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ABSTRACT
Motivation: In order to enhance genome annotation, the
fully automatic fold recognition method GenTHREADER
has been improved and benchmarked. The previous
version of GenTHREADER consisted of a simple neural
network which was trained to combine sequence align-
ment score, length information and energy potentials
derived from threading into a single score representing
the relationship between two proteins, as designated by
CATH. The improved version incorporates PSI-BLAST
searches, which have been jumpstarted with structural
alignment profiles from FSSP, and now also makes use of
PSIPRED predicted secondary structure and bi-directional
scoring in order to calculate the final alignment score.
Pairwise potentials and solvation potentials are calculated
from the given sequence alignment which are then used
as inputs to a multi-layer, feed-forward neural network,
along with the alignment score, alignment length and
sequence length. The neural network has also been ex-
panded to accommodate the secondary structure element
alignment (SSEA) score as an extra input and it is now
trained to learn the FSSP Z -score as a measurement of
similarity between two proteins.
Results: The improvements made to GenTHREADER
increase the number of remote homologues that can be
detected with a low error rate, implying higher reliability
of score, whilst also increasing the quality of the models
produced. We find that up to five times as many true
positives can be detected with low error rate per query.
Total MaxSub score is doubled at low false positive rates
using the improved method.
Availability: http://www.psipred.net
Contact: l.mcguffin@cs.ucl.ac.uk

INTRODUCTION
The development of rapid and reliable, automatic protein
fold recognition methods is important for a more com-
prehensive annotation of genomic sequences. Traditional
pairwise sequence alignment methods can be used to

∗To whom correspondence should be addressed.

assign folds to sequences with obvious evolutionary
relationships to a known structure. Generally, for se-
quences with identities >30%, fast sequence searching
methods such as FASTA (Pearson and Lipman, 1988)
and WU-BLAST (Altschul and Gish, 1996) are fairly
capable at detecting related proteins by scoring pairwise
comparisons and compare in accuracy to the slower,
Smith and Waterman (1981) based method SSEARCH
(Pearson and Lipman, 1988). However when sequence
identities fall below 30%, conventional pairwise sequence
comparison methods fail to detect relationships (Brenner
et al., 1998), therefore, accurately annotating genes that
encode proteins with low sequence identity to any known
protein structure remains problematic.

Sequence searching has been improved beyond pairwise
comparisons with the introduction of methods such as PSI-
BLAST (Altschul et al., 1997), ISS (Park et al., 1997),
SAM-T98 (Park et al., 1999) and FFAS (Rychlewski et
al., 2000). These methods use information from profiles of
related sequences in order to detect more distant relation-
ships, however they often perform poorly at recognising
non-homologous proteins with similar folds (Rychlewski
et al., 2000).

A number of other automatic methods have been
developed that are designed to enhance sequence based
searching by incorporating structural information, for
example, INBGU (Fischer, 2000), 3D-PSSM (Kelley
et al., 2000), FUGUE (Shi et al., 2001) and Gen-
THREADER (Jones, 1999a). For a comparison of
structure prediction servers implementing the meth-
ods described above see LiveBench (Bujnicki et al.,
2001a,b, http://bioinfo.pl/LiveBench/), EVA (Valen-
cia et al., 2001, http://maple.bioc.columbia.edu/eva/)
and CAFASP2 results (Fischer et al., 2001, http:
//www.cs.bgu.ac.il/∼dfischer/CAFASP2/).

In this paper we benchmark improvements to Gen-
THREADER including the incorporation of PSI-BLAST
alignment profiles, which have been ‘jump-started’ or
‘seeded’ using FSSP structural alignments, bi-directional
alignment scoring, PSIPRED predicted secondary struc-
ture and secondary structure element alignments (SSEAs).
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Structure is better conserved than sequence between dis-
tantly related proteins and it follows that rapid fold
recognition methods which incorporate such structural
information should therefore benefit from increased
accuracy.

