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Abstract  A novel approach to improve the quasi-Yagi 
antenna performances by using the so-called ends-fed dipole 
radiator is presented. To illustrate this idea a cylindrical 
prototype operating at 790 MHz is developed and tested. 
Since the area around the radiating arms is free of any 
conductors, the proposed radiator is a good candidate to 
create high polarization purity of radiation. The measured 
results have revealed that such a driver is able to achieve an 
effective area reduction to 20% with enhanced up to 17 dB 
front-to-back ratio without decreasing the bandwidth.  

Keywords  Cylindrical Radiator, Current Distribution, 
Induced Emf Method, Quasi-Yagi Antenna 

1. Introduction
Modern wireless communication systems need the 

antennas to be compact as possible. A suppression of an 
unwanted radio frequency emission has led to an increasing 
demand for directional antennas such as quasi-Yagi arrays. 
There have been many Yagi-Uda/quasi-Yagi antennas with a 
strip/coaxial feed and a dipole driver that have been 
presented over the last ten years [1-4]. Each of these 
antennas is the successful discovery in terms of its 
bandwidth, radiation patterns, size reduction, and simplify of 
manufacturing. However, all the antennas contain a balun 
that is used to excite the center-fed dipole driver. Frequently, 
the 180º out-of-phase balun nodes are displaced in the area 
substantially that increases the surroundings around the 
dipole nodes and affects polarization purity of radiation. This 
also needs accurate accomplishment of influence design 
including the length of the line as well as the 
meandering/turning of that.  

Below we propose a modified dipole-like radiator. Its 
architecture is the result of an attempt to alleviate the 
complication of a coaxial/strip feed with a regular wire 
antenna design principle by combining the nonstandard 
ends-fed dipole radiator (EFDR) and an usual balun such as 
coupled line directional coupler or branch-line one. After its 
careful design, this EFDR being assembled with 

corresponding ground exteriors (such as ground planes of a 
balun) acts as a directive standalone antenna or plays the role 
of a radio frequency illuminator in a quasi-Yagi assembly.  

An analytical study of the EFDR is presented, the 
numerical optimization of the quasi-Yagi antenna by proper 
3D EM solver is described, and experimental results given in 
the Section 4 are used to verify the proposed approach.  

2. Current Distribution, Radiated Fields,
and Radiation Resistance of the
EFDR

An ends-fed dipole radiator contains two collinear 
cylindrical wires 1 and 2, an energized coaxial cable 3, and a 
balun 4 having the input port 5 and 180º out-of-phase output 
ports 6 and 7 (Fig. 1).  

Figure 1.  An ends-fed dipole radiator 

The following analysis applies to both 
perfectly-conducting wires 1 and 2 of radii a  that are 
electrically thin ( a λ ), where λ  is the free-space 
wavelength. The adjacent ends 8 and 9 are placed to produce 
the immediate nearness ( b λ

), and the 180º out-of phase 
outputs 6 and 7 are connected to the far ends 10 and 11 of 
collinear wires, respectively. Both the wires each of length l  
are centered and oriented along the z  axis. The 
surroundings of the EFDR are the homogeneous outside 
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space characterized by permittivity ε  and permeability µ  
with corresponding wave number k ω εµ=  and intrinsic 

impedance η µ ε= . 
In order to illustrate the creation of the current distribution 

on the EFDR, let us first begin according to [5, Chapter 1] 
with the geometry of an open-circuited lossless two-wire 
balanced (symmetrical) transmission line as shown in 
Fig.2A.  

 

Figure 2.  Current distribution on (A) a lossless open-circuited two-wire 
transmission line, (B) tilted transmission line, and (C) a linear ends-fed 
dipole radiator 

For this line the current in a half-cycle of one wire is of the 
same magnitude but 180º out-of-phase from that in the 
corresponding half-cycle of the other wire. If in addition the 
spacing between the two wires is very small ( s λ ) or both 
the wires are placed inside the ground hollow pipe, the fields 
radiated by the current of each wire are essentially cancelled 
by those of the other. 

As the section of the transmission line outside the hollow 
pipe between 0 z l≤ ≤  begins to tilt as shown in Fig. 2B, it 
can be assumed that the current distribution is essentially 
unaltered in form in each of the wires [6]. However, because 
the two wires of the tilted section are not necessarily close to 
each other, the fields radiated by one do not necessarily 
cancel those of the other. Ultimately the tilted section of the 
transmission line can take the form shown in Fig. 2C. If the 
cross-section of the hollow pipe is the figure-dumb-bell with 
very thin cross-piece rather than the circle, then this is the 
geometry of the proposed linear EFDR. If the diameter of 
each wire is very small, the ideal standing wave pattern of the 
current along the arms of the EFDR is sinusoidal with a null 
at the end. Since both the ends of the wires are placed almost 
in the origin, the current distribution can be written as 

sin , 0
( 0, 0, )

sin , 0
I kz z lmI x y z
I kz l zm

′ ′+   ≤ ≤
′ ′ ′= = =  ′ ′−   − ≤ ≤

   (1) 

where ( , , )x y z′ ′ ′  represent the coordinates of the radiator. 
The following analysis is based on the approach described 

in [5, Chapter 4]. The finite radiator of Fig. 1 is subdivided 
into a number of infinitesimal dipoles. For such a dipole 
positioned along the z  axis at z′ , the electric field 
component in the far-field region is given as 

