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Abstract

Dominance may be an important source of non-additive genetic variance for many traits of dairy cattle. However, nearly all
prediction models for dairy cattle have included only additive effects because of the limited number of cows with both
genotypes and phenotypes. The role of dominance in the Holstein and Jersey breeds was investigated for eight traits: milk,
fat, and protein yields; productive life; daughter pregnancy rate; somatic cell score; fat percent and protein percent. Additive
and dominance variance components were estimated and then used to estimate additive and dominance effects of single
nucleotide polymorphisms (SNPs). The predictive abilities of three models with both additive and dominance effects and a
model with additive effects only were assessed using ten-fold cross-validation. One procedure estimated dominance values,
and another estimated dominance deviations; calculation of the dominance relationship matrix was different for the two
methods. The third approach enlarged the dataset by including cows with genotype probabilities derived using genotyped
ancestors. For yield traits, dominance variance accounted for 5 and 7% of total variance for Holsteins and Jerseys,
respectively; using dominance deviations resulted in smaller dominance and larger additive variance estimates. For non-
yield traits, dominance variances were very small for both breeds. For yield traits, including additive and dominance effects
fit the data better than including only additive effects; average correlations between estimated genetic effects and
phenotypes showed that prediction accuracy increased when both effects rather than just additive effects were included.
No corresponding gains in prediction ability were found for non-yield traits. Including cows with derived genotype
probabilities from genotyped ancestors did not improve prediction accuracy. The largest additive effects were located on
chromosome 14 near DGAT1 for yield traits for both breeds; those SNPs also showed the largest dominance effects for fat
yield (both breeds) as well as for Holstein milk yield.
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Introduction

Simulations and validation studies using real data have

indicated that genomic selection can provide remarkably high

accuracy of predicted breeding values (BV) of individuals without

their own records or without progeny records [1], [2], which offers

the opportunity to select individuals as parents of the next

generation accurately at an early stage of life. This technique has

become a standard tool in dairy cattle breeding [3] and is rapidly

expanding to other agriculturally important species (e.g., poultry

[4], pig [5], and plant breeding [6]).

Few studies have attempted to generalize and apply genomic

selection models that include non-additive genetic effects with

large data sets [7]. Non-additive genetic variation results from

interactions between alleles, and the interaction between alleles at

the same locus is called dominance. Dominance is an important

non-additive genetic effect, and the inclusion of dominance effects

in models for the prediction of genomic BV could increase the

accuracy of the predictions [8], [9]. However, genotypes and

phenotypes for the same individuals must be known to detect

allelic interaction. For some traits, the expression is naturally

limited to females and estimated BV (EBV) or de-regressed EBV

obtained from routine evaluations [10] are used as phenotypes in

most applications of genomic selection. Such data allow only the

estimation of allele substitution effects, and distinguishing between

additive and dominance effects is not possible. The increasing

availability of cows with phenotypes and genotypes in the United

States now provides an opportunity to investigate models that

include dominance effects. Sun et al. [11] estimated dominance

variance using only cows that had genotypes and phenotypes for

milk yield in the U.S. national database but did not test predictive

ability for a model that included a dominance effect.

Although many cows with phenotypes do not have genotypes,

their sires and dams or their sires and maternal grandsires (MGS)

have genotypes.. The expected genotype probabilities for those
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cows based can be calculated using genotypes of the ancestors and

the allele frequencies in the population. Boysen et al. [12]

discovered significant dominance effects for yield traits in dairy

cattle by regression of phenotypes on such derived genotype

probabilities; however, they did not investigate if model prediction

improved when cows with derived genotype probabilities were

included in the analysis.

Many statistical models and algorithms have been proposed to

predict BV using genome-wide dense markers, which differ in the

assumption of distributions of SNP effects [13]. Two models to

compute genomic best linear unbiased predictions (BLUP) [1]

assume normally distributed SNP effects. They have become

popular approaches in practical genomic evaluation because they

are simple and have low computational demands, as well as similar

performance with variable selection models [3], [14]. One

estimates marker effects using random regression on marker

genotypes, and genomic BV are calculated as the sum of estimated

marker effects (hereafter called SNP-BLUP). The other estimates

genomic BV directly using a marker-based relationship matrix

(hereafter called GBLUP). These two BLUP models can be easily

extended to include dominance effects [15]. However, different

sets of dominance coefficients can be derived that can result in

different predictions [16].

This study had four goals. First, additive and dominance

variance components were estimated using Holstein and Jersey

data for eight traits. Second, predictive ability of models that

included additive and dominance effects was compared with that

of a model that included only additive effects. Third, predictions

obtained using different dominance coefficients were compared.

Fourth, model prediction was tested by expanding the data set to

include cows with genotype probabilities derived based on

ancestor genotypes.

Materials and Methods

Data
Genotypes were available from the Council on Dairy Cattle

Breeding (Reynoldsburg, OH, USA) for Holsteins and Jerseys.

Genotypes were from six different SNP arrays: the Bovine3K,

BovineLD, BovineSNP50, and BovineHD (Illumina Inc., San

Diego, CA), and the GeneSeek Genomic Profiler and GeneSeek

Genomic Profiler HD (Neogen Agrigenomics, Lincoln, NE, USA).