Here we develop and test several variations of the Gen-
THREADER protocol. The first method (GT) maintains
the essential architecture of the original neural network,
however the protocol is modified so that PSI-BLAST
is used to generate sequence profiles in the fold library
and the back propagation neural network is trained
to learn the FSSP Z -score (Holm and Sander, 1994)
representing the relatedness of proteins. In the second
method (GT FSSP) we use FSSP structural profiles
to jump start the PSI-BLAST searches. In the third
method (GT FSSP SS) we introduce PSIPRED predicted
secondary structure to score the alignment, using a
similar approach to that of Kelley et al. (2000). Finally,
in the fourth method (mGT FSSP SS) we introduce
bi-directional scoring similar to that used, for example, by
the original mGenTHREADER (Jones, 1999a; McGuffin
et al., 2000), 3DPSSM (Kelley et al., 2000) and FFAS
(Rychlewski et al., 2000). For each of these variations
the secondary structure element alignment (SSEA) score
(McGuffin et al., 2001; McGuffin and Jones, 2002; Mars-
den et al., 2002) is also incorporated as an extra input
into the neural network (GT SSEA, GT FSSP SSEA,
GT FSSP SS SSEA and mGT FSSP SS SSEA).

Our findings suggest that incorporating structural
information into the GenTHREADER protocol provides
increased detection of remote homologues while main-
taining a low error rate. We are also able to increase the
accuracy of the generated models.

METHODS
Data
A set of 2727 FSSP files were downloaded from the FSSP
database (Holm and Sander, 1996) at ftp://ftp.ebi.ac.uk in
the directory /pub/databases/fssp. (N.B. This data set will
be referred to as FSSP2727 further on in the text).

Observed secondary structures. Secondary structure
strings were generated for all proteins using the DSSP
secondary structure definition (Kabsch and Sander, 1983).
The eight states (H, I, G, E, B, S, T, -) were reduced to
three states such that H and G are taken as helix states, E
and B are equal to strand states and all other states equal
coil.

Predicted secondary structures. Secondary structures
were predicted for all proteins using the secondary
structure prediction method, PSIPRED (Jones, 1999b).
To ensure that predictions were properly cross-validated,
PSIPRED was trained using six different training sets

producing six different sets of neural network weights.
If the target sequence was found to have a homologous
sequence in a training set then the corresponding set of
weights was excluded.

Similarity scores
All against all comparisons were made for the proteins
within the FSSP2727 dataset using the following similar-
ity scoring methods.

Alignment score. A non redundant dataset of 771530
proteins (which will be referred to as NR-UCL) was
compiled by concatenating sequence files, in FASTA
format, from the following databanks: PDB (Berman et
al., 2000), SWISSPROT and TREMBL (Bairoch and
Apweiler, 2000), PIR (Barker et al., 2001), ENSEMBL
(Birney et al., 2001), WORMPEP (http://www.sanger.
ac.uk/Projects/C elegans/wormpep/) and GENPEPT (ftp:
//ftp.ncifcrf.gov/pub/genpept/). Each protein sequence in
the FSSP2727 dataset was scanned against the NR-UCL
plus the FSSP2727 data set using PSI-BLAST (Altschul et
al., 1997) with ten iterations. The PSI-BLAST generated
alignments were re-scored using the BLOSUM62 matrix;
the highest score was taken between the PSI-BLAST score
and the BLOSUM62 re-score.

Threading potentials. The PSI-BLAST sequence align-
ment for each pair was evaluated using threading poten-
tials described by Jones et al. (1992); Jones (1999a). The
pair energy—pairwise potentials of mean force—was de-
rived using the inverse Boltzman equation originally de-
scribed by Jones et al. (1992). The solvation energy—
relating to the degree of residue burial—was also calcu-
lated from the equation published by Jones et al. (1992).

Secondary Structure Element Alignment (SSEA) score.
SSEAs were scored by aligning predicted and observed
secondary structure elements using a dynamic program-
ming algorithm based on that of Needleman and Wunsch
(1970) and using a scoring scheme similar to Przytycka et
al. (1999) (Table 1). Secondary structure element align-
ment using this scheme has been previously described by
McGuffin et al. (2001); McGuffin and Jones (2002) and
Marsden et al. (2002).