( ) sin
4

jkRkI z edE j dz
R

η θθ π

−′
′=           (2) 

where R  is a distance from any point on the radiator to the 
observation point which is characterized by radial distance 
r . Using corresponding far-field approximations, (2) can be 
written as 

( ) cossin
4

jkrkI z e jkzdE j e dz
r

θη θθ π

−′ ′+ ′=   (3) 

Summing the contributions from all the elements, we can 
write for the distribution of (1) 

sin
4

l jkrkeE dE j
r

l
η θθ θ π

−
= =

−
∫  

 (4) 

After corresponding manipulations, (4) takes the form of 

[ ]sin 2jkrE j IQ e rmη θ πθ
−=          (5) 

( ) ( )1 cos cos cos sin cos sin cosQ kl kl kl klθ θ θ= − −   (6) 

Next, the average Poynting vector avW  is given by 
1 1 2*Re
2 2

Eθη
 = × =  

W E H rav 0      (7) 

To find the total power radiated Prad , the average Poynting 
vector of (7) is integrated over a sphere of radius r . Thus, 
for a free-space ( 120η π=  Ohms) 
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( )
2

2 sin
0 0

P W r d drad av
π π

θ θ ϕ⋅= =∫∫ ∫ ∫
avW ds  

2230
s n

0
i
QI dm θ

θ

π
= ∫              (8) 

The radiation resistance Rr  can be obtained using 
2 2P I Rrad m r=  and (8), and can be written as (please 

see Appendix I) 

2 22 60 sin
0

R P I Q dr rad m
π

θ θ = =   ∫  

( ) ( ){ 330 3 ln 4( ) 4 4 2kl Ci kl Ci klγ  = + + −  
 

( ) ( )
1

2
sin 222sin

kl
kl

kl
 −  

 
+


          (9) 

where 0.5772157γ =  (Euler’s constant) and ( )Ci x  is the 
cosine integral. 

Now, according to [5, Chapter 8] the real part Rm  of an 
input impedance Z R jXm m m= +  referred to at the current 
maximum Im  can be expressed as R Rm r=  whereas the 
input resistance Rin  referred to at the current Il  at the 
input terminals 10 and 11 (Fig. 1) can be obtained by a 
transfer relation sin( )I I kll m= , or 

( )2sinR R klin m=            (10) 

3. Self-impedance of the EFDR 
The induced emf method leads to closed-form solutions 

which provide such the design data that can be used directly 
as very good initial parameters in full-wave 3D EM 
simulation. When the input reactance is desired, the 
near-fields must be known. These fields are derived based on 
the geometry of Fig. 3.  

 

Figure 3.  A geometrical arrangement of the EFDR for the near-field 
approximation 

The following procedure be like to that used in [5] for the 
classical dipole. Since the EFDR carries an electric current 

( )I z′  only, both magnetic current and related potential 
function are zero. To find the vector potential ( , , )x y zA  
generated by a given electric current density 

( )J J J J zx y z z ′= + + ≈J x y z z0 0 0 0  we write 

( ) ( ), , 2
4

l jkReA x y z aJ z dzz z R
l

µ π
π

+ −
′≈ =

−
∫z z0 0A  (11) 

For a cylindrical wire, the total current ( )I z′  is uniformly 
distributed around the surface of the wire and it forms a 
linear current sheet with an electric density ( )J zz ′ . The 
current is concentrated primarily over a very small thickness 
of the conductor and is given by 

( ) 2 ( ) sin( )I z aJ z I kzz mπ′ ′ ′= = . Substituting (1) into (11) 
leads to the formula 

( ) ( ), ,
4

l jkReA x y z I z dzz R
l

µ
π

−
=

−
∫

 

( )
1 2

´
4 1 20

l jkR jkRe eI z dz
R R

µ
π

− − 
  ′= +
  

∫      (12) 

where the integration performs from 0z′ =  until z l′ =  
since the currents in the wires are symmetrical with respect 
to the origin. The infinitesimal dipoles positioned along the 
z-axis at z′±  are removed from the point P (Fig. 3) at the 
distances 

( )22 ´1R r z z= + − , ( )22 ´2R r z z= + +    (13) 

The electric field z-component Ez  can now be found using 
the expression [5, page 136] 

( )1j jω
ωµε

= − − ⋅E A A∇ ∇         (14) 

Substituting (13) into (12) and taking into account the 
coupling between partial derivatives 

2 2
1 1

2 2´

R R

z z

∂ ∂
=

∂ ∂
, 

2 2

2 2´
2 2R R

z z

∂ ∂
=

∂ ∂
 

we can write the following relationship 
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 (15) 

Two-step integration by parts in (15) yields 

( )
´

1 21 ´
4 ´ 1 2 ´ 0

z ljkR jkRd e eE j I zz dz R R
z

πω

= − −   = − +
    =


 

( )
´

1 2´
´ 1 2 ´ 0

z ljkR jkRdI z e e
dz R R

z

=− − 
 − +
   =

 

( ) ( )
2 1 2´ 2 ´ ´

2 1 2´0

l jkR jkRd I z e ek I z dz
R Rdz

  − −     + + + 
       

∫  

1 ´ ´
1 2 3´ 0 ´ 04

z l z lj B B Bz zπωε
= = = − − += =  

     (16) 

where 

( ) ( )( )
1´ sin 11 1? 3

1

jkR lez lB I kl z l jkRm lz R l

 −
= = − += 



 