All genotypes were imputed to a BovineSNP50 basis using

findhap.f90 software [17] before estimating genomic BV and

dominance effects.

Phenotypic data were yield deviations for milk, fat, and protein;

productive life (PL); daughter pregnancy rate (DPR); somatic cell

score (SCS), fat percent (fat%) and protein percent (protein%) for

first parity. Yield deviations for fat% and protein% were obtained

indirectly as (yield deviation of fat% = ((fat mean for base cows+fat

yield deviation)/(milk mean for base cows+milk yield deviation) -

fat mean for base cows/milk mean for base cows) *100; and a

corresponding formula for protein%). The values of trait mean for

base cows were 11,839, 432 and 396Kg for Holstein milk, fat and

protein, respectively, and corresponding values were 8379, 384

and 298Kg for Jersey breed. DPR is defined as percentage of non-

pregnant cows that become pregnant during each 21-day period; a

DPR of 1 implies that cows are 1% more likely to become

pregnant during that estrus cycle than cows with an evaluation of

0. PL is defined as time in the milking herd before removal by

voluntary culling, involuntary culling, or death; credits for each

month in milk are obtained from standard lactation curves and

then summed across all lactations; diminishing credits within

lactation give cows more credit for beginning a new lactation than

for continuing to milk in previous lactation; cows get 8 months

credit for 305-day first-lactation records, 10 months credit for

second lactations, 10.2 months credit for third and later lactations,

partial credits for shorter records, and extra credits for longer

records.

The data set was divided into three groups. The first set

included cows with known genotypes and phenotypes (DATAC).

The second included cows with phenotypes, but genotype

probabilities were calculated from genotyped sire and dam

(DATAS-D). The third included cows with phenotypes but

genotype probabilities were calculated from genotyped sire and

MGS (DATAS-MGS [12]).

Tables 1 and 2 listed phenotypic information for each of the

data groups and six traits. Fixed effects (age and parity group, herd

management group, inbreeding, and heterosis) were first estimated

using a multi-trait and multi-breed linear mixed model from the

full national data set of phenotype and pedigree information, and

then records from first parity were adjusted for fixed effects (age

and parity group and herd management group) for the subset of

cows that had both phenotypic and genotypic information

(Table 1). For yield, fat% and protein% traits, records were

available from 30,482 Holstein and 8,321 Jersey cows; for other

traits, 14,780 Holstein and 5,492 Jersey PL records, 23,811

Holstein and 7,422 Jersey DPR records, and 30,352 Holstein and

8,292 Jerseys SCS records were available. Yield means (two fixed

effect adjustment) were larger for Holsteins than for Jerseys, but

Jerseys had better performance for PL and DPR. The mean and

standard deviation of inbreeding and heterosis for Holstein were

lower than Jersey. The inbreeding effects from multi-trait and

multi-breed model were 266.12, 22.47, 21.96, 20.268, 20.072,

and 0.004 for milk, fat, protein, PL, DPR and SCS trait,

respectively, and corresponding heterosis effects were 172.23,

22.12, 11.29, 0.349, 1.973, and 0.019.

For non-genotyped cows, whose genotype probabilities were

derived using genotyped sires and dams or genotyped sires and

MGS (Table 2), records were available from 25,926 Holsteins and

4,896 Jerseys with sire and dam genotypes and from 33,897

Holstein and 11,823 Jersey S-MGS groups. Each sire-MGS pair

was required to have $20 observations for Holsteins and $8

observations for Jerseys, and the S-MGS groups included

2,278,652 Holstein and 379,713 Jersey cows. Based on Tables 1

and 2, means and standard deviations were different for DATAC,

DATAS-D and DATAS-MGS for yield traits.

Given a specific marker locus with two alleles (A and B), the

probabilities of possible genotypes (AA coded as 0, AB coded as 1,

and BB coded as 2) for cows were computed as

P(AAcow)~

P(Asire) � P(Adam) (if sire and dam have genotypes)

P(Asire) � ½0:5qz0:5P(AMGS)� (if sire and MGS have genotypes)

(

P(BBcow)~

P(Bsire) � P(Bdam) (if sire and dam have genotypes)

P(Bsire) � ½0:5pz0:5P(BMGS)� (if sire and MGS have genotypes)

(

where P(Asire), P(Adam), and P(AMGS) are the probabilities that

allele A was transmitted to offspring from sire, dam and MGS,

respectively; P(Bsire), P(Bdam), and P(BMGS) are the probabilities
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that allele B was transmitted to offspring from sire, dam and MGS,

respectively; and population allele frequencies were q for A and p
for B. Then

P(ABcow)~1{P(AAcow){P(BBcow),

and

P(Asireor Adamor AMGS)~

1 (if genotype~AA)

0:5 (if genotype~AB)

0 (if genotype~BB)

q (if genotype is missing)

8>>><
>>>:

The same approach was used to calculate P(Bsire or Bdam or

BMGS).