The modified GenTHREADER protocol (GT)
In this study the original GenTHREADER protocol
(Jones, 1999a) was modified. Sequence profiles for the
fold library were generated using PSI-BLAST. The neural
network architecture was also modifed to give a single
output value and the network was trained to learn FSSP
Z -scores, as a measurement of similarity between two
proteins, rather than the binary CATH relationship which
had been used previously (Jones, 1999a).
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Table 1. Score matrix for SSEA

C1 H1 E1

C2 min(len(C1), len(C2)) 0.5 min(len(H1), len(C2)) 0.5 min(len(E1), len(C2))

H2 0.5 min(len(C1), len(H2)) min(len(H1), len(H2)) 0
E2 0.5 min(len(C1), len(E2)) 0 min(len(E1), len(E2))

C1 is a coil element in the observed secondary structure, H2 is a helix element in the predicted secondary structure and 0.5 min(len(C1), len(H2)) is half the
minimum length of these aligned elements. The overall score was normalised by the mean sequence length of the observed and predicted secondary
structures to give a similarity score ranging between 0 and 1.

Neural network architecture. Pairwise energy sum,
solvation energy sum, alignment score, alignment length,
length of the template protein and length of the target
protein were used as inputs to a feed forward, multi-layer,
back propagation neural network. Each score or input
value was scaled to lie in the 0–1 range using the standard
logistic function:

score = 1

1 + e−a(x−b)
(1)

where x is the raw input value and a and b are constants
such that; for the pair energy, a = 1 and b = 100; for the
solvation energy, a = 1 and b = 10; for the alignment
score, alignment length, template length and target length,
a = 0.01 and b = 150.

The GT network consisted of three neural layers: six
neurons in the input layer, six neurons in the hidden layer,
and one neuron in the output layer.

Cross validation and training of neural network. Both
the training sets and test sets were derived from the
FSSP2727 set. The FSSP2727 set of proteins was
randomly split into four approximately equal sub test
sets. Each sub test set was searched against the whole
FSSP2727 set for sequence homologues using FASTA.
For each sub test set, FASTA hits with E-values <0.01 or
sequence identity >30% were discarded producing a list
of non-homologues that could be used for training. This
resulted in four separate jack-knifed training sets.

The network was trained, on each of the four training
sets, to recognise relationships between proteins as
measured by the FSSP Z -score. Protein pairs in the
range 6.0 > Z > 4.0 were left out in order to minimise
ambiguity (see Results section— Defining a fold ). FSSP
Z -scores had also been scaled to lie between 0 and 1 using
the standard logistic function (Equation 1, where a = 0.1
and b = 5.0). The training resulted in four separate sets of
neural network weights which were then saved and loaded
into the neural network for use with each corresponding
sub test set. The neural network output scores from each
of the test sets were then pooled to produce a list of all
pairwise comparisons.

Further improvements to GenTHREADER
Further improvements were made as follows:

GT FSSP. The ‘-B’ option in PSI-BLAST allows
searches to be jump started from a given multiple
alignment (see PSI-BLAST documentation for further
instructions). The given alignment is used to construct
an initial position specific scoring matrix from which the
search is started. FSSP jump started PSI-BLAST profiles
were used for the fold library in order to increase the
detection of remote homologues.

GT FSSP SS. Alignments were scored according to a
simple secondary structure matching scheme, similar to
that used by (Kelley et al., 2000). For each alignment the
predicted secondary structure of the target was compared
with the observed secondary structure of the template.
Aligned residues with matching secondary structure types
were positively weighted and mismatches were negatively
weighted.

mGT FSSP SS. The alignment score of each target pro-
file searched against the template sequences was taken in
addition to the alignment score of each template profile
searched against the target sequences. The highest scoring
alignment was then chosen. This has previously been re-
ferred to as ‘bi-directional scoring’ (e.g. see Jones, 1999a;
Kelley et al., 2000; Rychlewski et al., 2000). Target pro-
files were constructed using a standard PSI-BLAST search
against NR-UCL dataset i.e. no FSSP profiles were used
for the targets.

Addition of the SSEA score as an extra input to neural net-
works (GT SSEA, GT FSSP SSEA, GT FSSP SS SSEA,
mGT FSSP SS SSEA). The improved protocols were
followed, as outlined above, however an additional neuron
was included in the input layer of the neural networks, in
order to accommodate the SSEA score. As SSEA scoring
produces a score between 0 and 1 no scaling was required
for this additional input. An additional neuron was also
added to the hidden layer.