( )( )
2

1 23
2

jkR le z l jkR l
R l

−
− + + 


 

( )
1 2 0´ cos 22 ? 1 2 0

jkR jkR jkRl le e ez lB kI klmz R R Rl l

 − − −   =  = + − =     

( )22
1R r z ll = + − , ( )22

2R r z ll = + + , 

2 2
0R r z= +  

The third quantity 3B  in (16) vanishes because the factor 
2 2 2[ ( ) ( )]d I z dz k I z′ ′ ′+  is equal to zero at all the points of 

integration along the radiator.  
Using the current distribution of (1) and tangential electric 

field of (15), the input impedance referred to at the current 
maximum Im  is defined as [5, page 465] 

1 ( , ) ( , )
2

l
Z I r a z z E r a z z dzm z

Im l
′ ′ ′= − =  = =  =

−
∫ (17) 

In other words, the complex power input into radiator is 

equal to the complex radiated power at the surface of the 
wires [7]. Substituting (16) into (17) it can be shown that 
both the real Rm  ( Rin ) and the imaginary Xm  ( Xin ) 
part of the self- (input) impedance Z R jXm m m= +  
referred to at the current maximum (at the current Il  at the 
input terminals) can be expressed for a free-space as (in 
Ohms) 

1( )sin( ) ( )(1 1( ))30 31 ( )0

l jkR zkl e z l jkR zZm k R z

 − − + =   
∫  

2( ) 1( )( )(1 2( )) cos( )3 1( )2 ( )

jkR z jkR ze z l jkR z ekl
R zR z

− − + +  − −
 
 

 

2( ) 0( )
2 ( )

2( ) 0( )

jkR z jkR ze e jkz jkze e dz
R z R z

− −   −+ + −  
 (18) 

2sin( 4 ( ) ) sin( )260 sin ( ) 3 ( )
24 ( )

akl kalR kl Ci kam kaakl l

  +  
= − +  

  + 

 

( ) ( )2 2
0.5 [ ( 4 2)] 0.5 [ ( 4 2)]a aCi kl Ci kll l+ + + + + −  

( ) ( )2 2
2 [ ( 1 1)] 2 [ ( 1 1)]a aCi kl Ci kll l

− + + − + − 


 (19) 

2cos( 4 ( ) ) cos( )260 sin ( ) 3 ( )
24 ( )

akl kalX kl Si kam kaakl l

  +  
= − −  

  + 

 

( ) ( )2 2
0.5 [ ( 4 2)] 0.5 [ ( 4 2)]a aSi kl Si kll l− + + − + −

( ) ( )2 2
2 [ ( 1 1)] 2 [ ( 1 1)]a aSi kl Si kll l

+ + + + + − 


 (20) 

( ) 2sinR R klin m=    , ( ) 2sinX X klin m=     (21) 

The derivation of expressions (19) and (20) is given in 
Appendix II. If the radius 0.0001a l=  then the result of (19) 
obtained by an induced emf method is equal to that of (9) 
obtained by integration over a closed sphere, namely for 

0.289l λ =  we have 

94.363Rm = , 100.264Rin =          (22) 

This coincidence both the quantities Rr  (9) and Rm  (19) 
may be considered as the mutual verification of calculations. 

4. Quasi-yagi Antenna 
The physical characteristics for the antenna presented are 

the same as from the conventional design reported in [5], 
however the corresponding arrangement is quite different 
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(Fig. 4).  

 

Figure 4.  3D view of the proposed quasi-Yagi antenna: (A) large scale, (B) 
fine scale 

The presence of the ground pencil-case containing the 
balun affects the coupling between the director and the driver 
requiring that both the director ( Sdir ) and the reflector 
( Sref ) spacing be modified relative to the conventional 

design. The values for Sdir , Sref  were initially chosen by 
using [5, Table 10-6] and then refined through an EM 
simulation in order to minimize the return loss at the input 
port of the balun used. Its implementation follows the 
classical procedure to realize the quarter-wave coupled 
strip-line directional coupler [8]. The required phase shift is 
obtained by adjusting the length difference between outgoing 
lines to be equal 0.5 rλ ε , where rε  is the dielectric 
constant of the material used to realize the coupler. Since the 
characteristic impedance of the coaxial cable 3 (Fig. 1) is 
equal to 50 Ohms and the radiator is connected to the balun 
in series [9], the input resistance Rin  should be twice 
( 100Rin =  Ohms). This requires that the length of radiating 
wires (Fig. 1) should be chosen initially as indicated above 
for the parameter list (22). As follows from (20), the 
condition 0.289l λ =  gives the input reactance for the 
actual set of radii ( 0.01 0.05a l≤ ≤ ) around 650j−  Ohms 
(the thinner the wire, the closer the reactance is to 700j−  
Ohms). Since the balun introduces into radiator an inductive 
reactance Xbal  which is a function of the distance Sref , 
only the difference around 650X jbal −  should be 
compensated by some means. To do so the inductive 
reactance * 650 2X j Xbal= −  is introduced initially in an 
equivalent representation of the radiator at both the arms in 
series [10]. This reactance is performed as the short-circuited 
coaxial line of length *l  with the corresponding inner and 

outer radii *r  and *R , respectively, placed inside the 

hollow radiating arm, where *l l< , *R a< . The 

simulation/optimization by WIPL-D [11] for 2.5rε =  
(Russian dielectric material FAF-4) leads to the following 
final dimensions (in millimeters): 

100l = , 3a = , 
* 71l = , 

* 0.8r = , 
* 2.5R = , 164Ldir = , 

4.5ddir = , 21.8Sdir = , 
69Sref =

 
A comparison between measured and simulated data is 

presented below. 
The results for the return loss ( 11S ) and isolation ( 14S ) of 

a balun (Fig. 5) that excites the antenna show close 
comparison.  

