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Improvement on teleportation of continuous variables by photon subtraction
via conditional measurement
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We show that the recently proposed scheme of teleportation of continuous vafialle8raunstein and
H.J. Kimble, Phys. Rev. LetB0, 869(1998] can be improved by a conditional measurement of the entangled
state shared by the sender and the recipient. The conditional measurement subtracts photons from the original
entangled two-mode squeezed vacuum, by transmitting each mode through a low-reflectivity beam splitter and
performing a joint photon-number measurement on the reflected beams. In this way the degree of entanglement
of the shared state is increased and so is the fidelity of the teleported state.

PACS numbds): 03.67—a, 03.65.Bz, 42.50.Dv

[. INTRODUCTION transmitted modes are prepared in an entangled state which
differs from the original one due to the photons subtracted by
The transfer of quantum information between distantthe measurement. Teleportation is performed if the two de-
nodes, as part of cryptographic or computing schemes, i&ctors simultaneously register photons. We show that such a
hampered by the losses and particularly the decoherence ifM can increase the degree of entanglement of the transmit-
curred by the communication channel, as well as by the lacked modes, as well as the fidelity of the teleported state.
of sources that produgeerfectlyentangled statekl]. Vari- This paper is organi_zed as follows. I_n Se(_:. Il we study the
ous schemes based on unitary operations and measuremefportation scheme in the Fock basis which is needed for
of redundant variable§?] or filtering [3] have been sug- our purposes._ln Sec: Il entanglement improvement by pho-
gested to overcome these problems. A notable scheme aim@ detection is S.tl"d'Ed' In Sec. IV the resuits are Qemon-
at improving the entanglement of qubits shared by distan??rated for a particular teleported state. The conclusions are
nodes is quantum privacy amplificati¢@PA) [4]. We have discussed in Sec. V.
recently suggested an alternative to the QPA, based on a
conditional measuremerf€M) which is designed to select
an optimal subensemble of partly correlated qubits according  A. Recapitulation of results on continuous-variable
to criteria that ensure significant improvement in the result- teleportation

i I fideli I ith high - ~
ing entanglementor fidelity), along with high success prob In order to teleport an unknown quantum statg of a

ability of the CM[5]. . ; '
The present paper is motivated by a similar need for im_smg(;e—mcl).d9 opt:jcafl} field .frpm Onﬁ node toh another one, the
proving the recently studied scheme of teleportation of con>on er(Alice) and the recipientBob) must share a common

. i i - two-mode entangled state. Let us first recall the original tele-
tinuous variable$6, 7] (see also Ref$8-10)), in the spirit of portation scheme for continuous variables as proposed in

the original Einstein-Podolsky-Rosen idghl]. The pros- Ref.[6] (see Fig. 1 without the beam-splitters B&hd BS).

pects for realizing such teleportation are limited by the availro entangled state is a two-mode squeezed vacuum, which
able squeezing of the entangled two-mode state. Perfect telg; the Fock basis. can be written as ’ ’

portation requires an infinitely squeezed vacuum, which is,
of course, not available; the fidelity of the teleported state *
decreases with decreasing squeezing. Our objective here is to lge)=V1—02>, q"n)4|n)s, (@)
increase the fidelity by improving the entanglement proper- n=0
ties of the shared state using conditional photon-number
measurements. It has been'shown that when a sing_le—mo <q<1), is a parameter quantifying the strength of
squeezed vacuum is transmltted_ through a beam splitter a ueezing. The first mode is mixed, on a 50%-50% beam
a photon-number measurement is performed on the reflected’ . ) _ _ -
beam, then a Schdinger-cat-like state is generatéd?].  SPlittér BS, with the input mode prepared in a stagg,
Even though photons have been subtracted, the mean numid&fce Wwishes to teleport. Homodyne detection is performed
of photons remaining in the transmitted state has increase@n the two output modes of the beam-splitter,Bésing the
The newly generated states have often larger squeezing thi#f@l oscillators L@ and LG) in order to measure the con-
the input squeezed vacuum. jugate quadrature componendsand p;. By sending classi-
Here we demonstrate by transmitting each mode of the&al information, Alice communicates the measured vakigs
two-mode squeezed vacuum through a low-reflectivity beanand P, to Bob, who uses the Va|Ué§(XO+iP1) as a dis-
splitter and detecting photons in the reflected beams, thplacement parameter for shifting the quantum state of the