Each of these neural networks were trained and cross-
validated in the same way as GT, described in the

876

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/19/7/874/197639 by guest on 21 August 2022



Improved genomic threading

preceding section. Where secondary structure was used
in training, the observed secondary structures of pairs
of proteins were aligned. However, during testing, the
predicted secondary structures of the target proteins
were aligned to the observed secondary structures of the
templates.

RESULTS
Benchmarking the improved methods
FSSP classification as a ‘gold standard’. The FSSP
database is a fully automatic protein structure classi-
fication database which is compiled by carrying out
all against all 3D comparisons on structures within the
PDB, using the Dali search engine (Holm and Sander,
1993). An FSSP file for a given protein representative
contains a list of structurally aligned homologues which
are ranked according to the Z -score, which relates to the
strength of structural similarity in standard deviations
above expected. One of the advantages of using FSSP
as a ‘gold standard’, to train and benchmark methods, is
that relationships between multi domain proteins have
been classified, whereas in SCOP (Murzin and Bateman,
1997) and CATH (Orengo et al., 1997), domain folds are
generally classified as separate units. Another advantage
of using FSSP as a benchmark is that it better reflects the
upper limit that could be achieved by a fully automatic
fold assignment method, i.e. if the 3D structure is actually
known how well can an automatic method assign folds?
FSSP Z -scores also provide us with a range of ‘similarity
scores’ between protein chains, as opposed to a binary
classification system, such as in SCOP or CATH, where
proteins either have the same fold or they do not.

Defining a fold. The definition of a fold can sometimes
be ambiguous and it has been shown previously that
protein classification systems may often disagree on
whether two protein domains share the same fold or not
(Hadley and Jones, 1999; McGuffin et al., 2001). In this
study, there is the added complication of the inclusion
of multi-domain proteins in the database, which may
contain more than one globular folding unit. Here we take
Z -scores �6.0 to indicate similar ‘folds’ and Z -scores
�4.0 to indicate dissimilar ‘folds’. The highest Z -score
between each pair is taken (see Hadley and Jones, 1999
for a detailed analysis of FSSP Z -scores in comparison to
SCOP and CATH fold definitions).

Screening easy hits. The FSSP2727 set was screened
using PSI-BLAST E-value cutoff of E < 0.1 reducing
the size of the data set to 973. Using a Z -score cut-
off of �6.0 to indicate protein pairs with similar ‘folds’,
the number of proteins with a matching fold in the data
set—or the number of ‘known folds’—was 375. Out of
945 756 pairwise comparisons (9732–973), 6006 pairs

have matching folds, leaving 939 750 mismatches.

Confidence estimation and definitions of terms. An im-
portant consideration in benchmarking fold recognition is
the consistency and reliability of similarity score. In this
analysis we carry out a number alternative measures of
confidence in similarity score.

The terms used in Figures 1 and 2, and in Table 2
are defined as follows; True positives, the number of
matching pairs above a certain score cut-off (i.e. network
output or similarity score); False positives, the number
of mismatching pairs above a certain score cut-off;
(EPQ) Error per query, false positives detected out of
the total number of known folds (375); Selectivity, true
positives divided by the sum of true positives and false
positives; Coverage, the number of correctly assigned
top hits divided by the total number of known folds
(375).

Figure 1 shows how the error per query increases
with increasing detection of true positives. This plot is
similar to those produced by Brenner et al. (1998). Gen-
THREADER with incorporated SSEA scores (GT SSEA)
shows an increase in true positive detection over the
original method (GT), at similar error per query rates.
More strikingly, about twice the number of true positives
can be detected when structural profiles are incorporated
(GT FSSP) and this number can be further increased when
SSEA scores, structural profiles and secondary structure
matching are included (GT FSSP SS SSEA). However,
in this plot there appears to be no overall improvement in
the reliability of score when bi-directional scoring is taken
into account (mGT FSSP SS and mGT FSSP SS SSEA).

From the results in Figure 1 we can determine the
selectivity values shown in Table 2. These values reflect
the confidence in neural network output.

Benchmarking of methods on LiveBench targets
LiveBench (Bujnicki et al., 2001a,b) is a continuous, fully
automated, large-scale project to evaluate structure pre-
diction servers. LiveBench targets are selected from newly
released PDB entries which show no trivial sequence
similarity to any previous PDB entry (BLAST E-value
>0.1). In order to determine how each method might
compare in such a purely automatic blind assessment, 81
targets were downloaded from the ongoing LiveBench-4
evaluation (http://bioinfo.pl/LiveBench/, entries from
2001-11-07 to 2002-03-07 inclusive). 23 of the targets
were classified in LiveBench as ‘easy’ and the remaining
58 were classified as ‘hard’. This set of targets was com-
pared against the library of 2727 templates (FSSP2727),
using each method.