 

Figure 5.  Simulated (—) and measured (···, +++) return loss ( 11S ) and 
isolation ( 14S ) of a balun that excites the quasi-Yagi antenna 

Some discrepancy is attributed to impedance 
discontinuities in the test fixture RF connector (not shown in 
Fig. 4) and an attainable resolution of the etching process 
that was used to realize the printed-circuit boards of the 
balun.  

 

Figure 6.  Simulated (—) and measured (···) radiation patterns: (A) 
E–plane, (B) H–plane 
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Fig. 6 shows both the measured and predicted E–plane 
(yz–plane cut) and H–plane (xy–plane cut) pattern at 790 
MHz with the front-to-back ratio approximately 17 dB. The 
simulated cross-polarization fields of the antenna exhibit 
almost omnidirectional patterns with the peak around -35 
and -26 dBi in the E– and H–plane, respectively, and are not 
shown in the plots for brevity. The measured 
cross-polarization patterns are 6 dB larger than those 
produced through the simulation.  

5. Conclusion 
A new implementation of a quasi-Yagi antenna with end 

fire like radiation and good polarization purity has been 
proposed. To realize the necessary pattern an ends-fed dipole 
radiator has been investigated. These radiation properties 
make the radiator as a qualitative standalone module or a 
suitable candidate for phased arrays. An attractive feature of 
the antenna is its compact size for UHF band that paves the 
way for new applications in wireless communication 
systems. 

6. Appendix I 
To obtain the closed-form expression of (9), the 

introduction of the supplementary symbols to denote 
constants has been made: klα = , sins α= , sin(2 )2s α= , 

sin(4 )4s α= , cosc α= , cos(2 )2c α= , cos(4 )4c α= . 
Let us begin with the transformation of expression (6) in the 
binomial: 

[cos( cos ) ] [sin( cos )cos ]Q c c s sα θ α θ θ= − − − −  (23) 

Square (23), we get three terms in the numerator of integrand 
of the integral (9), equal to the sum of three integrals 
respectively:  

1 2 3R R R Rr = + +              (24) 

We will calculate these three integrals by turns, and then sum 
them to (24). In order to shorten the text we will normalize 
integrals to the constants that have been obtained after 
squaring (23). For cancellation we will use such standard 
trigonometric formulas as double-angle, lowering the degree 
and so on. We will also use such rule as 

( ) ( )
a b

f x dx f x dx
b a

= −∫ ∫            (25) 

During the integration several changes of integration 
variable will be carried out. First change of variable is 

cosx θ= , arccos( )xθ = , 

21d dx xθ = − − , 2sin 1 xθ = −   (26)  

after recalculation of limits of integration, we get upper limit 
cos 1a π= = − , lower limit cos 0 1b = = .  

Calculation of the first integral in (24) proceeds as follows, 
using (26) and (25) by turns:  

21 [cos( cos ) ]
2 sin60 0

R c d
c

π α θ
θ

θ
−

= ∫
 

[ ]1 1 22 cos( ) c[cos( ) ]
22 2 11 11 1

xx c dx dx
xx x

αα−   −− − = =
  −− −  −

∫ ∫  (27) 

Applying partial fraction expansion to the denominator of 
(27)  

( )21 (1 ) 0.5 1 (1 ) 1 (1 )x x x− = − + +       (28) 

together with (25), we obtain 

[ ]1 2cos( ) c1
2 160 1

xR dx
xc

α −
=

+
−
∫          (29) 

Second change of variable is 

( 1)u xα= + , ( ) 1x u α= − , dx du α= , 

2a α= , 0b =                (30) 

After performing (30) in (29), we obtain 

[ ]2 2cos[ (( ) 1)] c1
2 1 ( ) 160 0

uR du
uc

α α α
α α

− −
=

+ −∫  

2 2sin sin(2 )2
2 2

0 0

su us du du
u u

α α
= − +∫ ∫  

2 2 2 2 2 2 22 cos (1 sin ) sin

0

c u c c u s u du
u

α − + + − +
+ ∫  (31) 

Integrals in (31) can't be expressed in terms of elementary 
functions. We will use such special functions as: sine integral 

sin( )
0

x uSi x du
u

= ∫                 (32) 

cosine integral 

cos 1( ) ln( )
0

x uCi x x du
u

γ
−

= + + ∫          (33) 

related cosine integral 

1 cos( ) ln( ) ( )
0

x uCi x du x Ci xn u
γ

−
= = + −∫   (34) 

where 0.5772157γ =  (Euler’s constant). 
Expressing (31) through (32), we obtain 

21 60 (2 ) 0.5 (4 )2 2R c s Si s Siα α= − +  
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2 2 2 2 21 cos sin ( )22
0 0

u u s cc du du
u u

α α− −
+ +∫ ∫     (35) 

After completing some transformations and applying (34) to 
(35), we obtain the final expression for 1R : 

2 21 30 [4 (2 ) (4 )2R c c Ci c Cin nα α= −  

(4 ) (2 )]2 2s Si s Siα α+ −            (36) 

