir aukščio) metodas, pagrįstas sąsūkos DNT taikymu su koreliacijos dažnių
juostose (angl. Corss-Correlation in Frequency Bands, CCFB) požymiu ir dvimate DNT
išėjimo struktūra. Pasiūlytas metodas kelių šaltinių lokalizavimo problemą sprendžia kaip
klasifikavimo uždavinį, kai įėjimo požymiai yra priskiriami vienai ar kelioms erdvinėms
klasėms. Erdvinės klasės siūlomo metodo atveju sudaro dvimatę DNT išėjimo sluoksnio
struktūrą, kur kiekviena erdvinė klasė atitinka tam tikrą azimuto kampo ir aukščio derinį.
DNT išėjimo dvimatės struktūros elementų vertės atitinka tikimybes, kad tam tikras įėji-
mo požymis priklauso tam tikrai išėjimo erdvinei klasei. Vienas įėjimo požymis gali būti
priskiriamas kelioms klasėms – tai reiškia, kad mikrofonų gardelės signalo kadre, kuriam
gautas įėjimo akustinis požymis, buvo daugiau nei vienas aktyvus garso šaltinis.

Pasiūlyta naudoti CCFB akustinį požymį kaip tinklo įėjimą. Šis požymis buvo pa-
siūlytas He et al. (2018a), tačiau autoriai šaltinį lokalizavo tik vienmatėje erdvėje (ieš-
kodami tik azimuto kampo). Disertacijoje siūlomas metodo patobulinimas leidžia šaltinį
lokalizuoti dvimatėje erdvėje. CCFB požymis gaunamas mikrofonų gardelės signalo kad-
rą filtruojant 16 juostų juostinių filtrų masyvu, ir kiekvienam gautam filtruotam signalui
skaičiuojant koreliaciją tarp mikrofonų porų signalų. Naudojant keturių mikrofonų gardelę,
gaunamos šešios mikrofonų poros, todėl ir CCFB požymis yra šešių kanalų. CCFB požy-
mis yra apribojamas vėlinimo laiko iki ±64. Pageidaujamas DNT atsakas formuojamas
sukuriant nulių matricą, turinčią 360◦/Qx elementų x ašyje ir 180◦/Qy elementų y ašyje.
Q yra DNT išėjimo sluoksnio kampinė raiška, nurodanti, kokį sklidimo krypties kam-
pą atitinka vienas sluoksnio elementas. Toliau kiekvienam garso šaltiniui nulių matricoje
pridedama Gauso funkcija su sklaidos parametru σ. Gauso funkcijos sklaida modeliuoja
akustinių požymių erdvinį glodumą.

