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Improvement on teleportation of continuous variables by photon subtraction
via conditional measurement
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We show that the recently proposed scheme of teleportation of continuous variables@S.L. Braunstein and
H.J. Kimble, Phys. Rev. Lett.80, 869~1998!# can be improved by a conditional measurement of the entangled
state shared by the sender and the recipient. The conditional measurement subtracts photons from the original
entangled two-mode squeezed vacuum, by transmitting each mode through a low-reflectivity beam splitter and
performing a joint photon-number measurement on the reflected beams. In this way the degree of entanglement
of the shared state is increased and so is the fidelity of the teleported state.

PACS number~s!: 03.67.2a, 03.65.Bz, 42.50.Dv
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I. INTRODUCTION

The transfer of quantum information between dista
nodes, as part of cryptographic or computing schemes
hampered by the losses and particularly the decoherenc
curred by the communication channel, as well as by the l
of sources that produceperfectlyentangled states@1#. Vari-
ous schemes based on unitary operations and measurem
of redundant variables@2# or filtering @3# have been sug
gested to overcome these problems. A notable scheme a
at improving the entanglement of qubits shared by dist
nodes is quantum privacy amplification~QPA! @4#. We have
recently suggested an alternative to the QPA, based o
conditional measurement~CM! which is designed to selec
an optimal subensemble of partly correlated qubits accord
to criteria that ensure significant improvement in the res
ing entanglement~or fidelity!, along with high success prob
ability of the CM @5#.

The present paper is motivated by a similar need for
proving the recently studied scheme of teleportation of c
tinuous variables@6,7# ~see also Refs.@8–10#!, in the spirit of
the original Einstein-Podolsky-Rosen idea@11#. The pros-
pects for realizing such teleportation are limited by the av
able squeezing of the entangled two-mode state. Perfect
portation requires an infinitely squeezed vacuum, which
of course, not available; the fidelity of the teleported st
decreases with decreasing squeezing. Our objective here
increase the fidelity by improving the entanglement prop
ties of the shared state using conditional photon-num
measurements. It has been shown that when a single-m
squeezed vacuum is transmitted through a beam splitter
a photon-number measurement is performed on the refle
beam, then a Schro¨dinger-cat-like state is generated@12#.
Even though photons have been subtracted, the mean nu
of photons remaining in the transmitted state has increa
The newly generated states have often larger squeezing
the input squeezed vacuum.

Here we demonstrate by transmitting each mode of
two-mode squeezed vacuum through a low-reflectivity be
splitter and detecting photons in the reflected beams,
1050-2947/2000/61~3!/032302~7!/$15.00 61 0323
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transmitted modes are prepared in an entangled state w
differs from the original one due to the photons subtracted
the measurement. Teleportation is performed if the two
tectors simultaneously register photons. We show that su
CM can increase the degree of entanglement of the trans
ted modes, as well as the fidelity of the teleported state.

This paper is organized as follows. In Sec. II we study
teleportation scheme in the Fock basis which is needed
our purposes. In Sec. III entanglement improvement by p
ton detection is studied. In Sec. IV the results are dem
strated for a particular teleported state. The conclusions
discussed in Sec. V.

II. TELEPORTATION IN THE FOCK BASIS

A. Recapitulation of results on continuous-variable
teleportation

In order to teleport an unknown quantum state%̂ in of a
single-mode optical field from one node to another one,
sender~Alice! and the recipient~Bob! must share a common
two-mode entangled state. Let us first recall the original te
portation scheme for continuous variables as proposed
Ref. @6# ~see Fig. 1 without the beam-splitters BS1 and BS2).
The entangled state is a two-mode squeezed vacuum, w
in the Fock basis, can be written as

ucE&5A12q2(
n50

`

qnun&1un&2 , ~1!

where the indices 1 and 2 refer to the two modes, andq,
(0,q,1), is a parameter quantifying the strength
squeezing. The first mode is mixed, on a 50%-50% be
splitter BS0, with the input mode prepared in a state%̂ in
Alice wishes to teleport. Homodyne detection is perform
on the two output modes of the beam-splitter BS0 ~using the
local oscillators LO0 and LO1) in order to measure the con
jugate quadrature componentsx̂0 and p̂1. By sending classi-
cal information, Alice communicates the measured valuesX0

and P1 to Bob, who uses the valueA2(X01 iP1) as a dis-
placement parameter for shifting the quantum state of
©2000 The American Physical Society02-1
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second mode of the entangled state. The resulting quan
state%̂out then imitates%̂ in . The two states become identica
%̂out →%̂ in , in the limit of infinite squeezing,q→1.