Calculation of the second integral in (24) proceeds as follows, 
using (26), (25), (28) and (30) by turns: 

[ ][ ]cos( cos ) sin( cos )cos2
60 sin2 0

c sR d
s

π α θ α θ θ
θ

θ
− −

= ∫  

1 10.5sin(2 ) csin( ) cos( )
1 1

1 1

x x x x x cdx s
x x

α α α− −
= −

+ +
− −
∫ ∫  

2 0.5sin(2 2 )[( ) 1]

0

u u du
u

α α α− −
= ∫  

2 2sin( )[( ) 1] cos( )

0 0

c u u u cdu s du
u u

α αα α α− − − −
− −∫ ∫  

2 2 2sin sin 1 cos2

0 0 0

u u uc du s s du c du
u u u

α α α − = − −
 
 

∫ ∫ ∫  

2 2 2sin(2 ) cos(2 ) cos2 2
2 2

0 0 0

c su u udu du du
u u u

α α α 
 − + −
 
 

∫ ∫ ∫  

2 2( ) (2 ) 0.5 (4 ) (2 )2 2s c Si c Si s Cinα α α= − + − +  

20.5 (4 ) (2 ) 0.5 (2 )2 2s Ci s Si s Cin nα α α− − +     (37) 

Thus, final expression for 2R  is 

2 15 [2 (2 ) (4 )]4R s Si Siα α= −  

230 [2 (2 ) (4 )]2s Ci Cin nα α−               (38) 

Calculation of the third integral in (24) proceeds as follows, 
using (7), (6), (9) and (11) by turns: 

[ ]2sin( cos )cos s3
2 sin60 0

R d
s

π α θ θ
θ

θ
−

= ∫  

[ ]1 2sin( ) s
1

1

x x
dx

x
α −

=
+

−
∫  

( ) 22 sin( ) ( ) 1 s

0

u u
du

u

α α α − − − = ∫  

2 22 2 2cos sin(2 )2 220 0

ss u udu u u du
α α

α α
 = −∫ ∫  

2 22 222sin (1 cos )cos2
0 0

c su udu u udu
α α

αα
  + −∫ ∫  

2 2
2 2(1 cos )sin sin(2 )

2
0 0

s s
u udu u du

α α

α α
 − − +∫ ∫  

2 22 22 (1 cos )2 2sin
0 0

c uudu s du
u

α α

α
 

−
− +∫ ∫  

2 22(1 cos )sin 1 cos(2 )
2 2

0 0

u u c us du du
u u

α α− −
+ +∫ ∫  

1 21 ( ) 2 (2 )2 4 4 2 22
s

s c s c s Si α
α α

= + − − + +  

20.5 (4 ) 2 (2 ) 0.5 (4 )2 2s Si s Ci c Cin nα α α− + +  

Thus, final expression for 3R  is 
2 2 23 60 60 (2 ) 30 (4 )2 2R s s s Si s s Siα α= − + −  

4 2 2120 (2 ) 30 (4 ) 302 2s Ci s c Ci s sn nα α α+ + +  (39) 

Summarize expressions (17), (19) and (20) according to (5), 
performing all possible simplifications, the closed-form 
expression of (2) can be written as 

( )330 3 ln 4 (4 ) 4 (2 )R Ci Cir γ α α α= + + −
 

( )2sin (sin(2 ) ) 2α α α + −              (40) 

7. Appendix II 
Euler's formula for the complex exponential will be used 
during the integration of (18): 

cos( ) sin( )jxe x j x= + , ( )sin( ) 2jx jxx e e j= − − , 

( )cos( ) 2jx jxx e e= + −  

In order to apply this formula to shorten the expression of 
Zm  (18), following constants should be introduced:  

( )150
jkl jklk e e jk−= − , ( )151

jkl jklk e e= + −  

then (18) can be written as 

( )1( ) ( ) 1 1( )
0 31 ( )0

l jkR ze z l jkR z
Z km

R z

 − − + =   
∫  
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( )2( ) ( ) 1 2( )
32 ( )

jkR ze z l jkR z

R z

− + + −



 

1( ) 2( )
1 1( ) 2( )

jkR z jkR ze ek
R z R z

− − 
 − +
 
 

 

0( )
60 ( )

0( )

jkR ze jkz jkze e dz
R z

−  −+ −


     (41) 

The integral Zm  in (41) will be written as the sum of three 
integrals:  

1 2 3Z Z Z Zm m m m= + +         (42) 

expressions for these terms are given below: 

( )( ) 1 1( )
1 0 31 ( )0

l z l jkR z
Z km

R z

 − +
=


∫  

( ) ( )1( ) 1( )jk R z z jk R z ze e− − − + × − 
 

 

( ) ( )1( ) 1( )
1 1( )

jk R z z jk R z ze ek dz
R z

− − − + − −



 (43) 

( )( ) 1 2( )
2 0 32 ( )0

l z l jkR z
Z km

R z

 + +
=


∫  

( ) ( )2( ) 2( )jk R z z jk R z ze e− + − − − 
 

 

( ) ( )2( ) 2( )
1 2( )

jk R z z jk R z ze ek dz
R z

− − − + − −



   (44) 

( ) ( )0( ) 0( )
3 60

0( )
0

l jk R z z jk R z ze eZ dzm R z

− − − +−
= ∫    (45) 

We introduce supplementary functions, defined as: 