Il. TELEPORTATION IN THE FOCK BASIS

here the indices 1 and 2 refer to the two modes, gnd
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lﬂxO,Pl(Xz):(ZW)_l/Zf dxg
pout
X1+ Xo

V2

X1—Xo

V2

)
The probability density of measuring the valugsandP; is

B ENT O given by

_ 2
FIG. 1. Teleportation scheme: An input statg is destroyed by P(Xo,Py) f dxal iy py (X2) |- ©)

measurement and it appears, with certain fidelity, at a distant node . .

as 0o, The essential means is the entangled state created as$sing the measured valugg and P, to realize a displace-
two-mode squeezed vacuum in the box ENT. The degree of enent transformation on mode 2,

tanglement is improved by CM of the numbers of photapsand

n, reflected at the beam-splitters B&nd BS. After mixing the ;(2—>;<2— \/EXO,
input mode prepared in the sta@xﬂ1 with mode 1 of the entangled R R
state, the quadrature componele(gsandf)1 are measured and their po— P2t \/§P1, (7)

valuesX, and P, are communicated by Alice to Bob via classical ) ) ) )
channelg(dotted lines. Using these values as displacement param-the resulting(unnormalized wave function of the mode is
eters for shifting the quantum state of mode 2 on the beam-splittefound to be

BS.., Bob creates the output stage,,; which imitatesg;, .

. lpout(XZ):(Zﬂ')_llzf dxg
second mode of the entangled state. The resulting quantum

statep . then imitateso,,. The two states become identical, - X1+ Xo
- A~ L . iP1(V2xp—
Qout — Qin» in the limit of infinite squeezingg—1. X elP1l2x2x) g 2
We restrict ourselves, for the sake of simplicity, to pure
states and describe the transformations in f@equad— X1— Xo
_ H S.o—o-U2L L 2N A, XlﬂE Xo— \/EXO . (8)
rature-component  representation{x;=2""(a;+a;),p; 2

=—-2"Y4(a;-a/),j=0,1,2]. Let the input-state wave func-

tion be o(Xo)=in(Xe) and the entangled state have the An infinitely squeezed two-mode vacuum—1 in Eq.
wave functiong(x,X,), so that the initial overall wave (1), can be described, apart from normalization, by the Dirac
function is 6 function,

1 (Xo,X1,X2) = o(Xo) Ye(X1,X2). (2 Ye(X1.%) = S(X1—Xz). ©

It can easily be checked that E®) then reduces to
We consider the scheme in Fig. 1 without the beam-splitters
BS, and BS. Assuming the beam-splitter BSnixes the Poul X2) = Po(X2), (10

guadratures as . : :
i.e., the input quantum state is perfectly teleported. The open

~ L question is how to improve the fidelity of teleportation when,
Xo—2 " Y(X1+Xo), as in practicee(x1,%,) is not infinitely squeezed.

>A<1H2_1/2(>A<1—>A<o)' 3) B. Transformation to the Fock basis
For the following it will be convenient to change over to
the Fock basis. Let us express the input-state wave function

the transformed wave function is .
in the form of

X1+X0 Xl_XO — (0)

X0 X1, X2) = tho| ——ml x| @ Po(Xo) =2 aen(Xo), (11)

i (Xo,X1,X2) l/’o( 2 )l//E( 2 2) 4 ~ “n
. A with ¢,(Xg) being the harmonic oscillator energy eigenfunc-