We restrict ourselves, for the sake of simplicity, to pu
states and describe the transformations in thex̂ j quad-
rature-component representation@ x̂ j5221/2(â j1â j

†),p̂ j

52221/2i (â j2â j
†), j 50,1,2#. Let the input-state wave func

tion be c0(x0)[c in(x0) and the entangled state have t
wave functioncE(x1 ,x2), so that the initial overall wave
function is

c I~x0 ,x1 ,x2!5c0~x0!cE~x1 ,x2!. ~2!

We consider the scheme in Fig. 1 without the beam-split
BS1 and BS2. Assuming the beam-splitter BS0 mixes the
quadratures as

x̂0→221/2~ x̂11 x̂0!,

x̂1→221/2~ x̂12 x̂0!, ~3!

the transformed wave function is

c II ~x0 ,x1 ,x2!5c0S x11x0

A2
D cES x12x0

A2
,x2D . ~4!

Upon measuring the quadraturesx̂0 andp̂1, in order to obtain
the valuesX0 and P1, the ~unnormalized! wave function of
mode 2 reads

FIG. 1. Teleportation scheme: An input state%̂ in is destroyed by
measurement and it appears, with certain fidelity, at a distant n

as %̂out . The essential means is the entangled state created
two-mode squeezed vacuum in the box ENT. The degree of
tanglement is improved by CM of the numbers of photonsn1 and
n2 reflected at the beam-splitters BS1 and BS2. After mixing the

input mode prepared in the state%̂ in with mode 1 of the entangled

state, the quadrature componentsx̂0 and p̂1 are measured and the
valuesX0 and P1 are communicated by Alice to Bob via classic
channels~dotted lines!. Using these values as displacement para
eters for shifting the quantum state of mode 2 on the beam-sp

BSout, Bob creates the output state%̂out which imitates%̂ in .
03230
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cX0 ,P1
~x2!5~2p!21/2E dx1

3e2 iP1x1c0S x11X0

A2
D cES x12X0

A2
,x2D .

~5!

The probability density of measuring the valuesX0 andP1 is
given by

P~X0 ,P1!5E dx2ucX0 ,P1
~x2!u2. ~6!

Using the measured valuesX0 and P1 to realize a displace-
ment transformation on mode 2,

x̂2→ x̂22A2X0 ,

p̂2→ p̂21A2P1 , ~7!

the resulting~unnormalized! wave function of the mode is
found to be

cout~x2!5~2p!21/2E dx1

3eiP1(A2x22x1)c0S x11X0

A2
D

3cES x12X0

A2
,x22A2X0D . ~8!

An infinitely squeezed two-mode vacuum,q→1 in Eq.
~1!, can be described, apart from normalization, by the Di
d function,

cE~x1 ,x2!→d~x12x2!. ~9!

It can easily be checked that Eq.~8! then reduces to

cout~x2!→c0~x2!, ~10!

i.e., the input quantum state is perfectly teleported. The o
question is how to improve the fidelity of teleportation whe
as in practice,cE(x1 ,x2) is not infinitely squeezed.

B. Transformation to the Fock basis

For the following it will be convenient to change over
the Fock basis. Let us express the input-state wave func
in the form of

c0~x0!5(
n

an
(0)wn~x0!, ~11!

with wn(x0) being the harmonic oscillator energy eigenfun
tions

wn~x0!5~2nn!Ap!21/2e2x0
2/2Hn~x0!, ~12!

de

s a
n-

-
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Hn(x0) being the Hermite polynomial. Quite generally, l
the entangled statecE(x1 ,x2) be given by

cE~x1 ,x2!5(
k,l

ak,l
(E)wk~x1!w l~x2!. ~13!

In order to find the coefficientsbm(X0 ,P1) of the Fock state
expansion of the~unnormalized! wave function of the tele-
ported quantum state

cout~x2!5(
m

bm~X0 ,P1!wm~x2!, ~14!

we insertcout(x2) from Eq. ~8! into Eq. ~14! and obtain

bm~X0 ,P1!5(
n

Cm,n~X0 ,P1!an , ~15!

whereCm,n(X0 ,P1) is given by

Cm,n~X0 ,P1!5~2p!21/2(
k,l

Bm,k~X0 ,P1!ak,l
(E)Dl ,n~X0 ,P1!,

~16!

with

Bm,k~X0 ,P1!5E dx2eiA2P1x2wm~x2!wk~x22A2X0!