Analysis of prediction quality using MaxSub. MaxSub
(Siew et al., 2001; http://www.cs.bgu.ac.il/∼dfischer/
MaxSub/) was the official method used to automatically
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Fig. 1. Confidence estimation—coverage versus error plot. True positives are plotted against error per query (see Results section for definition
of terms). PSI-BLAST, position specific iterative basic local alignment search tool (Altschul et al., 1997), SSEA, secondary structure element
alignment (predicted versus known secondary structure); GT, GenTHREADER; GT FSSP, GenTHREADER using FSSP structural profiles;
GT FSSP SS, GenTHREADER with structural profiles and PSIPRED predicted secondary structure incorporated into alignment score;
mGT FSSP SS, as the previous method but with bi-directional scoring. The extension SSEA to methods indicates the incorporation of
secondary structure element alignment score (predicted versus known secondary structure) as an added input to the underlying neural network.
All pairs of proteins in the analysis have PSI-BLAST E-values �0.1.

Table 2. Selectivity versus neural network output for the improved version of GenTHREADER incorporating structural alignments profiles, predicted
secondary structure, secondary structure element alignments and bi-directional scoring (mGT FSSP SS SSEA). See Results section for definition of terms.
All pairs of proteins in the analysis have PSI-BLAST E-values � 0.1

Network score cut-off True positives False positives Selectivity Coverage

0.615 137 0 1.0 0.253
0.548 183 19 0.9 0.341
0.517 214 53 0.8 0.387
0.502 244 101 0.7 0.416

assess prediction quality at CAFASP-2 (Fischer et al.,
2001) and it is also one of the methods used to evaluate
the performance of prediction servers participating in
LiveBench. The MaxSub method produces a single score,
between 0 and 10, representing the quality of the models
(correct models are those with scores > 0). The score is
normalised such that many scores may simply be added
across a number of targets to produce total scores for each
structure prediction method (Siew et al., 2001).

The ‘model quality versus error’ plot in Figure 2
allows us to assess the influence of each improvement on

model quality. The cumulative MaxSub score is plotted
against false positives. From this plot we can see a
gradual increase in MaxSub total as each improvement
is made. It can be seen that mGT FSSP SS SSEA clearly
outperforms the other methods in terms of model quality
with similar numbers of false positives.

Figure 3 shows a couple of examples of the improve-
ments to model quality. In Figure 3a the same top hit is
selected by GT as is selected by mGT FSSP SS SSEA
for LiveBench target 1hqz1, however the alignment pro-
duced by the improved method is more accurate. Figure 3b
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Fig. 2. Benchmarking methods on LiveBench targets (Bujnicki et al., 2001b)—MaxSub cumulative total is plotted against false positives as
an assessment of model quality and reliability. For definitions of methods see legend of Figure 1.

shows an example where mGT FSSP SS SSEA selects a
different top hit and produces a better model than GT for
LiveBench target 1ktzB.

DISCUSSION
The results of this study indicate that the incorporation of
structural information, such as FSSP structural alignment
profiles and alignments of PSIPRED predicted secondary
structures to observed secondary structures, increases both
the reliability of the GenTHREADER method and the
accuracy of the alignments produced.

In a previous study the alignment of predicted secondary
structure elements of a target to a library of DSSP
assigned secondary structures (SSEA) was shown to detect
more remote homologues than could be detected using
purely sequence based methods such as the original
GenTHREADER method (McGuffin and Jones, 2002).
However, for automated fold recognition methods to be
useful it is important that the scoring scheme used for fold
recognition is consistent and reliable so that scores are
comparable. One of the disadvantages of relying on SSEA
scoring for genome annotation is the low consistency of
the scoring scheme

Coverage versus error plots, such as those produced by

Brenner et al. (1998) allow us to compare the usefulness of
methods for genome annotation by placing a premium on
the consistency of the score. The plot in Figure 1 clearly
illustrates that SSEA is a poor method to use alone if a
low error rate per query is required. However, combining
the SSEA score with GenTHREADER (GT) increases the
number of true positives whilst maintaining a low error
rate (GT SSEA).

