Letters to the Editor

The opinions expressed in these columns do not necessarily reflect those of the Editors.

Prog. Theor. Phys. Vol. 40 (1968), No. 3

Improvement of the Landau Theory and the Critical Indices

Yoshiki KURAMOTO

Department of Physics, Kyoto University Kyoto

May 4, 1968

The inconsistency inherent in the Landau theory¹⁾ of the second order phase transition is removed in such a way that most of the results obtained by the static scaling theory²⁾ may be reproduced. Consider a spherical region of volume $v = (4\pi/3)R^3$ = $(4\pi/3)K^{-3}$ in a system and define the local order parameter $\gamma(\mathbf{r})$ as

$$\eta(\mathbf{r}) = (1/v) \int_{v} m(\mathbf{r} + \mathbf{r}') d\mathbf{r}', \qquad (1)$$

where $m(\mathbf{r})$ denotes the local order parameter associated with the atom at the position \mathbf{r} , and the integral extends over the above mentioned spherical region centered at \mathbf{r} . From the definition (1) it follows that $\eta_{\mathbf{k}} \simeq 0$ for $|\mathbf{k}| > K$. In the Landau theory R is kept fixed but in our treatment R is changed with temperature in such a way that at all temperatures the fluctuation of $\eta(\mathbf{r})$ remains small enough to ensure the consistency of Landau's idea, i.e. the linearity of the fluctuation. In the paramagnetic region, $\varepsilon = (T - T_c)/T_c > 0$, this means that in the expression of the free energy density,

$$g(\mathbf{r}) = g_0 - a\eta(\mathbf{r})^2 + b\eta(\mathbf{r})^4 + c[\nabla\eta(\mathbf{r})]^2, \quad (2)$$

the term $b\eta(\mathbf{r})^4$ may be omitted, or

$$\lambda a \sim b \langle \eta(\mathbf{r})^2 \rangle \quad (\lambda \ll 1).$$
 (3)

Let R change in such a way that λ does not depend on ε . It is assumed at the same time that the term $c[\mathcal{P}\eta(\mathbf{r})]^2$ contributes always with the same importance as the term, $a\eta(\mathbf{r})^2$. This implies that

$$a \sim cK^2$$
. (4)

From (2)~(4), the fluctuation of the k-th mode $\phi_k = \langle \eta_k \eta_{-k} \rangle$ is obtained in the form $\phi_k \sim K^x f(k, K)$, where f(k, K) has the Ornstein-Zernike form and x is determined by the K-dependence of a. The above form of ϕ_k implies that $K(\varepsilon)$ behaves like the inverse correlation range κ , or $K \sim \varepsilon^{\nu}$.*) Similarly for $T < T_c$, we have $K \sim |\varepsilon|^{\nu'}$. From (3) and (4), and noting that a is proportional to the inverse susceptibility, we obtain

$$a \sim \varepsilon^r$$
, (5a)

$$b \sim \lambda \epsilon^{-d\nu+2\gamma}$$
 (5b)

and

$$c \sim \varepsilon^{\gamma - 2\nu}$$
. ($\varepsilon > 0$) (5c)

These are our basic equations from which the relations among the critical indices are derived.

(a) Spatial correlation function $\phi(R)$. Assuming the form of $\phi(R)$ as $\phi(R) \sim \exp(-\kappa R)/R^{d-2+\eta}$ $(R < R_c)$, we obtain $(1/v) \int_v \phi(R) d\mathbf{R} \sim \kappa^{d-2+\eta} \sim \varepsilon^{\nu(d-2+\eta)}$. Since $\eta(\mathbf{r})$ is approximately constant in the region of volume v, we obtain another equation $(1/v) \int_v \phi(R) d\mathbf{R} \sim \langle \eta(\mathbf{r})^2 \rangle \sim \varepsilon^{d\nu-\gamma}$. Compar-

668

^{*)} Throughout the present note, the standard notations are used for the critical indices.³⁾

ing these two equations, the relation $\gamma/(2-\gamma) = \nu$ is obtained.