Upon measuring the quadratusgsandp;, in order to obtain  tions

the valuesX, and P4, the (unnormalized wave function of )

mode 2 reads @n(Xo) = (2™t /)~ Y2 X52H (%), (12
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H.(Xo) being the Hermite polynomial. Quite generally, let

the entangled statg(X;,X,) be given by

wE<x1,x2>=§ aF) er(x1) ¢1(X,). (13

In order to find the coefficients,(Xq,P4) of the Fock state
expansion of théunnormalizedl wave function of the tele-
ported quantum state

wom(xg:; brn(Xo,P1) @m(X2), (14)

we insertiy,,{x,) from Eq.(8) into Eq.(14) and obtain

bm(xo,P1>=§ Crn(Xo,P1)ay, (15)

whereC, (Xq,P4) is given by

cm,n<xo,Pl>:(2w>*l’2; Bmk(Xo0,P1)a{7D; n(Xo,P1),
(16)

with

Bm’k(XO'Pl):J dxe" ZPr2g . (Xp) @i(Xp— V2Xo)
(17)

and

_XO

%

X1+ Xo

N

®n

_ X
D|,n(xo,P1):J’ dx; e 'Pr¥ig,
(18

The integrals in Egs(17) and (18) can be expressed in a

closed form yielding

k—m

|
Boni(Xo.P1)= V2

Xo—iP;
V2

><exp< — Xg; Pi) LE"™(X3+P3) (19
for k=m, and
Bim(Xo,P1)=(—1)* ™B} (Xo,P1), (20)
and
Dy n(Xo,P1)= 2B} (X0, Py), 2D
L (y) being the(associatedLaguerre polynomial.
C. Probability and fidelity

Using the expansiofil4), the probability density of mea-
suring X, and P4, Eq. (6), reads as

PHYSICAL REVIEW A 61 032302

P(xo,Pl>=§ |bm(Xo,P1)|?. (22)

The fidelity of teleportation is defined by the overlap of the
input quantum state with thénormalized output quantum
state. From Eqg(11), (14), and(22) it follows that

F(xo,Pl>=P-1(xo,Pl>§ |abn(Xo,Py)I2  (23)

So far we have considered the output state under the con-
dition of a particular measurement outcomé, (P;). When
we ignore the outcome and many teleportations take place,
then the resulting output state behaves as a mixture with the
(unnormalized density-matrix elements

Qm,m’:f dxof dP1b5(Xo,P1)bm (Xo,P1). (29

The averaged fidelityn the Fock basis is then given by
F:f dxof dP;F(Xo,P1)P~(Xg,P1)

= 2 a:qu,m’am’ . (25
m,m’

IIl. IMPROVING ENTANGLEMENT BY CONDITIONAL
PHOTON-NUMBER MEASUREMENT

A. Conditionally entangled state

Let us apply the CM concept to a two-mode squeezed
vacuum and assume that each mode is transmitted through a
low-reflectivity beam splitter (BSin Fig. 1, j=1,2) and the
numbers of reflected photong are detected. Each beam
splitter BS is described by a transformation matrix
tJ r;

_ j
T,--(_rj t,—) (26)

with real transmittancg and real reflectancg , for simplic-

ity. These matrices act on the operators of the input modes.
After detectingn; photons in the reflected modes, the Fock
stategk;) transform as if;<k;)

k:
[ki)—(=1)"y/ ( n’) ri|MglkNilkj—ny)  (27)
I

(for details and more general beam-splitter transformations,
see Refs[12,13)).

The expansion coefficienta(kﬁ) of the entangled two-
mode wave functiori13) are then transformed into

(K+np)!(l+ny)!