Using structural profiles from FSSP to seed the initial
sequence searches noticeably enhances fold recognition
(GT FSSP). The number of distant homologues correctly
assigned is effectively quadrupled at low error rates,
suggesting more consistent scores. Adding SSEA in
combination with structural profiles increases the number
of correct assignments slightly further (GT FSSP SSEA).

Incorporating secondary structure matching directly into
the alignment scoring scheme increases the reliability
of the score further still (GT FSSP SS). Although there
remains some advantage in combining this alternative
secondary structure scoring method with SSEA as an extra
input to the neural network (GT FSSP SS SSEA).

In addition to the score reliability, the alignment accu-
racy is also an important consideration when assessing
fold recognition methods, as accurate sequence-to-
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a, Target: 1hqz1

b, Target: 1ktzB

GT
Top hit:1cof
MaxSub: 5.83

mGT_FSSP_SS_SSEA
Top hit:1cof
MaxSub: 6.27

GT
Top hit: 3ebx
MaxSub: 3.08

mGT_FSSP_SS_SSEA
Top hit: 1bteA
MaxSub: 4.43

Fig. 3. Superposition of backbones of targets (grey) with backbones
of predicted models (white). Residues of model within 3.5 Å of
target are shown in black. MaxSub, MaxSub score between target
and model. For definitions of methods see legend of Figure 1.
a, LiveBench easy target 1hqz1—an example of improvement in
alignment quality. The same top hit is selected by both GT and
mGT FSSP SS SSEA but the MaxSub score is improved by the
latter method (right model). b, LiveBench hard target 1ktzB—a
more appropriate model is selected by the improved method (right
model) compared to the GT model (left model).

structure alignments imply accurate models. If a fast
method such as SSEA were to be used alone for genome
annotation, alignment accuracy would be an issue, as it
is difficult to relate the alignment of intact secondary
structure elements to an alignment on a residue-by-residue
basis. However, by incorporating SSEA scores into Gen-
THREADER(GT SSEA) we benefit from the detection of
more remote homologues whilst also generating a usable
sequence to structure alignment.

The advantage of carrying out bi-directional scoring
becomes clear when using MaxSub to score model quality.
In the cumulative MaxSub score versus false positives plot
(Figure 2), mGT FSSP SS SSEA is shown to achieve the
highest cumulative MaxSub score with low numbers of
false positives.

The effect of the addition of the FSSP profiles and the
secondary structure matching is to directly increase the
alignment accuracy. An example of this can be seen in
Figure 3a where the same top hit is chosen by both GT

and mGT FSSP SS SSEA, however the MaxSub score is
increased. Conversely, the addition of the bi-directional
score and the SSEA score only alters the neural network
output score and there is no change in the alignment.
However, as a consequence of the change in neural
network output, hits may be ranked differently so that a
different top hit for a particular target may be selected.
Figure 3b shows an example where a different top hit is
selected by the method mGT FSSP SS SSEA which is
shown to have a higher MaxSub score than the top hit
selected by GT.

It must be said that here we have focused primarily on
improving the quality of the input data to the underlying
neural network in order to improve GenTHREADER. We
have purposefully kept the neural network architectures
simple in order to assess directly the effect of the
improvements and no rigorous attempt has yet been made
at optimising the machine learning. However, we are
currently investigating the possibility of using a support
vector machine in order to enhance the machine learning
aspects of GenTHREADER.

CONCLUSIONS
In this study we have shown that the incorporation of
secondary structure element alignments (SSEAs), FSSP
structural alignment profiles, secondary structure match-
ing and bi-directional scoring into the GenTHREADER
protocol increases the number of folds that can be
correctly assigned, improves the consistency of score
and increases the quality of models. The reliability for
recognising the folds of evolutionarily distant proteins
is approximately 4 to 5 times that of the original Gen-
THREADER method when using these modifications.
The model quality is approximately twice that of the
original method according to automated assessment
method MaxSub at low false positive rates. We expect
that improved versions of GenTHREADER, using these
modifications, will provide a more reliable, accurate
and comprehensive automated annotation of completed
genomes.
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