~17!

and

Dl ,n~X0 ,P1!5E dx1 e2 iP1x1w lS x12X0

A2
D wnS x11X0

A2
D .

~18!

The integrals in Eqs.~17! and ~18! can be expressed in
closed form yielding

Bm,k~X0 ,P1!5A2k2mAm!

k! S 2
X02 iP1

A2
D k2m

3expS 2
X0

21P1
2

2 DLm
k2m~X0

21P1
2! ~19!

for k>m, and

Bk,m~X0 ,P1!5~21!k2mBm,k* ~X0 ,P1!, ~20!

and

Dl ,n~X0 ,P1!5A2Bl ,n* ~X0 ,P1!, ~21!

Lm
a (y) being the~associated! Laguerre polynomial.

C. Probability and fidelity

Using the expansion~14!, the probability density of mea
suringX0 andP1, Eq. ~6!, reads as
03230
P~X0 ,P1!5(
m

ubm~X0 ,P1!u2. ~22!

The fidelity of teleportation is defined by the overlap of t
input quantum state with the~normalized! output quantum
state. From Eqs.~11!, ~14!, and~22! it follows that

F~X0 ,P1!5P 21~X0 ,P1!(
n

uan* bn~X0 ,P1!u2. ~23!

So far we have considered the output state under the
dition of a particular measurement outcome (X0 ,P1). When
we ignore the outcome and many teleportations take pla
then the resulting output state behaves as a mixture with
~unnormalized! density-matrix elements

%m,m85E dX0E dP1bm* ~X0 ,P1!bm8~X0 ,P1!. ~24!

The averaged fidelityin the Fock basis is then given by

F5E dX0E dP1F~X0 ,P1!P 21~X0 ,P1!

5 (
m,m8

am* %m,m8am8 . ~25!

III. IMPROVING ENTANGLEMENT BY CONDITIONAL
PHOTON-NUMBER MEASUREMENT

A. Conditionally entangled state

Let us apply the CM concept to a two-mode squeez
vacuum and assume that each mode is transmitted throu
low-reflectivity beam splitter (BSj in Fig. 1, j 51,2) and the
numbers of reflected photonsnj are detected. Each beam
splitter BSj is described by a transformation matrix

Tj5S t j r j

2r j t j
D ~26!

with real transmittancet j and real reflectancer j , for simplic-
ity. These matrices act on the operators of the input mod
After detectingnj photons in the reflected modes, the Fo
statesukj& transform as (nj<kj )

ukj&→~21!njAS kj

nj
D ur j unj ut j ukj 2nj ukj2nj& ~27!

~for details and more general beam-splitter transformatio
see Refs.@12,13#!.

The expansion coefficientsak,l
(E) of the entangled two-

mode wave function~13! are then transformed into

ak,l
(E, new)5~21!n11n2A~k1n1!! ~ l 1n2!!

k! l !n1!n2!

3ur 1un1ur 2un2ut1ukut2u lak1n1 ,l 1n2

(E, old) . ~28!
2-3
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T. OPATRNÝ, G. KURIZKI, AND D.-G. WELSCH PHYSICAL REVIEW A61 032302
Note that in this form the wave function is not normalize
The sum of the squares of moduli of the coefficientsak,l

(E,new)

gives the probability of the measurement resultsn1 andn2.
When the original entangled state is the two-mode squee
vacuum, Eq.~1!, i.e.,

ak,l
(E, old)5A12q2qkdk,l , ~29!

then the expansion coefficients~28! of the new state read

ak,l
(E,new)5~21!n11n2

A12q2~k1n1!!

Ak! ~k1n12n2!!n1!n2!

3ur 1un1ur 2un2ut1ukut2uk1n12n2qk1n1dk1n1 ,l 1n2
.

~30!

The most important property of this expression is that
polynomial increase withk can, for small values ofk, over-
come the exponential decrease (qut1t2u)k and thus increase
the mean number of photons. This is especially the c
when ut j u is close to unity, i.e., large transmittance of t
beam splitters. The price for that is, however, a decreas
the probability of detecting the photons.