Požymių skaičiavimas yra imlus skaičiavimo ištekliams. Be to, apskaičiuojant požy-
mį iš garso signalo analizės kadro, prarandama dalis jame esančios informacijos. Atsi-
sakius CCFB požymio skaičiavimo, galima sumažinti metodui taikyti reikalingų didelių
skaičiavimo išteklių. Chakrabarty, Habets (2019b) pasiūlė naudoti signalo kadro spektro
fazės komponentę kaip sąsūkos DNT įėjimo požymį, tačiau apsiribojo kelių garso šaltinių
lokalizavimu viename matmenyje (buvo skaičiuojamas azimuto kampas). Disertacijoje pa-
siūlytas metodo patobulinimas kelių garso šaltinių lokalizavimui dvimatėje erdvėje (skai-
čiuojant ne tik azimuto kampą, bet ir aukštį) naudojant mikrofonų gardelės signalų kadro
spektro fazės komponentės požymį. Tyrimo metu naudojama keturių elementų tetraedrinė
mikrofonų gardelė, ir 512 atskaitų signalo analizės kadras, todėl gaunamas spektro fazės
požymis yra 4× 257 elementų matrica. Naudojama ankstesniame skyriuje pasiūlyta sąsū-
kos DNT išėjimo sluoksnio dvimatė struktūra, atitinkanti garso šaltinio sklidimo krypties
erdvines klases. Kaip ir ankstesniu atveju, DNT laukiamo atsako parametrai – dvimatės
struktūros kampinė raiška Q ir Gauso funkcijos sklaida σ. DNT struktūra adaptuota iš
Chakrabarty, Habets (2019b), naudojant pasiūlytą išėjimo sluoksnio dvimatę struktūrą.
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Remiantis anksčiau pristatytais pasiūlytais metodais, buvo pasiūlytas papildomas me-
todo patobulinimas kelių garso šaltinių lokalizavimui trimatėje erdvėje taikant sąsūkos
dirbtinį neuronų tinklą su spektro fazės komponentės įėjimo požymiu. Pasiūlyta DNT iš-
ėjimo sluoksnio trimatė struktūra, atitinkanti garso šaltinio sklidimo krypties erdvines kla-
ses stačiakampėje koordinačių sistemoje. Kiekvienas tokios struktūros elementas atitinka
tam tikrą šaltinio vietą trimatėje erdvėje, o elemento išėjimo vertė atitinka tikimybę, kad
įėjimo požymis priklauso jo reprezentuojamai erdvinei klasei, t. y. parodo, kad garso šalti-
nis yra aktyvus tam tikrame erdvės taške. Struktūros tūris atitinka pasirinktą tūrį patalpoje,
kurioje yra ieškomi garso šaltiniai. Kaip ir anksčiau pristatyto metodo atveju, naudojamas
mikrofonų gardelės signalų kadro spektro fazės komponento požymis. Naudota tinklo ar-
chitektūra adaptuota iš anksčiau disertacijoje pristatyto metodo, tik pakeisti DNT elementų
sluoksnyje skaičiai ir išėjimo sluoksnio struktūra. Pasiūlyti du būdai šaltinio koordinačių
nustatymui iš DNT atsako. Vieno šaltinio atveju šaltinio koordinatės apskaičiuojamos pa-
gal atsako maksimumo koordinates. Taip pat pasiūlytas originalus būdas, leidžiantis DNT
atsake aptikti vieną ar daugiau šaltinių ir nustatyti jų koordinates. Naujas būdas pagrįstas
slenksčio pritaikymu DNT atsakui pagal elementų vertes, atsake paliekant tik elementus
su verte, didesne už slenkstinę. Atsake likę elementai grupuojami naudojant „k-means“
grupavimo algoritmą ir nustatant grupių centrų koordinates, kurios laikomos lokalizuotų
garso šaltinių koordinatėmis.

3. Mokymu grįstų garso šaltinių lokalizavimo metodų
eksperimentiniai tyrimai

Siekiant patikrinti ankstesniame skyriuje pristatyto metodo vienam garso šaltiniui lo-
kalizuoti naudojant MLP su garso signalų kadrų galios požymiais veikimą, buvo atlikti
eksperimentianiai tyrimai. DNT architektūra tyrimo metu buvo modifikuojama, siekiant
išsiaiškinti, koks yra geriausias neuronų skaičius kiekviename iš paslėptųjų sluoksnių.
Kiekvienas iš paslėptųjų sluoksnių tyrimo metu turėjo N ∈ [1, 2, 5, 10] neuronų. Tyrimo
rezultatai pateikti S3.1 lentelėje.

S3.1 lentelė. DNT grįsto vieno garso šaltinio lokalizavimo metodo tyrimo rezultatai

Kompiuterinė imitacija Eksperimentas su realiais įrašais

h1 , h2 E
h1,2

rel
, % E

h1,2
ang , ◦ E

h1,2

dist
, m E

h1,2

rel
, % E

h1,2
ang , ◦ E

h1,2

dist
, m

1, 1 5,244 2,710 2,209 5,219 1,871 1,874
1, 2 5,095 11,522 2,000 7,262 5,441 1,537
1, 5 5,908 8,216 1,756 22,686 3,877 0,770
1, 10 5,312 2,416 2,027 5,556 2,936 1,432
2, 1 5,963 7,105 1,736 9,760 1,050 0,556
2, 2 4,008 8,524 1,958 1,884 5,548 1,355
2, 5 6,069 7,292 1,799 7,896 0,097 0,410

2, 10 3,993 4,421 1,753 10,949 1,614 1,411
5, 1 4,592 14,644 2,089 6,887 6,378 1,453
5, 2 4,566 0,120 1,759 6,499 4,911 0,729
5, 5 6,190 2,109 1,577 4,417 3,329 0,389
5, 10 4,074 5,106 1,600 6,068 5,102 0,733
10, 1 8,000 1,483 1,752 11,319 3,014 0,639
10, 2 6,003 3,238 1,791 4,770 0,984 0,800
10, 5 6,353 4,149 1,913 10,261 7,815 0,446
10, 10 6,625 0,690 1,836 14,904 4,650 0,839
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Tyrimo metu buvo nustatyta, kad lokalizuojant garso šaltinį su imituotais garso signa-
lais, šaltinio lokalizavimo vidutinė paklaida buvo 1,58m kai DNT turėjo h1 = 5 ir h2 = 5
neuronų paslėptuosiuose sluoksniuose. Atliekant eksperimentus su realiais garso įrašais,
mažiausia šaltinio lokalizavimo vidutinė paklaida buvo 0,41m, kai h1 = 2, h2 = 5.