(b) Specific heat C. Expressing $g(\mathbf{r})$ in terms of η_k 's, the singular part of the free energy Ψ is given by

$$\Psi = -\beta^{-1} \ln \int e^{-\int \beta(g(\mathbf{r}) - y_0) d\mathbf{r}} d\{\eta_k\}$$
$$\sim \kappa^d \ln \varepsilon^{-\gamma} \sim \gamma \varepsilon^{d\nu} \ln \varepsilon \quad (\varepsilon > 0) \qquad (6)$$

Noting that $C \propto -(\partial^2 \Psi / \partial \varepsilon^2)$, we obtain $d\nu = 2 - \alpha$. Similarly for $\varepsilon > 0$, the relation $d\nu' = 2 - \alpha'$ is obtained. In particular for $\alpha = 0$, C diverges logarithmically, and if $\gamma = \gamma'$ the same coefficient multiplies the logarithmically, when $\varepsilon > 0$ and $\varepsilon < 0$. Our argument on the specific heat is quite analogous to that of Douglass.⁴⁾

(c) Magnetization $\langle \eta \rangle$. Making a slight conversion of our procedure, let us keep Rat a fixed value $\varepsilon_0^{-\gamma}$ and change the temperature from ε_0 down to $-\varepsilon_0$. In this case $a(T, \kappa(\varepsilon_0))$ may be considered to be an analytic function of temperature, while $a(T, \kappa(\varepsilon))$ may not. b and c are assumed, following Landau, to be approximately constant near T_c . If we ignore the difference of two temperatures at which $a(T, \kappa(\varepsilon_0))$ and $a(T, \kappa(\varepsilon))$ vanish respectively, we have at $\varepsilon = -\varepsilon_0$ the equations

$$a \sim -\varepsilon_0^r$$
, (7a)

$$b \sim \lambda \varepsilon_0^{-d\nu + 2\tau}$$
 (7b)

 $c \sim \varepsilon_0^{r-2\nu}$. (7c)

The above temperature difference may properly be taken into account and leads to results which are identical with Eqs. $(7a) \sim$ (7c). Substituting $(7a) \sim (7c)$ into (2) and expressing (2) in the form

$$g(\mathbf{r}) = g_0 - a' (\eta(\mathbf{r}) - \eta_0)^2 + b' (\eta(\mathbf{r}) - \eta_0)^3 + d' (\eta(\mathbf{r}) - \eta_0)^4 + c' [\mathbf{r} (\eta(\mathbf{r}) - \eta_0)]^2,$$

where $\eta_0 = (-a/2b)^{1/2}$, we find that the nonlinear fluctuation terms are negligible at

 $\varepsilon = -\varepsilon_0.$ More accurately, $\lambda a' \sim b' \langle (\eta(\mathbf{r})) \rangle$ $-\eta_0$ ² $\rangle^{1/2}$ and $\lambda a' \sim d' \langle (\eta(\mathbf{r}) - \eta_0)^2 \rangle$. Therefore $R(\sim \varepsilon_0^{-\nu})$ is just the correlation range at $\varepsilon = -\varepsilon_0$, or $\nu = \nu'$. Since a' is proportional to a, we have a relation $\gamma = \gamma'$. Further we note that the Landau theory should give a correct result at $\varepsilon = -\varepsilon_0$. Then $\eta_0(\sim \varepsilon_0^{(d\nu-\gamma)/2})$ may be replaced by $\langle \eta \rangle$, giving the relation $2\beta = d\nu - \gamma$. Finally we investigate the effect of the external field. In order to produce at $\varepsilon = -\varepsilon_0$ an additional magnetization comparable with the spontaneous magnetization, an external field B of the order of $\varepsilon_0^{\gamma} \langle \eta \rangle (\sim \langle \eta \rangle^{1+(\gamma/\beta)})$ is necessary. This is easily seen when we note that, in the existence of the external field, the term $-B\eta(\mathbf{r})$ comes into the expression of $g(\mathbf{r})$. The induced magnetization will not be reduced seriously by changing the temperature towords T_c . Therefore the equation $B \sim \langle \eta \rangle^{1+(\gamma/\beta)}$ may hold at T_c , leading to the relation $\delta =$ $1+(\gamma/\beta)$. Thus we have succeeded in deriving all the independent relations among the critical indices known to us. The details will be discussed in a separate paper. The author wishes to express his sincere gratitude to Professor K. Tomita for his valuable advice.

- L. D. Landau and E. M. Lifshitz, *Statistical Physics* (Pergamon Press, London, 1958), Chap. 14.
- 2) L. P. Kadanoff, Physics 2 (1966), 263.
- M. E. Fisher, Proccedings of the Conference on Critical Phenomena (N. B. S. Publication, Washington, D. C., 1966), 21.
- 4) D. H. Douglass, unpublished.