The DATAC data set was used to estimate variance components

and SNP effects (additive and dominance) and to perform ten-fold

cross-validation for prediction. Variance estimation and validation

were also conducted using the combined data sets (DATAC+
DATAS-D+DATAS-MGS). The same testing data sets were used

when cross-validation was performed on DATAC only or on the

combined data sets.

Variance Components
Variance components for each trait were estimated using the

GBLUP method by including additive or additive and dominance

genetic effects; the single-trait linear mixed models used were:

y~1uzWaze (MA),

y~1uzWa1zWd1ze1 (MAD),

y~1uzWa2zWd2ze2 (MAD2), and

y~1uz1S�DuS�Dz1S�MGSuS�MGSzW
0
a3zW

0
d3ze3 (MAD3),

where y is a vector of management group deviations for each trait;

u, uS-D, and uS-MGS are the intercepts; a, a1, a2, and a3 are

vectors of additive effects for animals; d1, d2, and d3 are vectors of

dominance effects; e, e1, e2, and e3 are the vectors of random

residuals for animals; 1 is a vector with elements of 1, and 1S-D and

1S-MGS are vectors with elements of 1 for DATAS-D and

DATAS-MGS, respectively, and 0 for other records. Each animal

had a single record; therefore, W and W
0

were identity matrices.

Then, a * N( 0, Gs2
a ) , a1 * N( 0, Gs2

a1
) , a2 * N( 0,

Gs2
a2

) , a3 * N( 0, Gs2
a3

) , d1 * N( 0, D1 s2
d 1

) , d2 * N

( 0, D2 s2
d 2

) , d3 * N( 0, D1 s2
d 3

) , e * N( 0, Is2
e ) , e1 *

N( 0, Is2
e 1

) , e2 * N( 0, Is2
e 2

) , and e3 * N( 0, Rs2
e 3

) ,

where G and D1 (or D2) are additive and dominance genomic

relationship matrices, respectively; s2
a , s2

a1
, s2

a2
and s2

a3
are additive

variances; s2
d 1

, s2
d 2

, and s2
d 3

are dominance variances; s2
e , s2

e 1
, s2

e 2
,

and s2
e 3

are residual variances, and R is the coefficient matrix for error

variance:
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R~

s2
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.
s2

e3
0 0

0 s2
eS-D

.
s2

e3
0

0 0 1=NS-MGS

2
6664

3
7775,

where s2
e C

is the residual variance for genotyped cows, s2
e
S{D

is

residual variance for cows with genotype probabilities derived

from genotyped sire and dam, and NS-MGS is the number of

daughters for each sire-MGS pair. The G, D1, and D2

were constructed based on information from genome-wide

markers [1], [9], [15], [16]: G~ ZZ0=
Xk

i~ 1
2pi qi,

D1 ~ HH0=
Xk

i~ 1
2piqi( 1 { 2piqi), and D2 ~ MM0=Xk

i~ 1
( 2piqi)

2, where k is the total number of SNPs; Z is a

centered genotype matrix with each z is a genotype code (0, 1,

or 2) minus 2pi; pi is the frequency of the second of two alleles

at locus i; qi is the frequency of the first allele at locus i; the

elements of H equal 022piqi for homozygous alleles and 12

2piqi for heterozygous alleles; and the elements of M equal

{ 2p2
i , 2piqi, and { 2q2

i for genotype codes 0, 1, and 2,

respectively. The differences between MAD and MAD2 were

explained and investigates in detail in a previous study [16].

Variance components were estimated using average-informa-

tion restricted maximum likelihood (AI-REML) [18] as imple-

Figure 1. Size and location of marker additive and dominance effects for milk yield of Holsteins and Jerseys. Holstein additive (A) and
dominance (B) effects and Jersey additive (C) and dominance (D) effects were estimated with a model that included additive and dominance (values)
effects.
doi:10.1371/journal.pone.0103934.g001
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mented in MMAP (mixed models analysis for pedigrees and

populations) software [19], [20]. The MMAP software incorpo-

rates the Intel Math Kernel Library [21] for optimized parallel

matrix algebra and likelihood calculation.

SNP Effects
The additive and dominance effects for each SNP were

estimated using the SNP-BLUP method with the variance

components described previously. Using the MAD model as an

example, the mixed model equation for estimating each SNP effect

was.

y~1uzW�
aa�1zW�

dd�1ze�1(MADSNP),

where a�
1

and d�
1

are vectors of additive and dominance effects,

respectively, for SNP; e�1 is residual variances; a�1 * N( 0, Is2
a1

) ,

d�1 * N( 0, Is2
d 1

) and e�1 * N( 0, Is2
e 1

) ; s2
a1

and s2
d 1

are

total additive and dominance variances, and need to dividePk
i~ 1 2piqi and

Pk
i~ 1 2piqi ( 1 { 2piqi ), respectively, for

each marker; W�
a ~ WZ, W�

d ~ WH, and W, Z and H are

the same as defined before. SinceWis the identity matrix in our

case, the mixed model equations for MADSNP are

Figure 2. Size and location of marker additive and dominance effects for fat yield of Holsteins and Jerseys. Holstein additive (A) and
dominance (B) effects and Jersey additive (C) and dominance (D) effects were estimated with a model that included additive and dominance (values)
effects.
doi:10.1371/journal.pone.0103934.g002
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where l1 ~ ( s2
e 1
=s2

a1
)
Pk

i~ 1 2pi qi and

l 2 ~( s2
e 1
=s2

d 1
)
Pk

i~ 1 2pi qi( 1 { 2pi qi ) [1]. Similarly,

the SNP-BLUP versions for the MA, MAD2, and MAD3 models

can be built easily and defined as MASNP, MAD2SNP, and

MAD3SNP, respectively.