Ruošiant disertaciją, buvo surinktas duomenų rinkinys keturiems akustiniams scena-
rijams (dvi skirtingų apertūrų tetraedrinės mikrofonų gardelės; vienas arba du garso šal-
tiniai). Mikrofonų gardelių signalai buvo gauti garso šaltiniui esant vienoje iš 10 žymėtų
šaltinio padėčių erdvėje. Dviejų šaltinių atveju, šaltinių padėčių deriniai buvo pasirinkti iš
tų pačių 10 padėčių. Buvo naudojamos dvi tetraedrinės mikrofonų gardelės, kurių kraštinės
ilgis buvo 30 cm (ARRAY30) ir 60 cm (ARRAY30).

Visiems garso įrašams gauti buvo naudojama Tascam US-20x20 USB garso sąsa-
ja. Visi įrašai buvo atlikti naudojant fs = 44 100 Hz diskretizavimo dažnį ir Q = 16 bitų
kvantavimo raišką. Visi erdviniai matavimai buvo atlikti rankiniu būdu, naudojant ma-
tavimo juostą, kurios tikslumas ±0,005 m. Duomenų rinkinį sudaro garso bylos „.wav“
formatu (4 kanalų garso įrašai mikrofono masyvo signalams ir monofoniniai garso failai
atitinkamam šaltinio signalui), patalpos impulsinių atsakų matavimo duomenys su „Mat-
lab“ suderinamu formatu („.mat“) ir „.wav“ formatu bei skaičiuoklės failas su atitinkamu
informacija apie garso šaltinių, mikrofonų padėtis, patalpos geometriją bei garso šaltinių
signalus. Duomenų rinkinys yra atviros prieigos ir paskelbtas publikacijoje recenzuojama-
me žurnale.

Duomenų rinkinys buvo surinktas stačiakampio gretasienio formos patalpoje Vilniaus
Gedimino technikos universitete (VILNIUS TECH), „LinkMenų fabrike“. Patalpos mat-
menys buvo [5,4 × 5,86 × 2, 64] m. Trys iš keturių kambario sienų buvo pagamintos iš
dažytos mūro, o ketvirtoji siena buvo gipso. Patalpos tūris buvo 89,869m3 o bendras pa-
talpą ribojančių paviršių plotas buvo 145,048m2.

Žymėtos garso šaltinių padėtys buvo tolygiai paskirstytos patalpoje. Šešių kambario
impulsų atsakų rinkinys buvo išmatuotas naudojant tris skirtingus šaltinio-mikrofono pozi-
cijų derinius, naudojant du impulsinio atsako skaičiavimo metodus: maksimalios trukmės
sekas (angl. Maximum Length Sequence, MLS) ir kintamo dažnio sinusoides (angl. Swept

Sine). Reverberacijos trukmė T60 buvo apskaičiuota pagal išmatuotus impulsinius atsakus,
naudojant Šrioderio (angl. Schroeder) metodą, o vidutinė reverberacijos trukmė T60 buvo
0,552 s. Vidutinis paviršiaus absorbcijos koeficientas buvo apskaičiuotas iš reverberaci-
jos trukmės ir patalpos geometrijos ir buvo a = 0,206. Patalpos Šrioderio dažnis buvo
Fc = 156,76Hz.

Šaltinių signalai buvo atkuriami naudojant kilnojamuis „JBL GO“ ir „Yamaha MSP3“
garsiakalbius. Šnekos signalai buvo paimti iš „AMI Corpus“ (Carletta et al. 2006) duome-
nų rinkinio.

Buvo atliktas kompiuterinis virtualios patalpos modeliavimas su ta pačia geometrija
ir akustiniais parametrais, kaip ir realios patalpos. Palyginus rezultatus buvo nustatyta, kad
realioje patalpoje išmatuotų ir imituotų patalpos impulsinių atsakų spektrai labai skiriasi
tiek žemo, tiek aukšto dažnio diapazonuose, o modeliavimas yra gana tikslus tik dažnių
diapazone nuo 60 Hz iki 500 Hz.