An interesting question is whether we can optimize
scheme by adding more beam splitters and observing j
detection of photons reflected by each of them~a cascade of
CMs!. Unfortunately, for the squeezed vacuum as initial e
tangled state, no improvement was achieved in this man
For example, the state generated by simultaneous dete
of one photon reflected by each of two beam splitters i
cascade can be achieved~with higher probability! using one
beam splitter and detecting two photons simultaneou
Note however, that this comparison is not generally valid
an arbitrary initial state.

B. Entropy as measure of entanglement increase

The increase of the degree of entanglement of the sh
state produced by the CM described above can be quant
by comparing it with the original degree of entangleme
Even though there is no unique definition of a measure
entanglement formixedstates, there is a consensus on de
ing the degree of entanglementE of a two-component system
prepared in apure state as the von Neumann entropy of
component. The calculation of the partial entropies of
state in Eq.~13! together with either Eq.~29! or ~30! is
simple as the traced states are diagonal in the Fock basis
derive

E52

(
k

uak,k1n12n2

(E new) u2 loguak,k1n12n2

(E new) u2

(
k

uak,k1n12n2

(E new) u2

~31!

(k1n12n2>0; note that the entropies of the two comp
nents are equal to each other!. If the logarithm base is chose
to be equal to 2, then the entanglement is measured in
~or e-bits!.

In Fig. 2 we have shown the dependence of the degre
03230
.

ed

e

se

in

e
nt

-
r.

ion
a

y.
r

ed
ed
.
f
-

e

e

its

of

entanglement and the detection probability on the bea
splitter reflectance for different numbers of detected photo
n15n2. The original squeezed vacuum is chosen such
q50.8178, which corresponds to the parameter arctanq
51.15 as in Ref.@6#. We see that after detecting one r
flected photon in each channel the entanglement can be
creased by more than 1 bit, and the effect increases with
number of detected photons. However, the probability of
tecting more than one photon may be extremely sm
Hence, one has to find a compromise between increasing
degree of entanglement and decreasing the success prob
ity. One should also keep in mind that the partial von Ne
mann entropy as entanglement measure relates to the m
mum information that can be gained about one componen
a two-component system from a measurement on the o
component. Therefore the partial entropy in Fig. 2 represe
an upper limit for quantum communication possibilitie
rather than a direct measure of the quality of the teleporta
scheme under consideration.

IV. RESULTS

We have performed computer simulations in order to t
the method for different input states, especially forSchrö-
dinger cats, which are popular ‘‘laboratory animals’’ in the
oretical quantum optics~see, e.g., Ref.@6#!. Figure 3 demon-
strates teleportation of the stateuC& in;(ua&2u2a&) with
a51.5i , which is chosen to be the same as in Ref.@6#, for
comparison.

The teleported quantum state that is obtained for a p
ticular measurement of quadrature-component valuesX0 and
P1 is shown in Fig. 4. The results in Figs. 4~a! and 4~b!,
respectively, correspond to the cases when the entan
state is a squeezed vacuum (q50.8178) and a photon

FIG. 2. Degree of entanglement~in bits! of the two-mode state
in Eq. ~13! together with Eq.~30! as a function of the reflectanc
r 5r 15r 2 of the beam splitters BS1 and BS2 in Fig. 1 for different
numbers of detected photons,n15n250,1,2,3,4. The dashed line
indicates the degree of entanglement of the original squee
vacuum,q50.8178. Inset: probability of detectingn15n251,2,3
photons as a function of the beam-splitter reflectancer.
2-4
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subtracted squeezed vacuum withn15n251, the probability
of producing the state by CM being 0.39% (r 50.15, cf. Fig.
2!. The fidelity of the teleported quantum state, Eq.~23!, is
plotted in Fig. 5 as a function of the measured quadratu
component valuesX0 and P1, and Fig. 6 shows the corre
sponding probability distribution, Eq.~22!. We can see tha
not only the fidelity attains larger values for the improv
entangled state, Fig. 5~b!, but also the probability distribution
is broader for that state, Fig. 6~b!. The latter is very impor-
tant. If the probability distribution is sharply peaked, th
Alice actually gains more information about the state, so t
there is less quantum information to be communicated
Bob. ~Note the extreme case when the ‘‘entangled’’ state

FIG. 3. ~a! Wigner function of the quantum state to be tel
ported, uC& in;(ua&2u2a&),a51.5i ; ~b! Wigner function of the
teleported quantum state averaged over all measured quadra
component valuesX0 and P1, the entangled state being th
squeezed vacuum withq50.8178; ~c! same as in~b! but for the
case when the entangled state is the photon-subtracted squ
vacuum obtained by CM (n15n251;r 50.15).