Solutions for small populations can be obtained directly by

building the mixed model equations shown in (1) and inverting the

left-hand side. The MASNP, MADSNP, and MAD2SNP models used

data only from DATAC, and equations were solved by the

inversion method. However, the MAD3SNP model used data from

all three data sets (DATAC, DATAS-D, and DATAS-MGS). Because

some cow genotypes were probabilities and required .1 character

for storage, calculations for Z0Z, Z0H, and H0H in (1) required

much more time, memory, and disk space. An iteration-based

program was developed to solve MAD3SNP for big data. A blend

of first- and second-order Jacobi iteration was implemented with

two relaxation factors [1]. Manhattan plots of the additive and

dominance effects were created using ggplot2 [22], version 0.9.2,

and R-2.15.1 [23].

Figure 3. Size and location of marker additive and dominance effects for protein yield of Holsteins and Jerseys. Holstein additive (A)
and dominance (B) effects and Jersey additive (C) and dominance (D) effects were estimated with a model that included additive and dominance
(values) effects.
doi:10.1371/journal.pone.0103934.g003
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Table 7. Characteristics of top ten single nucleotide polymorphisms for Holstein and Jersey milk, fat, and protein yields based on
size of dominance effect from a model with additive and dominance (values) effects included.

Breed Yield trait SNP locationa SNP effect (BV kg) Additive effect rank

Chromosome Position (base pairs) Dominance Additive

Holstein Milk 14 1,801,116 3.24 26.19 2

14 1,651,311 2.96 26.39 1

14 2,054,457 2.70 24.52 3

13 40,525,851 2.52 0.46 34,006

12 54,550,449 2.49 1.97 9,688

21 47,902,442 2.42 2.05 8,936

3 121,275,236 2.33 0.99 23,046

10 21,865,155 2.33 0.34 36,692

26 36,663,874 2.28 1.81 11,349

22 10,376,267 2.26 0.17 40,871

Fat 14 1,801,116 0.183 0.828 1

14 1,651,311 0.163 0.769 2

14 2,054,457 0.143 0.708 3

26 36,663,874 0.094 0.048 16,041

3 24,336,036 0.089 0.044 18,040

14 2,117,455 0.088 0.541 7

17 65,866,532 0.087 0.026 27,226

4 23,648,508 0.087 0.004 42,123

2 123,226,556 0.086 0.060 11,798

4 74,397,417 0.086 0.038 20,782

Protein 21 47,902,442 0.077 0.028 18,480

21 32,811,807 0.065 0.058 4,693

5 101,309,988 0.064 0.038 12,142

13 40,525,851 0.062 0.019 25,662

14 68,962,221 0.061 0.033 15,227

1 47,856,002 0.060 0.028 18,242

5 97,828,652 0.060 0.060 4,353

6 86,643,810 0.059 0.109 217

16 65,635,111 0.059 0.033 15,224

11 75,760,570 0.058 0.083 1,206

Jersey Milk 12 68,628,611 0.94 3.00 780

20 39,691,234 0.92 1.50 7,930

12 69,277,902 0.89 1.05 13,978

20 39761822 0.87 1.68 6,171

22 58,489,232 0.86 2.34 2,298

10 84,516,867 0.85 1.46 8,346

10 83,350,003 0.84 2.78 1,125

12 68,678,678 0.83 3.26 506

19 8,648,705 0.83 2.79 1,117

9 9,396,200 0.82 0.34 30,510

Fat 14 1,651,311 0.044 0.206 6

14 1,696,470 0.043 0.206 7

14 2,002,873 0.036 0.177 11

22 58,489,232 0.035 0.055 4,540

14 1,675,278 0.035 0.160 20

12 68,628,611 0.034 0.144 33

4 108,709,290 0.032 0.026 16,462

12 68,678,678 0.032 0.147 32
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Model Validation
Goodness-of-fit for each model was evaluated using likelihoods

based on the whole data set as well as correlations between

predicted BV and phenotypes in the training data. The superiority

of model MAD and MAD2 over MA was tested using a likelihood

ratio test. Cross-validation was used to measure prediction

accuracy, with the data set randomly divided into ten approx-

imately equal portions. Nine of the portions were used in turn for

training the models to estimate SNP effects, and the remaining

portion was used for testing prediction accuracy. The predictive

ability of the model was evaluated by comparing predictions and

phenotypes of animals in the testing data set and was measured as

the correlation between predicted genetic values and phenotypes.