(E, new)_,__ n.+n
T A VT Ty

P A L T Y P
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Note that in this form the wave function is not normalized. 0 /
The sum of the squares of moduli of the coefficieaifs"*" P N
gives the probability of the measurement resulfsand n,. 5 * I /
When the original entangled state is the two-mode squeeze
vacuum, Eq(2), i.e., A
ai “=V1-dq“s, (29
then the expansion coefficient®8) of the new state read ES_
1 _ A2
a(kEl,new):(_1);114.,12 1 q (k+ nl)! ol
‘ k! (k+n;—ny)In;in,!
X111 o "2ty M[to] T M2 M S, i
@0 . . . . .
. . . . 0 0.2 0.4 0.6 0.8 1
The most important property of this expression is that the r

polynomial increase witlk can, for small values of, over-
come the exponential decreasgt(t,|)* and thus increase

the mean number of photons. This is especially the Casr:r1=r2 of the beam splitters BSand BS in Fig. 1 for different

\k/)vhen |ti||.5 cIosTeh to u_nltyf, I.?k.]’ ia_rgeh transmlttandce of the.numbers of detected photons,=n,=0,1,2,3,4. The dashed line
eam Splitters. 1he price for that IS, NOWEVer, a decrease fyqicaies the degree of entanglement of the original squeezed

the prc_)bab'“ty_ of deteCt_'ng _the photons. . vacuum,q=0.8178. Inset: probability of detecting,=n,=1,2,3
An interesting question is whether we can optimize the,

- X 14~ Y photons as a function of the beam-splitter reflectance

scheme by adding more beam splitters and observing joint

detection of photons reflected by each of th@ntascade of entanglement and the detection probability on the beam-
CMs). Unfortunately, for the squeezed vacuum as initial en-pjitter reflectance for different numbers of detected photons,
tangled state, no improvement was achieved in this mannep, =n,. The original squeezed vacuum is chosen such that
For example, the state generated by simultaneous detectiQp: 0.8178, which corresponds to the parameter arcnh
of one photon reflected by each of two beam splitters in a- 1 15 a5 in Ref[6]. We see that after detecting one re-
cascade can be achievesith higher probability using one  flected photon in each channel the entanglement can be in-
beam splitter and detecting two photons simultaneouslygreased by more than 1 bit, and the effect increases with the
Note however, that this comparison is not generally valid for, mber of detected photons. However, the probability of de-

FIG. 2. Degree of entanglemefin bits) of the two-mode state
ié1 Eq. (13) together with Eq(30) as a function of the reflectance

an arbitrary initial state. tecting more than one photon may be extremely small.
Hence, one has to find a compromise between increasing the
B. Entropy as measure of entanglement increase degree of entanglement and decreasing the success probabil-

The increase of the degree of entanglement of the shardly- One should also keep in mind that the partial von Neu-

state produced by the CM described above can be quantifigd@nn entropy as entanglement measure relates to the maxi-
by comparing it with the original degree of entanglement.MUM information that can be gained about one component of

Even though there is no unique definition of a measure oft tWo-component system from a measurement on the other
entanglement fomixedstates, there is a consensus on defin-cOmponent. Therefore the partial entropy in Fig. 2 represents
ing the degree of entanglemebf a two-component system an UPPer I|m|_t for quantum communication p035|b|llt|e_s
prepared in gure state as the von Neumann entropy of arather than a direct measure of the quality of the teleportation
component. The calculation of the partial entropies of theScheme under consideration.

state in Eq.(13) together with either Eq(29) or (30) is

simple as the traced states are diagonal in the Fock basis. We IV. RESULTS

derive We have performed computer simulations in order to test

the method for different input states, especially 8rhro

> |af<ﬁkfﬁ‘i’ln2|2 Iog|a(k'?kfﬁ‘ivln2|2 dinger cats which are popular “laboratory animals” in the-
E=— K (31) oretical quantum opticésee, e.g., Ref6]). Figure 3 demon-
S jaEnew |2 strates teleportation of the stajd )~ (Ja)—|—a)) with
= 1Fkk+n—n, a=1.5, which is chosen to be the same as in Réi, for
comparison.