Taigi, kuriamo garso šaltinio lokalizavimo metodo ar algoritmo veikimas turi būti
vertinamas pagal realių mikrofonų gardelių garso įrašus, nes imituoti garso signalai gali
tiksliai neatspindėti realių situacijų.
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Ankstesniame skyriuje pristatyto GRDNT grįsto metodo veikimas tiriamas naudojant
realių mikrofonų gardelių signalų duomenų rinkinį, kuris buvo surinktas naudojant dvi
apskritimines mikrofonų gardeles patalpoje, kurios apytiksliai matmenys yra 5m × 5m,
aukštis 3,75m, o reverberacijos trukmė T60 = 0,311 s.

Mikrofonų signalų SRP-PHAT spektrai naudojami kaip įėjimo požymiai (720 ele-
mentų vektoriai) lokalizuojant vieną garso signalą dvimatėje erdvėje (GRDNT išėjimo
sluoksnyje – du neuronai).

Pasiūlyta taikyti papildomą akustinių požymių atranką pagal kadro efektinę vertę ir
keteros faktorių, siekiant atrinkti akustinius požymius, kuriose yra stiprus garso signalas.

Pasiūlyto metodo veikimas lyginamas su alternatyviais garso šaltinio lokalizavimo
metodais: geometriniu šaltinio padėties nustatymu remiantis sklidimo kryptimis, nustaty-
tomis iš SRP-PHAT spektrų, o taip pat šaltinio padėties nustatymu iš SRP-PHAT dvimačio
žemėlapio (ieškant globalaus ar lokalaus maksimumo koordinačių). Tyrimo rezulatai api-
bendrinti S3.2 ir S3.3 lentelėse (VP - vidutinė paklaida, SN - standartinis nuokrypis).

S3.2 lentelė. Šaltinio lokalizavimo vidutinės absoliučios klaidos visiems taikytiems
parametrų deriniams

Metodas VP, m SN, m Pagerinimas, %
Geometrinis 1,95 1,62 80,1
SRP-PHAT žemėlapio global.
maks. koord.

1,13 0,66 4,9

SRP-PHAT žemėlapio lokalaus
maks. koord.

1,12 0,69 3,5

GRDNT 1,08 0,51 –

S3.3 lentelė. Šaltinio lokalizavimo vidutinės paklaidos geriausiai veikiančiam GRDNT
parametrų deriniui

Metodas VP, m SN, m Pagerinimas, %
Geometrinis 3,06 4,50 68,57
SRP-PHAT žemėlapio global.
maks. koord.

1,17 0,74 17,97

SRP-PHAT žemėlapio lokalaus
maks. koord.

1,14 0,75 15,94

GRDNT 0,96 0,62 –

Kelių garso šaltinių lokalizavimo dvimatėje erdvėje metodo, grįsto konvoliuciniu DNT
su CCFB požymiais įėjime, veikimas patikrintas naudojant dvi DNT architektūras ir tris
duomenų rinkinius, kuriuose skyrėsi aktyvių šaltinių skaičius (1, 2) ir Gauso funkcijos
sklaida (1, 2). Eksperimentai atlikti su Q = 10◦. Eksperimentų rezultatai pateikti S3.4
lentelėje (VP – vidutinė paklaida, SN – standartinis nuokrypis).

Iš eksperimentinio tyrimo rezultatų matyti, kad taikant pasiūlytą metodą garso šalti-
nio sklidimo krypties nustatymo vidutinė paklaida mažiausia buvo gauta vienam aktyviam
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garso šaltiniui ir buvo lygi 22,67◦, o blogiausia buvo lygi 29,97◦. Dviejų aktyvių garso šal-
tinių atveju geriausia vidutinė paklaida buvo gauta lygi 25,22◦, o blogiausia – lygi 31,44◦.

S3.4 lentelė. Vieno ir dviejų garso šaltinio lokalizavimo naudojant sąsūkos DNT su
CCFB įėjimo požymiu eksperimentinio tyrimo rezultatai

Šaltinių
sk.