Predictions of additive genetic effect (BV) and total genetic value

(defined as the sum of additive and dominance effects in the

model) were both evaluated. Paired two-sample t-tests were used

to test correlations for differences.

Results

Variance Component Estimation and Heritability
Table 3 shows estimates of variance components and heritabil-

ities using the MA, MAD, and MAD2 models for each of the eight

traits; MAD3 was only applied to yield traits. For both Holsteins

and Jersey yield traits, MAD had lower additive heritabilities and

higher dominance heritabilities than MAD2, but the sum of

additive and dominance variances were similar for both models.

The MAD2 additive heritabilities were much closer than MAD

additive heritabilities to MA heritabilities. Based on MAD and

MAD2, dominance variance accounted for 5% and slightly less

than 4%, respectively, of phenotypic variance for Holstein yield

traits and 7% and 5.5% of Jersey yield traits. Additive heritability

estimates from MAD3 were lower than from MAD and MAD2;

MAD3 dominance variances were similar to those from MAD2 for

Jerseys but smaller for Holsteins. Dominance variances from MAD

and MAD2 were very small for DPR and SCS regardless of breed,

especially for DPR. Dominance variance for PL was larger for

Jerseys than for Holsteins. Fat% and protein% had high additive

but low dominance heritabilities.

Model Goodness-of-Fit
Measures of goodness-of-fit based on likelihood ratio tests are in

Table 4. For Holstein and Jersey yield traits, the likelihood ratio

test showed that MAD and MAD2 fit the data significantly (P,

0.0001) better than did MA. For PL, DPR, and SCS, the 22 log

likelihoods were similar for MA, MAD, and MAD2. The model

including dominance also fit the data better than MA for protein%

(both breed) and fat% of Holstein. The number of animals in

MAD3 was different from that for MA, MAD, and MAD2;

therefore, the likelihood for MAD3 was not comparable with that

for other models.

Average correlations between estimated genetic effects and

phenotypes in training data for ten-fold cross-validation (Table 5)

also indicated model goodness-of-fit. Correlations between total

genetic effects (additive for MA and additive plus dominance for

MAD, MAD2, and MAD3) and phenotypes were higher for MAD

and MAD2 than for MA for all Holstein and Jersey traits. For

MAD3, correlations between total genetic effects and phenotypes

were higher than for MA but lower than for MAD and MAD2;

correlations between additive effects and phenotypes were lowest.

The standard deviations of correlations were from 0.001 to

0.003 for Holstein, and from 0.001 to 0.005 for Jersey, across

different traits; PL and milk had the largest and smallest standard

deviation, respectively. This was true using MAD, MAD2 or

MAD3. Because the yield deviations of fat% and protein% were

derived from yield traits and their dominance variances were

small, the ten-fold cross-validation was not carried out on fat%

and protein%.

Prediction Accuracy
Predictive ability for Holstein and Jersey yield traits was better

for MAD and MAD2 than for MA based on correlations from

testing data used in the ten-fold cross-validation (Table 6). For

MAD and MAD2, correlations were higher between phenotype

and total genetic effects than between phenotype and additive-only

effects for yield traits, and both MAD and MAD2 correlations

were higher than those between phenotype and additive effect

from MA. The differences between correlations from MAD or

MAD2 and that from MA were statistically significant for Holstein

yield traits and SCS (P,0.005) and Jersey yield traits (P,0.001).

Table 7. Cont.

Breed Yield trait SNP locationa SNP effect (BV kg) Additive effect rank

Chromosome Position (base pairs) Dominance Additive

14 2,909,929 0.032 0.171 13

14 2,217,163 0.032 0.282 4

Protein 12 26,810,556 0.027 0.016 22,006

22 58,489,232 0.026 0.065 1,405

12 68,678,678 0.026 0.087 339

12 26,883,203 0.026 0.016 21,301

12 68,628,611 0.026 0.088 311

13 77,572,954 0.024 0.041 6,175

11 100,858,404 0.023 0.034 9,006

12 69,277,902 0.023 0.055 2,727

15 39,405,517 0.023 0.006 32,548

22 12,470,007 0.023 0.101 122

aUMD 3.1 assembly of the Bos taurus genome [25].
doi:10.1371/journal.pone.0103934.t007
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Table 8. Characteristics of top ten single nucleotide polymorphisms with chromosome 14 excluded for Holstein and Jersey milk,
fat, and protein yields based on size of additive effect from a model with additive and dominance (values) effects included.

