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Least-squares integration is one of the most effective and widely used methods for shape reconstruction
from gradient data, which result from gradient measurement techniques. However, its reconstruction
accuracy is limited due to the imperfection of the Southwell grid model, which is commonly applied
in the least-squares integration method. An operation with iterative compensations is therefore pro-
posed, especially for the traditional least-squares integration method, to improve its integration accu-
racy. Simulation and experiment are carried out to verify the feasibility and superiority of the proposed
operation. This compensatory operation with iterations is suggested, and its good performance on
integration accuracy improvement is shown. © 2012 Optical Society of America
OCIS codes: 150.6910, 120.3940, 110.3010.

1. Introduction

There are a variety of optical techniques in three-
dimensional (3D) shape metrology for industrial in-
spection applications [1]. Among these measurement
techniques, some are referred to as direct methods,
as they directly get 3D results from the received op-
tical information, e.g., the locations of laser spots or
the distortion of pattern images. Other techniques
deduce the surface shape by integration of the gradi-
ent information. The fringe reflection technique [2,3]
and Shack–Hartmann methods [4] are two represen-
tatives of these indirect 3D shape measurement
methods. A process to integrate the gradient data
is consequently required to reconstruct the surface
shape or the wavefront.

This integration process, commonly with a two-
dimensional (2D) data set, does affect the profile
results, and hence research efforts are being put to
explore how to make this process more accurate
and faster. Fried [5], and Hudgin [6,7] studied the
wavefront reconstruction from phase difference or

slope using least-squares fitting and evaluated the
error propagation in reconstructions. Southwell [8]
provided the wavefront estimation from slope with
the least-squares method in more detail including
its grid models, solutions, and errors. Li et al. [9]
reviewed several evaluation methods, including
the path-guided integration method, the Fourier-
transform-based integration method, and the
least-squares integration method, for gradient mea-
surement techniques and made a comparison of
these integration methods showing the superiority
of the least-squares integration method in terms of
accuracy, robustness, and flexibility. Legarda-Saenz
and Espinosa-Romero [10] presented a Fourier-
transform-based method to reconstruct the wave-
front by integrating the multiple directional deriva-
tives for deflectometric measurement. Koskulics
et al. [11] further developed the least-squares inte-
gration methods with Southwell grid model by simul-
taneously considering the surface elevation, slope,
and curvature for surface retrieval when the surface
elevation, slope, and curvature are available from
the measurement.

The least-squares integration method with South-
well grid model [8] is basically good at handling large
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gradient data sets due to its low memory cost by
using sparse matrices. However, the Southwell grid
model assumes the surface could be expressed as
biquadratic functions. Obviously, this assumption is
notalwaysbesatisfied inpractical situations, inwhich
the surface cannot bedescribedwithbiquadratic func-
tions, and finally it results in integration errors.

This work consequently aims to reduce the
integration errors from the imperfection of the
Southwell grid model in the traditional least-squares
integration method. Section 2 first recalls the least-
squares integration with Southwell model and then
describes the operation of iterative compensations
step by step. Simulations are demonstrated in
Section 3 to show the feasibility and effectiveness
of the proposed iterative compensations in improving
the integration accuracy. Section 4 shows the
experimental results by using the proposed method
with the comparison of traditional method. Section 5
discusses the merits and limitations of the
proposed method, and Section 6 concludes the
work.

2. Method

In the gradient-measuring optical metrology meth-
ods,numerical integrationconvertsgradientdata into
surface shape or profile by using least-squares fitting.
At first, it is very necessary to recall the traditional
least-squares integration with Southwell grid model
[8]. Following the Southwell grid model with a grid

size of M ×N as shown in Fig. 1, the relationship
between slope and shape can be expressed as
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where x, y, z are the world coordinates. p and q denote
the slopes in x and y directions, respectively, i.e., p �
dz∕dx and q � dz∕dy.

According to Eq. (1), the height information can be
acquired as
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Furthermore, Eq. (2) can be rewritten in terms of
matrices as
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In a practical situation (MN > M �N), Eq. (3)
is commonly overdetermined, i.e., �M − 1�N�

M×N
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Point with measured gradient 

Fig. 1. (Color online) In Southwell grid model, the points for
height estimation are at the same locations of those whose gradi-
ent data have been measured out.
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M�N − 1� > MN. Hence, a least-squares estimation
can be carried out to provide the height distribution
as an optimized solution. By recalling the traditional
least-squares integration, it can be found that there
is an assumption implied in Eq. (1) that the slope dis-
tribution is bilinear within each tiny quadrilateral,
i.e., the variation of surface height in a single quad-
rilateral is biquadratic. As mentioned above, this
assumption is not always satisfied in actual mea-
surements, and hence it is one of the major error
sources in integration.

With noticing the existing imperfection of this
assumption, an iterative compensation procedure
is thus suggested to improve the integration accu-
racy. Basically, higher-order terms are contained in
these residual gradient data, which cannot be fit
with the biquadratic surface. It is possible to compen-
sate the errors due to higher-order terms by integrat-
ing these residual gradient data. With several
iterative compensations, the final shape can be accu-
rately reconstructed free from the influence of the
imperfect assumption. The specific steps of the algo-
rithm are described as follows.