( )1( )( ) jk R z zER z e− +=+ , 

( )1( )( ) jk R z zER z e− −=−           (46) 

Using (46) together with the constant 
( )15 exp( ) exp( )2k jkl jkl= − − , we will rewrite (43) as 

( )( ( ) ( ))
1 0 31 ( )0

l z l ER z ER z
Z km

R z

 − −− +=


∫  

( )( ( ) ( )) ( ) ( )
2 12 1( )1 ( )

z l ER z ER z ER z ER z
k k

R zR z

− − −− + − ++ −  

( )( ( ) ( ))
0 0 2 21 ( )0

l z l ER z ER z
k A k

R z

 − −− += +


∫  

( ) ( )
1 1( )

ER z ER z
k dz

R z
− − +− 


           (47) 

The integral 

( )( ( ) ( ))
0 31 ( )0

l z l ER z ER z
A dz

R z

− −− += ∫  

from (47) will be integrated by parts using the well-known 
formula 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 00
0 0

l l
A U z dV z U l V l U V V z dU z= = − −∫ ∫ (48) 

so the functions ( )U z , ( )V z  and its derivatives must be 
found: 

( ) ( )
( )

21 ( )

ER z ER z
U z

R z

−− += , ( )
1( )

z ldV z dz
R z

−
= , 

( ) ( ) 1( )V z dV z R z= =∫ , 
( ) ( )

( )
21 ( )

ER z ER z
dU z jk

R z
− +

 +
=


 

( ( ) ( )) 2
3 41 ( ) 1 ( )

z l z lER z ER z jk dz
R z R z

+ −
 − −  + − +

  
  (49)  

Thus, after the substitution of (49) into (48) the integral 0A  
will be written as 

2 2( ) ( )
0 2 2

jk a l jk a l jk a le e eA
a a l

− − − + − +−
= −

+

 

2 2
( ) ( )

1( )
22 2 1 ( )0

ljk a l ER z ER ze R z jk
R za l

− +  +− +− −
+ 

∫  

( ( ) ( )) 2
3 41 ( ) 1 ( )

z l z lER z ER z jk dz
R z R z

 − −  + − ++ −   
 

After introducing the constant 

( )
3

jka jkl jkle e e
k

a
=

− −−
 

we will continue to record  

( )( ( ) ( ))
20 3 31 ( )0

l z l ER z ER z
A k

R z

 − −+ −= −


∫  
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( )( ( ) ( )) ( ) ( )
2 1( )1 ( )

z l ER z ER z ER z ER z
jk jk dz

R zR z

− − ++ − − + + +


 

( )( ( ) ( ))
23 0 21 ( )0

l z l ER z ER z
k A jk

R z

 − −+ −= + −


∫  

( ) ( )
1( )

ER z ER z
jk dz

R z
+ − ++ 


  (50) 

The integral 0A can be expressed from (50) as cyclical: 

( )( ( ) ( ))
0 3 21 ( )0

l z l ER z ER z
A k jk

R z

 − −+ −= − +


∫  

( ) ( )
1( )

ER z ER z
jk dz

R z
+ − ++ 


          (51) 

Substituting (51) into (47), we obtain 

( )( ( ) ( ))
1 0 3 21 ( )0

l z l ER z ER z
Z k k jkm

R z

  − −+ − = − +
 

∫  

( ) ( ) ( )
2 21( ) 1 ( )0

lER z ER z z ljk dz k
R z R z

+  −− + + +
  

∫  

( ) ( )
( ( ) ( )) 1 1( )

ER z ER z
ER z ER z k dz

R z
− − +× − −− + 


 

( )( )( ( ) ( ))
0 3 2 221 ( )0

l z l ER z ER z
k k k k

R z

 − −+ −= − + −


∫  

( ) ( )( ) ( ) ( ) ( )2 1
41( ) 1( )

k ER z ER z k ER z ER z
k

R z R z
+ − − + + −+ + =


 

( ) ( )1( ) ( ) 1( ) ( )
30

1( )
0

l jk R z z l jk R z z le e dz
R z

− + − − − −−
+ ∫   (52) 

where yet another constant is defined as 

( )2
154

jka jkl jkle e e
k

jka

− −−
= −  

One can see that the expression (52) of the integral 1Z m  
significantly simpler than (43). After performing a similar 
simplification of (44), the result will be substituted into (42) 
together with (45) and (52), and the process of integration 
will be continued.  

At first, sign of the integration variable in (44) will be 
changed ( z z→ − ); applying (46) and the obvious equality 

2( ) 1( )R z R z± =  , we rewrite (44) as 

( )( ) 1 1( )
2 0 31 ( )0

l z l jkR z
Z km

R z

−  − + +
= −


∫
 

( ) ( )1( ) 1( )jk R z z jk R z ze e− − − + × − 
 

 

( ) ( )1( ) 1( )
1 1( )

jk R z z jk R z ze ek dz
R z

− + − − − −



 

( )( )( ) 1 1( ) ( ) ( )
0 31 ( )0

l z l jkR z ER z ER z
k

R z

−  − + −− +=


∫  

( ) ( ) ( )
1 0 31( ) 1 ( )0

lER z ER z z lk dz k
R z R z

− −  −− + − =
 

∫  

( ) ( )( ) ( ) ( )
( ) ( ) 2 21 ( )

z l ER z ER z
ER z ER z k

R z

− −− +× − +− +  

( ) ( ) ( )
1 0 1 2 21( ) 1 ( )0

lER z ER z z lk dz k A k
R z R z

− −  −− + − = +
 

∫  

( ) ( ) ( )
( ) ( ) 1 1( )