Breed Yield trait SNP locationa SNP effect (BV kg) Dominance effect rank

Chromosome Position (base pairs) Additive Dominance

Holstein Milk 6 88,891,318 10.02 1.28 1,039

6 88,592,295 9.28 2.03 29

18 2,685,718 8.30 1.55 310

6 88,069,548 7.94 1.12 1,957

25 11,760,835 7.92 1.08 2,270

5 105,870,613 7.87 0.01 42,548

6 88,822,266 7.82 0.09 36,935

6 88,656,290 7.68 0.55 12,298

16 24,810,362 7.46 0.30 22,940

5 112,775,479 7.46 1.63 235

Fat 5 92,191,685 0.331 0.044 1,602

5 88,776,643 0.329 0.004 35,959

5 92,283,403 0.300 0.023 10,304

18 2,685,718 0.295 0.073 53

5 104,899,417 0.291 0.070 84

9 27,356,886 0.286 0.018 14,877

5 94,645,698 0.284 0.064 189

5 92,618,397 0.282 0.021 12,098

X 20,758,679 0.282 0.008 29,113

16 24,810,362 0.272 0.005 34,244

Protein 6 88,891,318 0.208 0.026 3,213

X 20,758,679 0.191 0.006 28,602

18 2,685,718 0.189 0.040 423

25 11,760,835 0.184 0.030 1,913

26 12,064,775 0.162 0.003 34,343

6 87,222,751 0.160 0.009 20,708

5 111,581,087 0.157 0.035 1,034

7 95,577,863 0.156 0.006 28,129

12 1,515,856 0.156 0.002 36,571

6 88,656,290 0.154 0.018 8,392

Jersey Milk 2 121,707,643 6.65 0.39 2,145

19 42,425,855 6.21 0.61 210

7 109,395,242 6.20 0.47 932

2 122,707,290 5.64 0.71 71

2 121,387,324 5.56 0.48 823

5 90,752,558 5.43 0.36 2,805

5 97,828,652 5.42 0.32 4,008

2 121,476,153 5.36 0.45 1,166

2 121,432,374 5.36 0.45 1,167

2 121,649,725 5.26 0.46 1,014

Fat 5 90,752,558 0.183 0.013 3,164

5 117,133,270 0.162 0.024 168

7 34,324,708 0.161 0.001 37,864

7 103,779,001 0.161 0.006 13,556

26 4,248,936 0.160 0.003 24,624

23 19,308,267 0.158 0.000 38,693

5 117,102,295 0.154 0.015 2,286

12 86,426,256 0.152 0.000 39,802
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However, for Jersey PL, DPR, and SCS as well as Holstein PL and

DPR, correlations from MA, MAD, and MAD2 from testing data

were almost the same and did not differ statistically (P.0.2). Jersey

correlations from testing data were lower than Holstein correla-

tions except for PL. By enlarging the data set, MAD3 did not

provide better prediction for either Holsteins or Jerseys. The

standard deviation of correlations from ten-fold cross-validation

ranged from 0.017 to 0.024 on different traits for Holstein, and

from 0.018 to 0.043 for Jersey; yield traits had lower standard

deviation than other traits.

Largest SNP Effects
Based on additive and dominance SNP effects from MAD,

Manhattan plots for eight traits were constructed, and the ten SNP

with largest effect were characterized. Figures 1–3 show that the

largest additive SNP effects are located on chromosome 14 near

DGAT1 [24] for all three yield traits for both breeds. For Holstein

milk and fat yields as well as Jersey fat yield, the SNP with largest

additive effect also had the largest dominance effect. The SNP

effects for PL, DPR, SCS, fat% and protein% are not shown

because the dominance effects were extremely small and the plots

were not informative.

For yield traits, Table 7 lists the top 10 SNPs selected by

dominance effects which were estimated using MAD; SNP

locations are based on the UMD 3.1 assembly of the Bos taurus
genome [25]. For both Holsteins and Jerseys, several SNPs on

chromosome 14 had both large additive and dominance effects for

fat yield. For Holsteins, three SNPs on chromosome 14 had large

dominance and additive effects for both milk and fat yields. One

SNP on chromosome 26 also had a large dominance effect for

milk and fat yields, and chromosomes 13 and 21 each had one

SNP with a large dominance effect for both milk and protein

yields. No SNP had both large additive and dominance effects for

Jersey milk or protein yield. For Jerseys, two SNPs on chromosome

12 and one SNP on chromosome 22 had a large dominance effect

for all three yield traits; another SNP on chromosome 12 had a

large dominance effect for both milk and protein yields.

Table 8 shows the top 10 SNPs selected by additive effect (from

MAD) with SNPs on chromosome 14 excluded. No SNP had both

large additive and dominance effects for either breed for any yield

trait. Chromosome 5 had several SNP with a large additive effect

for fat yield for both Jerseys and Holsteins. For milk yield, the SNP

with the largest additive effects were on chromosomes 5, 6, 16, 18,

and 25 for Holsteins and on chromosomes 2, 5, 7, and 19 for

Jerseys. For protein yield, the SNP with the largest additive effects

were on chromosomes 5, 6, 7, 12, 18, 25, 26, and X for Holsteins

and on chromosomes 2, 5, 7, 18, and 25 for Jerseys. One SNP on

chromosome 18 for Holsteins had a large additive effect for all

three yield traits as did one SNP on chromosome 5 and another on

chromosome 7 for Jerseys. Chromosome 16 for Holsteins had one

SNP with a large additive effect for both milk and fat yields. Two

SNPs on chromosome 6 and another on chromosome 25 for

Holsteins had large additive effects for both milk and protein yields

as did two SNPs on chromosome 2 and one SNP on chromosome

5 for Jerseys. The X chromosome for Holsteins had one SNP with

a large additive effect for both fat and protein yields.