(k+n;—n,=0; note that the entropies of the two compo- The teleported quantum state that is obtained for a par-

nents are equal to each othdf the logarithm base is chosen ticular measurement of quadrature-component vakyeand

to be equal to 2, then the entanglement is measured in bif3; is shown in Fig. 4. The results in Figs(a} and 4b),

(or e-bits. respectively, correspond to the cases when the entangled
In Fig. 2 we have shown the dependence of the degree ¢ftate is a squeezed vacuum=0.8178) and a photon-
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FIG. 3. (@) Wigner function of the quantum state to be tele- i !”'ll/""m“‘\‘\‘\““““ M" “
ported, | W)~ (Ja)—|—a)),a=1.5; (b) Wigner function of the 0\l ] l’””"['l'0’.““““““““‘\\\\\\&}5‘ R ”Ill[[,"""‘“““ ‘t\‘\\\\\\\\é\{f“ '
teleported quantum state averaged over all measured quadratur AT 5 5 O 5
component valuesX, and P;, the entangled state being the X : 0 P X 0 5 ) 0 P
squeezed vacuum with=0.8178;(c) same as inb) but for the 0 -9 1 0 - -9 1

case when the entangled state is the photon-subtracted squeezed
vacuum obtained by CMn;=n,=1;r=0.15). FIG. 5. Fidelity of the teleported quantum state in dependence

on the measured quadrature-component vaKigsnd P, for the
subtracted squeezed vacuum with=n,=1, the probability ~ input state shown in Fig.(8); (a) the entangled state is a squeezed
of producing the state by CM being 0.39%=0.15, cf. Fig. vacuum §=0.8178); (b) the entangled state is the photon-
2). The fidelity of the teleported quantum state, E2@), is ~ Subtracted squeezed vacuum obtained by CN,=(n,=1;r
plotted in Fig. 5 as a function of the measured quadrature=9-19)-
component value¥X, and P, and Fig. 6 shows the corre-
sponding probability distribution, Eq22). We can see that Simply the vacuum. Then Alice measures just @é&inction
not only the fidelity attains larger values for the improvedof the state to be “teleported.” The probability distribution
entangled state, Fig(15), but also the probability distribution of the measured quantities thus carries the full information
is broader for that state, Fig(l§. The latter is very impor- about the statg.
tant. If the probability distribution is sharply peaked, then Upon averaging the fidelit{¥ (Xy,P,) over the probabil-
Alice actually gains more information about the state, so thaity distribution of the measured quadrature-component val-
there is less quantum information to be communicated tales X, and P;, we get the averaged fidelitlf, Eq. (25),
Bob. (Note the extreme case when the “entangled” state iswhich, for the case in our example, attains the vakie

0.2 e o 0_2,....,

oy O gl 0147 3‘/’)0‘\\‘.‘:“‘ o @™ o
"’”’l'"‘“ﬁ“‘“\\““\‘\\\':\u j {.?.}}J/"'f‘ﬁ,:;‘:‘\\\\‘l‘l‘\i\:ﬂ j P P

0 e 0 i 004 R ? 004y

-0.1 0.1 003y 003
02 02 oo2{ | NI |
| WIS | NI .
N NG iy @
Mot - i il
i , - I/////lllm‘\ , l”{b'::f&gf&&g}\;\g
0 0 5 0 0 5
- -5

FIG. 4. (a) Wigner function of the teleported quantum state for
Xp=0.1 andP;=0.2 and the input state shown in FigaBin the FIG. 6. Probability density of measuring the quadrature-
case when the entangled state is a squeezed vacuum gwith component valueX, andP,, Eq.(22), for the input state shown in
=0.8178;(b) same as ina) but for the case when the entangled Fig. 3@); (a) the entangled state is a squeezed vacuugn (
state is the photon-subtracted squeezed vacuum obtained by CM0.8178);(b) the entangled state is the photon-subtracted squeezed
(n;=n,=1;r=0.15). vacuum obtained by CMn;=n,=1;r=0.15).
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0.8 , We note that the approach to purification studied in Ref.
0.7k P(x) - | [15] fo_r conyinuous. variables—an approach analogous to that
: i Qv for spin variables in Refg1,2,4—does not apply to Gauss-
0.6 P | ian entangled statege., states whose Wigner functions are
P A Gaussians To see this, we recall that the approach uses
0.5¢ beam-splitter transformations in combination  with
quadrature-component measurements. The beam-splitter
0.4r transformations can be represented by rotations in multimode
0.3 phase space, and each quadrature measurement corresponds
to a partial integration over a two-dimensional subspace.
0.2y Hence, when the original state is Gaussian, then rotations
01l and projections of the state ellipsoid onto lower dimensional
’ ellipsoids must be performed, and it is clear that by this
03 > 1 0 ] > 3 procedure we can never get a narrower ellips@idich