ER z ER z
ER z ER z k dz

R z
− − +× − −− + 


  (53) 

The integral 

( )( ( ) ( ))
1 31 ( )0

l z l ER z ER z
A dz

R z

− − −− += ∫  

from (53) will be integrated by parts using the well-known 
formula 

( ) ( ) ( ) ( ) (0) (0)1
0

l
A U z dV z U l V l U V

−
= = − − −∫  

( ) ( )
0

l
V z dU z

−
− ∫               (54) 

Substituting (49) into (54), we obtain 

2 2 2 24 4

1 2 24

jk a l l jk a l l
e eA

a l

   − + + − + −   
   −

=
+

 

2 2 2 2

2 2

jk a l jk a le e

a l

− + − +−
−

+

 

( ) ( )
1( ) ( ( ) ( ))

21 ( )0

l ER z ER z
R z jk ER z ER z

R z

−  +− +− + −+ −


∫  
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2
3 41 ( ) 1 ( )

z l z ljk dz
R z R z

 − −  × +
  

 

After introducing the constant 

( )2 24

5 2 24

jk a l jkl jkle e e
k

a l

− + − −
=

+

 

we will continue to record: 

( )( ( ) ( ))
21 5 31 ( )0

l z l ER z ER z
A k dz

R z

− − −− += + ∫  

( )( ( ) ( )) ( ) ( )
2 1( )1 ( )0

l z l ER z ER z ER z ER z
jk jk dz

R zR z

−  − − ++ − − + − +
  

∫  

( )( ( ) ( ))
25 1 21 ( )0

l z l ER z ER z
k A jk

R z

−  − −+ −= + −


∫  

( ) ( )
1( )

ER z ER z
jk dz

R z
+ − ++ 


  (55) 

The integral 1A  can be expressed from (55) as cyclical 

( )( ( ) ( ))
1 5 21 ( )0

l z l ER z ER z
A k jk

R z

−  − −+ −= − +


∫  

( ) ( )
1( )

ER z ER z
jk dz

R z
+ − ++ 


  (56) 

Substituting (56) into (53), we obtain 

( )( ( ) ( ))
2 0 5 21 ( )0

l z l ER z ER z
Z k k jkm

R z

−  − −+ − = − +
 

∫  

( ) ( ) ( )
2 21( ) 1 ( )0

lER z ER z z ljk dz k
R z R z

− +  −− + + +
  

∫  

( ) ( ) ( )
( ) ( ) 1 1( )

ER z ER z
ER z ER z k dz

R z
− − +× − −− + 


 

( )( )( ( ) ( ))
0 5 2 221 ( )0

l z l ER z ER z
k k k k

R z

−  − −+ −= − + −


∫  

( ) ( )( ) ( ) ( ) ( )2 1
61( ) 1( )

k ER z ER z k ER z ER z
dz k

R z R z
+ − − + + −+ + =


 

( ) ( )1( ) ( ) 1( ) ( )
30

1( )
0

l jk R z z l jk R z z le e dz
R z

− − + − − − −−
+ ∫  (57) 

where yet another constant is defined as 

( )22 24
156 2 24

jk a l jkl jkle e e
k

jk a l

− + −−
=

+

 

Substituting (52), (57) and (45) into (42), we obtain 

1 2 3 4Z Z Z Z km m m m= + + =  

( ) ( )1( ) ( ) 1( ) ( )
30 61( )

0

l jk R z z l jk R z z le e dz k
R z

− + − − − −−
+ +∫  

( ) ( )1( ) ( ) 1( ) ( )
30

1( )
0

l jk R z z l jk R z z le e dz
R z

− − + − − − −−
+ ∫  

( ) ( )0( ) 0( )
60

0( )
0

l jk R z z jk R z ze e dz
R z

− − − +−
+ ∫  

( ) ( )1( ) ( ) 1( ) ( )
30

1( ) 1( )
0 0

l ljk R z z l jk R z z le edz dz
R z R z

− + − − − −
= −


∫ ∫  

( ) ( )1( ) ( ) 1( ) ( )

1( ) 1( )
0 0

l ljk R z z l jk R z z le edz dz
R z R z

− −− + − − − −
+ −∫ ∫  

( ) ( )0( ) 0( )
2 2 70( ) 0( )

0 0

l ljk R z z jk R z ze edz dz k
R z R z

− − − + 
+ − +



∫ ∫  (58) 

where yet another constant is defined as 

2 24260sin ( )7 2 24

jka jk a le ek kl
jka jk a l

 − − + 
= − 

 +
 

 

The following transformations will be applied to the six 
integrals, written under the bracket in (58):  

1) the change of the integration variable will be 
performed in the first two integrals: x z l= − , 
dx dz= , after recalculation of the limits of integration 
we get: the upper integration limit 0a l l= − = , the 
lower limit 0b l l= − = − ; then the equation 

0(z) 1( )2 2 2 2( )
x z l

R R za x a z l
= −

= = =+ + −  

will be used for changing 1( )R z  on 0( )R z ;  
2) the inversion of the sign of the integration variable 

( z z→ − ) will be performed in the third and fourth 
integrals, after that the equation 2( ) 1( )R z R z± =   
will be used. As a result of these transformations (58) 
will be written as 