Discussion

The magnitude of dominance variance relative to phenotypic

variance for different traits varied widely for genotyped Holstein

and Jerseys cows in the United States. Dominance variances were

larger for MAD than for MAD2. Dominance heritability from

MAD for milk yield was 5% for Holsteins and 7% for Jerseys,

which was slightly higher than the results reported by Sun et al.

[11]. Result differences were caused by different models for

estimating yield deviation and different methods for imputing

missing genotypes, but the impact on Holstein results was smaller

than for Jerseys because of the large Holstein data set. Few other

studies have estimated dominance variance using Holstein

genomic data. We verified that our software gives the same

estimates of variance components and SNP effects as GVCBLUP

[15] by comparing results when both were applied to the Jersey

milk data and MAD2 model (see Text S1), but GVCBLUP cannot

handle all the models we considered.

Additive and non-additive variances usually have been estimat-

ed using models with pedigree-based relationship matrices. Van

Tassell et al. [26] estimated additive and dominance variance

using Method R and reported results consistent with the findings

of the current study for yield and SCS traits (5% and 1%

Table 8. Cont.

Breed Yield trait SNP locationa SNP effect (BV kg) Dominance effect rank

Chromosome Position (base pairs) Additive Dominance

7 109,395,242 0.151 0.012 3,919

5 84,702,280 0.149 0.002 28,164

Protein 2 109,395,242 0.151 0.014 887

25 3,950,794 0.135 0.006 9,175

18 25,779,530 0.131 0.010 3,419

5 56,397,946 0.129 0.009 4,848

2 90,752,558 0.128 0.010 3,386

18 121,707,643 0.128 0.010 3,067

2 55,983,042 0.127 0.008 5,301

5 121,387,324 0.127 0.016 453

5 97,828,652 0.126 0.007 7,731

2 105,664,687 0.125 0.006 9,426

aUMD 3.1 assembly of the Bos taurus genome [25].
doi:10.1371/journal.pone.0103934.t008
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dominance variance, respectively) but larger for PL (6%). For

MAD, dominance variance relative to additive genetic variance

was 18.9% for milk yield, 21.7% for fat yield, and 26.4% for

protein yield for Holsteins and 21.7, 37.4, and 30.4%, respectively,

for Jerseys. Misztal [27] reported a ratio of dominance to additive

genetic variance of 17% for stature for U.S. Holsteins. However,

Hoeschele et al. [28] reported ratios of 118% for days open and

161% for service period (days between first and last insemination)

for U.S. Holsteins, and also showed that dominance variance

changed significantly with slight differences in trait definition, e.g.

at days open with an upper bound of 150 days, dominance

heritability became very low. The change in estimates indicates

some lack of precision, perhaps caused by solving for 3 genetic

variances (A, D, and AA) in the same model, which also caused

trouble in our study (results computed but not shown); furthermore

different models (sire and maternal grandsire model vs animal

model) and relationship matrices (pedigree vs genomic) as well as

pre-selection (genotyped cows were offspring of genetically

superior animals) all can lead to different results between our

study with Hoeschele et al. [28]. In beef cattle, the ratio was .

50% for weaning weight for Herefords, Gelbvieh, and Charolais

[29], [30], and for post-weaning gain in Limousin beef cattle [31].

These results indicate that the range of estimates for non-additive

genetic variance in different studies is large and may reflect

different features of various traits and populations or large

sampling error due to insufficient data. Fixed regression on

inbreeding and heterosis accounted for effects of dominance on

phenotypic mean in this study, and variance estimates accounted

for additional covariances among relatives. The pre-adjusted

phenotypes used in this study included inbreeding and heterosis

effects, and an additional analysis (results not shown) on variance

components estimation for Jersey indicated that removing

inbreeding and heterosis effects from pre-adjusted phenotypes

decreased dominance heritabilities slightly for yield traits (for

example 7.0% vs. 5.9% for milk), but had very small effects on

other traits (for example 1.2% vs. 1.1% for SCS). The inbreeding

and heterosis effects in the model may account for changes in the

mean rather than changes in the covariance among relatives.

The likelihood ratio test showed that a model with a dominance

effect had better goodness of fit for yield traits than did a model

with only an additive effect. Therefore, non-additive genetic

variance is important for complex traits, and a model with non-

additive genetic effects is expected to increase prediction accuracy.

In this study, MAD was approximately 2% better than MA for

predicting phenotypes in testing data sets. Lee et al. [8] predicted

unobserved phenotypes using whole-genome SNP data and

reported that the accuracy of prediction increased considerably

when dominance effects were included compared with a purely

additive genetic model. Their increased accuracy was 17% for

coat color and 2% for percentage of CD8+ cells in mice; however,

added epistasis did not contribute to accuracy. Su et al. [9]

estimated additive and non-additive genetic variances and

predicted genetic merit using genome-wide dense SNP; they

found that reliabilities of genomic BV for animals without

performance records increased 0.7 percentage points for a model

that included additive and dominance effects compared with an

additive-only model; the corresponding increase for a model that

included additive and epistatic effects was only 0.3 percentage

points.