Step 1. Integrate the gradient data with the tradi-
tional least-squares integration method recalled
above to get initial height z0�x; y�, and set the current
height z�x; y� � z0�x; y�.

Step 2. Calculate the residual slopes in x and y di-
rections dp�x; y� and dq�x; y� with current height dis-
tribution z�x; y�.

Step 3. Integrate the residual slopes dp�x; y� and
dq�x; y� with the traditional least-squares integra-
tion method as well to get zc�x; y� for compensation.

Step 4. Compensate the height z�x; y� � z�x; y��
zc�x; y�∕nk, where the parameter for the kth compen-
sation nk is an empirical constant, which can be
determined through simulation with the ideal sur-
face containing a certain higher-order polynomial
component, and k stands for the number of compen-
sation times.

Step 5. Repeat the compensation as a loop from
Step 2 to Step 4 until the compensating term
zc�x; y�∕nk is less than a preset threshold zthr.

Step 6. Record the current z�x; y� as the final
height.

The empirical parameters nk are determined by si-
mulation with surfaces containing different higher-
order components. Through our calculation, these
empirical parameters nk are n1 ≈ 3.0000, n2 ≈

4.0909, n1 ≈ 3.0000, n3 ≈ 4.9476, and n4 ≈ 5.6768
when k � 1, 2, 3, and 4, respectively. From the simu-
lation study, the traditional integration is intrinsi-
cally able to perfectly integrate the surface with
polynomial components up to the second order as

analyzed above. Furthermore, the encountered
error when reconstructing a surface with polynomial
components up to the 2�n� 1�th order could be nicely
compensated by taking the nth compensation.

3. Simulation

It is the objective of the proposed method to make
improvement on integration accuracy. Since bench-
marks are easy to find in simulation for assessment
of the algorithm performance, a series of simulations
are conducted to investigate the feasibility and effi-
ciency of the iterative compensation.

The first example in simulation is to show the
iterative compensation works efficiently to improve
the integration accuracy when dealing with a case
that the assumption of biquadratic form is not satis-
fied. Both x and y coordinates range from −5 to 5 mm
with an interval of 0.02 mm; i.e., the size of matrices
is 500 by 500, which yields 500,000 x- and y-slope
values in total. As shown in Fig. 2(a), the true
out-of-plane dimension is predefined as

z � 0.3 cos�0.4x2 � 2x� cos�0.4y2 � 2y�

� 0.7 cos��x3 � y2�∕4π�; (7)

and its corresponding slopes in x and y directions p
and q are shown in Figs. 2(b) and 2(c).

The surface shape of the tested sample is specially
chosen on purpose to investigate the iterative perfor-
mance of the proposed method. In Fig. 2(b), the x
slope varies relatively large when the absolute value
of x is relatively big, and the y slope varies slightly at
the lower left corner and acutely at the upper right
corner in Fig. 2(c).

As a comparison, the result of the traditional
method is shown at first to provide a rough idea of
the conventional integration work. The result from
the traditional least-squares integration method
with no compensation is demonstrated in Fig. 3(a),
which shows large integration errors as the true sur-
face does not satisfy the biquadratic surface assump-
tion in the traditional method described in Section 2.
With a strategy of compensating these errors in
Fig. 3(a), the proposed method with iterations could
accurately reconstruct the out-of-plane height
distribution.

As shown in Figs. 3(b)–3(d), with the proposed
compensation process after the first compensation,
the peak-to-valley value of height error significantly
reduces to around 0.4% [from about 2000 nm in
Fig. 3(a) down to about 8 nm in Fig. 3(b)], and even
down to around 0.15% after the third compensation
with iterations [from about 2000 nm in Fig. 3(a) down
to about 3 nm in Fig. 3(d)].

The majority of compensated amount is completed
after one or two compensations, which is also shown
in Fig. 3(e). The standard deviation (Std.) of the
height errors varies from about 250 nm by using
the traditional method with no error compensation
to less than 0.7 nm after the first compensation,
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and even to about 0.15 nm after the third compensa-
tion with iterations. A one-line profile of the error is
shown in Fig. 3(f) as well to see the capability of the
proposed method to enhance the integration accu-
racy. As shown in Fig. 3(g), after the third iterative
compensation, the out-of-plane height is effectively
and accurately reconstructed. Since there is no noise
existing on the gradient data in this simulation, the
residual errors after iteration can be considered the
so-called algorithm error. The next step is therefore
to investigate the performance of the proposed meth-
od under noisy condition.

The second simulation demonstrates the ability of
the proposed method to operate in the presence
of noise. The true height shown in Fig. 4(a) is defined
by

z � 3�1 − x�2 · e−x
2
−�y�1�2

− 10

�

x

5
− x3 − y5

�

· e−x
2
−y2

−

1

3
e−�x�1�2−y2 ; (8)

where the in-plane dimensions x and y are limited
within a range from −1 to 1 with sampling points
of 400 by 400 and the corresponding out-of-plane
height varies by more than 5 mm.