( ) ( )0 00( ) 0( )
30

0( ) 0( )

jk R x x jk R x xe eZ dx dxm R x R x
l l

− + − −
= −


− −
∫ ∫  
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( ) ( )2( ) ( ) 2( ) ( )

2( ) 2( )
0 0

l ljk R z z l jk R z z le edz dz
R z R z

− + − − − − − −
− +∫ ∫  

( ) ( )0( ) 0( )
2 2 70( ) 0( )

0 0

l ljk R z z jk R z ze edz dz k
R z R z

− − − + 
+ − +



∫ ∫  

( ) ( )2( ) ( ) 2( ) ( )
30

2( ) 2( )
0 0

l ljk R z z l jk R z z le edz dz
R z R z

− + + − − +
= −


∫ ∫  

( ) ( )0( ) 0( )

0( ) 0( )
0 0

l ljk R x x jk R x xe edx dx
R x R x

− − + − +
− −∫ ∫  

( ) ( )0( ) 0( )
2 2 70( ) 0( )

0 0

l ljk R z z jk R z ze edz dz k
R z R z

− − + − + 
− − +



∫ ∫  

( ) ( )2( ) ( ) 2( ) ( )
30

2( ) 2( )
0 0

l ljk R z z l jk R z z le edz dz
R z R z

− + + − − +
= −


∫ ∫  

( ) ( )0( ) 0( )
3 3 70( ) 0( )

0 0

l ljk R z z jk R z ze edz dz k
R z R z

− − + − + 
− − +



∫ ∫ (59) 

To find the closed-form expression of the self-impedance 
Zm , we must transform (59) at first in order to reduce 
calculations to the exponential integral: 

( ) ( ) ( )
2

jueE z du Ci z j Si z
u

z

π∞ −  = = − + − 
 ∫     (60) 

where the functions ( )Si z  and ( )Ci z  are defined as (32) 
and (33) respectively. Integration with (60) will be 
implemented using 

( ) ( )
a jue du E b E a

u
b

−
= −∫            (61) 

The following transformations will be applied to the four 
integrals, written under the bracket in (59):  

1) the change of the variable in the first integral:  

( )( ) ( )2u k R z z l= + + , 
( )2

z ldu k dz dz
R z

+
=

 
+ 

 
 

( ) ( )
( )

2
2

R z z lk dz
R z

+
=

 +
 
 

, 
( )2

du dz
u R z

=  

after recalculation of the limits of integration we get: the 
upper limit 

2 21 4 2a k a l l = + + 
 

 

the lower limit 

2 21b k a l l = + + 
 

 

2) the change of the variable in the second integral:  

( )( ) ( )2u k R z z l= − + , 
( )2

du
z lk dz dz

R z
+

= −
 
 
 

 

( ) ( )
( )

2
2

R z z lk dz
R z

− +
= −

 
 
 

, 
( )2

du dz
u R z

= −  

after recalculation of the limits of integration we get: the 
upper limit 

2 22 4 2a k a l l = + − 
 

 

the lower limit 

2 22b k a l l = + − 
 

 

3) the change of the variable in the third and fourth 
integrals:  

( )0( )u k R z z= + , 
0( )
zdu k dz dz

R z
 

= + 
 

 

0( )
0( )

R z zk dz
R z

 +
=  

 
, 0( )

du dz
u R z

=  

after recalculation of the limits of integration for the third 
integral we get: the upper limit 

2 23a k a l l = + − 
 

 

the lower limit 3b ka= ; after recalculation of the limits of 
integration for the fourth integral we get: the upper limit 

2 24a k a l l = + + 
 

 

the lower limit 1b ka= .  
After performing these transformations, we will rewrite (59) 
using (61): 

1 2 3
30 3

1 2 3

a a au u ue e eZ du du dum u u u
b b b

 − − −
= + −


∫ ∫ ∫  

4
2 23 30 ( )7

4

a ue du k E k a l l
u

b

−   − + = + +    
∫  

2 2 2 2( 4 2 ) ( )E k a l l E k a l l   − + + + + −   
   

 

( )2 2 2 2( 4 2 ) 3 ( )E k a l l E ka E k a l l− − − −
     + − +     
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( ) 2 23 ( )E ka E k a l l
  − − + +  

  
       (62) 

After expressing the real Rm  and the imaginary Xm  parts 
of self-impedance Zm  (62) according to (60), they can be 
written as 

2sin( 4 ( ) ) sin( )260 sin ( ) 3 ( )
24 ( )

akl kalR kl Ci kam kaakl l

  +  
= − +  

  + 

 

( ) ( )2 2
0.5 [ ( 4 2)] 0.5 [ ( 4 2)]a aCi kl Ci kll l+ + + + + −  

( ) ( )2 2
2 [ ( 1 1)] 2 [ ( 1 1)]a aCi kl Ci kll l

− + + − + − 


 (63) 

2cos( 4 ( ) ) cos( )260 sin ( ) 3 ( )
24 ( )

akl kalX kl Si kam kaakl l

  +  
= − −  

  + 

 

( ) ( )2 2
0.5 [ ( 4 2)] 0.5 [ ( 4 2)]a aSi kl Si kll l− + + − + −  

( ) ( )2 2
2 [ ( 1 1)] 2 [ ( 1 1)]a aSi kl Si kll l

+ + + + + − 


 (64) 
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