The difference between MAD and MAD2 was how the

dominance relationship matrix was calculated. In this study,

estimates for dominance variance were larger and additive

variances smaller for MAD compared with MAD2. Vitezica et al.

[16] reported this same result for simulated data and concluded

that MAD underestimates additive genetic variance and overes-

timates dominance variance; however, they did not compare the

predictive ability of MAD and MAD2. In this study, MAD and

MAD2 had no apparent difference in predictive ability, and the

correlations between total genetic effects (or additive effects only)

and phenotypes in testing data (or training data) were almost the

same for the two models.

The MAD3 model was expected to increase predictive ability

even more than MAD and MAD2 because it included sire-dam

and sire-MGS groups to increase the available data; however, it

did not. Perhaps because of the more complex model needed to

deal with combined data (DATAC, DATAS-D, and DATAS-MGS),

MAD3 underestimated additive heritability. A better model might

treat the three groups as correlated phenotypes to account for

differences in genotype accuracy and phenotype distributions

between them. The cows with imputed genotype probabilities

were offspring of genetically superior (elite) animals, and pre-

selection may have affected the results and caused bias. Another

issue that may need to be addressed is if including all of the

genotyped females is optimal. Some elite cows were genomically

tested after their phenotypes showed them to be superior and may

represent only a small fraction of a herd (e.g., if a farmer tests only

his five best animals). Such cows are highly selected, and

predictions may become more accurate by limiting their data.

In addition to increased prediction accuracy, a model that

includes additive and non-additive genetic effects could be

beneficial for exploiting specific combining ability. Breeders

should continue to select for additive merit but can also improve

non-additive merit by considering interactions in mating programs

[32]. Sun et al. [11] compared mating programs and found that

expected progeny value for milk yield from linear programming

using genomic relationship matrices increased 86 kg for Holsteins

and 52 kg for Jerseys for the top 50 bulls for genomic BV for milk

yield by including dominance effects. However, two practical

limitations exist for implementing a model with both additive and

non-additive genetic effects for genomic prediction [9]. First, the

computational demand for models with both additive and non-

additive genetic effects is generally high because both additive and

non-additive genomic relationship matrices are dense, thus

requiring greater computing resources or more efficient algo-

rithms. The iteration-based SNP-BLUP used in this study greatly

decreased the amount of memory needed and converged well for

each of the three data groups, but it converged poorly for the

combined data. Second, a reference population often consists of

bulls that have records of progeny performance, and pseudo-

observations (conventional EBV, de-regressed EBV, or means of

corrected progeny performance) are commonly used as response

variables. However, a genomic prediction model that includes

non-additive genetic effects requires that the response variable is

an individual record. Therefore, pseudo-observations are appro-

priate for an additive genetic model but not for a model that

includes non-additive genetic effects.

The DGAT1 gene is a major quantitative trait locus (QTL) on

chromosome 14 that affects yield traits [24]. This study confirmed

that the SNPs with the largest MAD additive effects were located

on chromosome 14 for all three yield traits; those SNPs also had

the largest dominance effects for fat yield for Holsteins and Jerseys

as well as for Holstein milk yield. Boysen et al. [12] explored

dominance effects using cow genotype probabilities based on bull

genotypes and found significant (P # 0.01) dominance effects for

fat yield on chromosome 14 within the DGAT1 region. The

current study and Boysen et al. [12] both found no significant (P
# 0.01) dominance effects for SCS. A QTL that affects yield traits

have been identified on chromosome 6 using granddaughter
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designs in U.S. [33], Dutch [34], and German [35] Holstein

populations. In the current study, SNP on chromosome 6 had

large additive effects for Holstein milk and protein yields. Cole

et al. [36] studied the distribution and location of additive genetic

effects for Holsteins using 5,285 bulls and confirmed the presence

of two major genes for yield traits on chromosomes 6 and 14.

Similar results also were reported by Cole et al. [37] using a

population of genotyped U.S. Holstein cows. Wang et al. [38]

performed a genome-wide association study for fat percentage in

the German Holstein-Friesian population and uncovered a QTL

region on chromosome 5. The current study also indentified a

region on chromosome 5 with both large additive and dominance

effects for Holstein yield traits.

Conclusions

Dominance variance accounted for about 5 and 7% of total

variance for yield traits for Holsteins and Jerseys, respectively,

based on the MAD model. For PL, DPR, SCS, fat% and protein%

dominance variances were very small, especially for Holsteins. The

MAD model had smaller additive and larger dominance variance

estimates compared with MAD2. The likelihood ratio test showed

that a model with dominance effects included had better goodness

of fit than an additive-only model for yield traits. Based on ten-fold

cross-validation, the MAD and MAD2 models can increase

prediction ability for Holstein and Jersey yield traits; improve-

ments from the two models were similar. Prediction accuracy did

not improve by including cows with derived genotypes. The largest

additive effects were located on chromosome 14 for all three yield

traits for both breeds, and those SNP also had the largest

dominance effects for fat yield for Holsteins and Jerseys as well as

Holstein milk yield. Dominance effects should be considered for

inclusion in routine genomic evaluation models to improve

prediction accuracy and exploit specific combining ability.
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