σ Mokymo žingsnis Tinklo architektūra VP, ◦ SN, ◦

1 2 0,001 CONV-WE-CCFB 29,97 57,64
1 2 0,001 CONV-CCFB-DOA 22,67 48,02
2 1 0,001 CONV-WE-CCFB 25,61 19,58
2 1 0,001 CONV-CCFB-DOA 27,17 36,75
2 2 0,001 CONV-CCFB-DOA 31,44 34,08
2 1 0,01 CONV-WE-CCFB 28,30 34,98
2 1 0,01 CONV-CCFB-DOA 25,22 29,29

Kelių garso šaltinių lokalizavimo dvimatėje erdvėje metodo, grįsto konvoliuciniu DNT
su spektro fazės komponentės požymiais įėjime, veikimas eksperimentiškai ištirtas naudo-
jant imitacinius triukšmo ir šnekos signalų duomenų rinkinius. DNT mokymui naudojamas
100 000 pavyzdžių duomenų rinkinys su spektro fazės komponentės požymiais, kai imita-
cinėje patalpoje yra trys triukšmo šaltiniai. DNT atsakas formuotas su Q ∈ [5; 10; 20]◦

ir σ ∈ [5; 10; 15; 20]◦. DNT mokomas su nepakeistais spektro fazės komponentės požy-
miais, ir su požymiais, kurių elementai buvo atsitiktine tvarka sumaišyti laiko ir dažnių
srityse, kaip tai pasiūlė atlikti Chakrabarty, Habets tam, kad užtikrinti signalų ortogona-
lumą. Šaltinio sklidimo kryptis iš DNT atsako nustatoma priklausomai nuo garso šaltinių
skaičiaus: vieno šaltinio atveju – randamos maksimumo koordinatės; dviejų šaltinių atve-
ju – randamos lokalių maksimumų koordinatės. Pasiūlyto metodo veikimas testuotas su
spektro fazės komponentės požymiais, gautais kai imitacinėje patalpoje yra trys triukšmo
arba šnekos signalai. Gauti rezultatai lyginami su atskaitos garso šaltinio lokalizavimo me-
todu – SRP-PHAT, kuriuo gaunamas taip pat dvimatis atsakas, nurodantis tikėtino garso
signalo, pasiekiančio mikrofonų gardelę tam tikra kryptimi, galią. Įvertinamos vidutinės
šaltinių sklidimo krypties nustatymo paklaidos. Esant daugiau, nei vienam šaltiniui, loka-
lizavimo paklaidos skaičiuojamos tarp visų laukiamame atsake ir prognozuotame atsake
aptiktų garso šaltinių sklidimo krypčių ir pasirenkama NS mažiausių paklaidų, kur NS –
lokalizuojamų šaltinių skaičius. Tyrimo rezultatai pateikti S3.1 paveiskle.

Pasiūlytas metodas leidžia nustatyti trijų šnekos šaltinių dvimatę sklidimo kryptį su
16◦ vidutine paklaida, kai Q = 5◦ ir σ = 20◦; tai yra iki 36% mažesnė vidutinė paklaida,
nei naudojant alternatyvųjį SRP-PHAT metodą. Pasiūlytas metodas leido pasieki iki 29%
mažesnę šaltinių krypties nustatymo paklaidą nei SRP-PHAT metodas esant bet kurioms
norimo atsako Q ir σ vertėms.

Sąsūkos DNT su spektro fazės komponentės požymiais grįsto kelių garso šaltinių
lokazliavimo trimatėje erdvėje metodo veikimas eksperimentiškai patikrintas naudojant
akustinius požymius, gautus iš imituotų tetraedrinių mikrofonų gardelių signalų. Tinklo
veikimas patikrintas esant išėjimo struktūros raiškai Q ∈ [0, 25; 0, 5; 1] m ir Gauso funk-
cijos sklaidai σ ∈ [0, 25; 0, 5; 1] m. Šaltinių padėtys pasirinktos atsitiktinai 5,4m, 5,86m
and 2,84m patalpos tūryje.
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a) b) c)

S3.1 pav. Trijų šnekos šaltinių sklidimo krypties nustatymo paklaidos; a) pasiūlyto

metodo, mokyto su neapdorotais spektro fazės komponentės požymiais; b) pasiūlyto

metodo, mokyto su laiko ir dažnio ašyse sumaišytais spektro fazės komponentės

požymiais; c) SRP-PHAT metodo

Vieno ir dviejų garso šaltinių lokalizavimo vidutinės paklaidos (VP) prie anksčiau
minėtų Q ir σ verčių, naudojant paminėtus koordinačių nustatymo iš DNT atsako metodus,
pateiktos S3.5 lentelėje.