In a practical reflectometric measurement with
fringe phase, noise exists on retrieved fringe phase,
and further it can be approximately considered as
normally distributed on surface-normal directions.
Normally distributed angular noise with a standard
deviation of 8 arc sec is added on the normal direc-
tions, which is a typical noise level in practical mea-
surement with fringe reflection technique. The
associated noisy slopes in x and y directions are
shown in Figs. 4(b) and 4(c).

The integration error from the traditional least-
squares method is shown in Fig. 5(a) without any
compensation. The height error is not only resulted
from the influence from gradient noise but also from
the mismatch between the assumed biquadratic sur-
faces and the actual surface to be reconstructed.
Most of the errors due to this assumption can be com-
pensated through the proposed iterative process with
showing the height error in Fig. 5(b). In addition, a
one-line profile (y � 0) of errors before and after com-
pensation is compared as well in Fig. 5(c), fromwhich
it can be easily found that the iterative process im-
proves the integration accuracy with successful elim-
ination of the waviness, and the residual error is
mainly from the gradient noise. The result shows
the iterative compensation is still effective in the
presence of noise.

Fig. 2. (Color online) True shape is designed as the ground truth, and its corresponding gradient data are analytically calculated in
simulation to test the performance of the iterative compensation. (a) The true shape, and the corresponding true slopes in x-direction
p � dz∕dx (b) and in y-direction q � dz∕dy (c).
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Fig. 3. (Color online) Integration results with the traditional method and the proposed iterative compensation are compared, showing the
validity of the iterations. (a) Height errors with no compensation with the traditional method, (b) after the first compensation, (c) after the
second compensation, (d) after the third compensation, (e) standard deviations of height error before and after compensations, (f) one-line
profile of the errors with the traditional method and proposed compensation approach, and (g) the reconstructed result after the third
compensation.
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4. Experiment

To verify the validity of the proposed iterative com-
pensation process, a practical measurement is car-
ried out with fringe reflection technique [2,3]. The
target to measure in the experiment is a concave mir-
ror. The fringe patterns with phase shifting are dis-
played on an LCD, screen and the typical images
captured by a CCD camera are shown in Fig. 6(a).
The slope data in x and y directions determined by
the phase measuring reflectometric method are
shown in Figs. 6(b)–6(c).

By applying the proposed integration method with
iterative compensations on the measured gradient
data, the surface shape of the concave mirror can be
reconstructed as shown in Fig. 6(d). It indicates the
proposed method is effective and feasible in a prac-
tical measurement. In addition, the shape difference
between the proposed and the traditional methods is
also investigated and shown in Fig. 6(e). Improve-
ment in integration accuracy is achieved by using
the iterative operation.

5. Discussion

Generally speaking, a fast, accurate, and easily
implemented iterative compensation process is pre-
sented to improve the integration accuracy by

compensating the errors due to imperfection of
biquadratic surface assumption. The iterations with
high efficiency do not sacrifice much computational
time. The merits of the revised integration method
with the proposed iterative compensations can be
summarized as follows.

First, the proposed compensation process im-
proves the accuracy of the traditional least-squares
integration method. It is able to compensate the er-
ror from the imperfection of assumption implied in
the traditional least-squares integration method.
This is the major improvement.

Second, as improving the accuracy by iterations,
the algorithm is still fast since the iterative compen-
sation is very effective. Commonly, only one or two
compensations are enough to get a satisfactory
result.

Third, the same as the traditional least-squares
method, the proposed method is able to cope with
both a complete and incomplete data set. A data
set with a size of 500,000 can be handled by the
proposed method without stitching.

The limitation for this proposed method is also in-
vestigated. As the traditional least-squares integra-
tion method, the proposed method can only handle a
gradient data set with rectangular mesh grid, and it

Fig. 4. (Color online) Integrate gradient data with noise. (a) True shape to be reconstructed, (b) slope p � dz∕dx, and (c) slope p � dz∕dy.

Fig. 5. (Color online) A comparison is carried out between the traditional method and the proposed iterative compensation with the
existence of noise on gradient data. (a) Height error before compensation, (b) height error after iterative compensation, and (c) profiles
of height error in one line (y � 0).
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is not able to integrate an arbitrarily distributed
data set, but generally the data are in a rectangular
mesh grid in many practical optical measurements.

6. Conclusion

This work aims to improve the least-squares integra-
tion method with iterative compensation to solve the
issue of the incorrect biquadratic shape assumption.
The proposed method is investigated by both simula-
tion and experiment. Improvement in integration ac-
curacy is verified by comparing with the traditional
least-squares integration method. The merits of the
proposed method are accurate, fast, and able to han-
dle large data sets. In summary, this least-squares
integration with iterative compensation method is
an effective and accurate 2D integration tool to han-
dle shape from slope problems in some gradient-
measuring-based optical inspection applications.
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