would correspond to a more strongly entangled $titan

the original one. Based on different arguments, the same
FIG. 7. Probability distribution of measuring thequadrature in  conclusion is drawn in Ref.15] and therefore attention is

the teleported quantum state for the input state shown in k&, 3 there restricted to non-Gaussian entangled states. Alternative

dotted line, input state; dashed line, teleported state if the entangl%proachesy such as the present one, circumvent this restric-

state is a squeezed vacuum=0.8178); solid line, teleported state jgp.

if thg entangled state is the photon-subtracted squeezed vacuum Tpe present scheme can also be extended to other types of

obtained by CM 0, =n;=1;r=0.15). conditional measurements. For example, combir(aigthe

beam-splitters BSand BS in Fig. 1) the modes of the en-

=0.6463 for the squeezed vacuum dife: 9‘74_44 for_ th_e_ tangled two—mod% squeeséed vacuum with modes prepared in

photon-subtracted squeezed vacuum, which is a significa oton-number states, zero-photon measurement on the re-

increase. The Wigner function of the averaged teleporte%tcted beams then brepares a photon-added conditional

quaf‘t“m state i_s pl_otted in Fig. 3. Again, we see thgt the Stalgate. Whereas the nonclassical features of a single-mode
in Fig. 3(c), Wh'ch is teleported by_ means of t_he improved squeezed vacuum can be strongly influenced in this way
entangled state, is closer to the original state in F{g).3 13 1 e have not found a substantial improvement of the

The quality of transmission of the interference fringes of 4o a6 of entanglement of the two-mode-squeezed vacuum.
the Schrdinger cat state can be seen from Fig. 7, in which We have considered here the case when Alice does not

the x quadrature distribution of the teleported quantum stat§ . ow the quantum state she wishes to teleport. Of course, the

c(ﬁlantum communication scheme can also be applied to other
ituations, e.g., in quantum cryptography or state preparation
fh a distant place, where Alice can know the state. In par-
ticular, Alice can take advantage of her knowledge of the
rHependence of the teleportation fidelity on the measured
quadrature-component values in Fig. 5 and communicate
only the results of measurement which guarantee high fidel-
V. DISCUSSION ity. In that case, the teleportation can be regarded as being
conditioned not only by the measured photon numbers in the
entangled-state preparation but also by the measured
quadrature-component values. This together with the possi-

fringes in thex quadrature, the teleported states have th
fringes smeared and their visibility decreased. In the exampl
under study, the fringe visibility of the teleported state is
26.6% for the squeezed vacuum and 48.2% for the photo
subtracted squeezed vacuum obtained by CM.

Our results show that conditional photon-number mea
surement can significantly improve the fidelity of teleporta-

tion of continuous variables. With regard to experimental .. e . -
bility of optimization of probability versus fidelity suggests

implementation, highly efficient single-photon counting is tthere i ich f ibl lorati fh h
required. Even though such counting is at present not a@a ere IS arich area of possible exploration of the scheme.

efficient as intensity-proportional photodetection, progress ACKNOWLEDGMENTS

has been very fastas illustrated by the 88% efficiency

achieved recently14]). Therefore the prospects for the real-  This work was supported by EUTMR), ISF, Minerva
ization of the scheme appear to be good. grants, and the Deutsche Forschungsgemeinschatt.
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