S3.5 lentelė. Vieno ir dviejų garso šaltinių lokalizavimo vidutinės paklaidos (VP) esant
skirtingoms Q ir σ vertėms ir koordinačių nustatymo iš DNT atsako metodams

Atsako max. koordinatės k-means grupavimas
1 šaltinis 2 šaltiniai

Triukšmas Šneka Triukšmas Šneka Triukšmas Šneka
Q, m σ, m VP, m VP, m VP, m VP, m VP, m VP, m
0,25 0,25 2,51 2,60 0,79 0,94 2,74 2,74
0,25 0,50 1,26 1,39 0,62 0,76 1,10 1,09
0,25 1,00 0,99 1,10 0,81 0,91 1,18 1,17
0,50 0,25 2,18 2,32 0,67 0,86 1,19 1,17
0,50 0,50 2,29 2,35 0,69 0,82 1,08 1,08

0,50 1,00 1,05 1,14 0,84 0,94 1,18 1,18
1,00 0,25 2,73 2,73 0,97 1,10 1,41 1,40
1,00 0,50 1,92 2,00 0,81 0,91 1,17 1,16
1,00 1,00 1,11 1,22 0,89 0,99 1,20 1,20

Apibendrinant gautus rezultatus, daroma išvada, kad įmanoma lokalizuoti vieną ir du
garso šaltinius trimatėje erdvėje taikant sąsūkos DNT su spektro fazės komponentės įėjimo
požymį ir trimatę išėjimo sluoksnio struktūrą. Naudojant grupavimu grįstą garso šaltinių
koordinačių nustatymo iš DNT atsako metodą galima lokalizuoti vieną garso šaltinį tri-
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matėje erdvėje su vidutine lokalizavimo paklaida lygia 0,62 m triukšmo šaltiniui, 0,76 m
šnekos šaltiniui, kai tinklas mokomas naudojant Q = 0,25 m ir σ = 0,5 m ir galima lokali-
zuoti du triukšmo arba šnekos šaltinius trimatėje erdvėje su 1,08 m vidutine lokalizavimo
paklaida, kai tinklas mokomas naudojant Q = 0,5 m ir σ = 0,5 m.

Bendrosios išvados

Disertacijoje patvirtintos iškeltos hipotezės. Taip pat disertacijoje pasiūlyti trys mokymu
grįsti garso šaltinių lokalizavimo metodai.

1. Naudojant hibridinį mokymą, grafu reguliarizuotu dirbtiniu neuronų tinklu su
SRP-PHAT požymiais įėjime galima pasiekti iki penkių kartų mažesnę garso šal-
tinio lokalizavimo paklaidą nei naudojant geometrinį šaltinio vietos nustatymo iš
SRP-PHAT duomenų metodą.

2. Naudojant koreliacijos dažnių juostose požymius sąsūkos dirbtinių neuronų tinklu
dviejų garso šaltinių vidutinė lokalizavimo paklaida išlieka ne mažesnė nei 25
laipsniai.

3. Mikrofonų gardelių signalų spektrų fazės komponentės yra tinkamos naudoti kaip
požymis dirbtiniais neuronų tinklais grįstiems garso šaltinio lokalizavimo dvima-
tėje ir trimatėje erdvėje metodams.

4. Taikant sąsūkos DNT su spektro fazės komponentės požymiais įėjime, trijų garso
šaltinių dvimatės sklidimo krypties nustatymo vidutinė paklaida gali būti 16◦ su
DNT išėjimo struktūros raiška Q = 5◦ ir Gauso funkcijos sklaida σ = 20◦ (36%
mažesnė vidutinė paklaida nei taikant SRP-PHAT su tais pačiais parametrais)

5. Įmanoma lokalizuoti vieną ir du garso šaltinius trimatėje erdvėje taikant sąsūkos
DNT su spektro fazės komponentės įėjimo požymiu ir trimate išėjimo sluoksnio
struktūra. Grupavimu grįstas šaltinio koordinačių nustatymo iš dirbtinio neuro-
nų tinklo atsako metodas, lyginant su atsako maksimumo koordinačių nustatymu
grįstu metodu, leidžia sumažinti vieno garso signalo lokalizavimo trimatėje erd-
vėje vidutinę paklaidą mažiausiai 31 %.
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