FIG. 4. ~a! Wigner function of the teleported quantum state f
X050.1 andP150.2 and the input state shown in Fig. 3~a! in the
case when the entangled state is a squeezed vacuum wiq
50.8178;~b! same as in~a! but for the case when the entangle
state is the photon-subtracted squeezed vacuum obtained by
(n15n251;r 50.15).
03230
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simply the vacuum. Then Alice measures just theQ function
of the state to be ‘‘teleported.’’ The probability distributio
of the measured quantities thus carries the full informat
about the state.!

Upon averaging the fidelityF(X0 ,P0) over the probabil-
ity distribution of the measured quadrature-component v
ues X0 and P1, we get the averaged fidelityF, Eq. ~25!,
which, for the case in our example, attains the valueF

re-

zed

M

FIG. 5. Fidelity of the teleported quantum state in depende
on the measured quadrature-component valuesX0 and P1 for the
input state shown in Fig. 3~a!; ~a! the entangled state is a squeez
vacuum (q50.8178); ~b! the entangled state is the photo
subtracted squeezed vacuum obtained by CM (n15n251;r
50.15).

FIG. 6. Probability density of measuring the quadratu
component valuesX0 andP1, Eq. ~22!, for the input state shown in
Fig. 3~a!; ~a! the entangled state is a squeezed vacuumq
50.8178);~b! the entangled state is the photon-subtracted squee
vacuum obtained by CM (n15n251;r 50.15).
2-5
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50.6463 for the squeezed vacuum andF50.7444 for the
photon-subtracted squeezed vacuum, which is a signifi
increase. The Wigner function of the averaged telepor
quantum state is plotted in Fig. 3. Again, we see that the s
in Fig. 3~c!, which is teleported by means of the improve
entangled state, is closer to the original state in Fig. 3~a!.

The quality of transmission of the interference fringes
the Schro¨dinger cat state can be seen from Fig. 7, in wh
the x quadrature distribution of the teleported quantum st
is plotted. Whereas the input state shows perfect interfere
fringes in thex quadrature, the teleported states have
fringes smeared and their visibility decreased. In the exam
under study, the fringe visibility of the teleported state
26.6% for the squeezed vacuum and 48.2% for the pho
subtracted squeezed vacuum obtained by CM.

V. DISCUSSION

Our results show that conditional photon-number m
surement can significantly improve the fidelity of telepor
tion of continuous variables. With regard to experimen
implementation, highly efficient single-photon counting
required. Even though such counting is at present no
efficient as intensity-proportional photodetection, progr
has been very fast~as illustrated by the 88% efficienc
achieved recently@14#!. Therefore the prospects for the rea
ization of the scheme appear to be good.

FIG. 7. Probability distribution of measuring thex quadrature in
the teleported quantum state for the input state shown in Fig. 3~a!;
dotted line, input state; dashed line, teleported state if the entan
state is a squeezed vacuum (q50.8178); solid line, teleported stat
if the entangled state is the photon-subtracted squeezed vac
obtained by CM (n15n251;r 50.15).
.
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We note that the approach to purification studied in R
@15# for continuous variables—an approach analogous to
for spin variables in Refs.@1,2,4#—does not apply to Gauss
ian entangled states~i.e., states whose Wigner functions a
Gaussians!. To see this, we recall that the approach us
beam-splitter transformations in combination wi
quadrature-component measurements. The beam-sp
transformations can be represented by rotations in multim
phase space, and each quadrature measurement corres
to a partial integration over a two-dimensional subspa
Hence, when the original state is Gaussian, then rotat
and projections of the state ellipsoid onto lower dimensio
ellipsoids must be performed, and it is clear that by t
procedure we can never get a narrower ellipsoid~which
would correspond to a more strongly entangled state! than
the original one. Based on different arguments, the sa
conclusion is drawn in Ref.@15# and therefore attention is
there restricted to non-Gaussian entangled states. Alterna
approaches, such as the present one, circumvent this re
tion.

The present scheme can also be extended to other typ
conditional measurements. For example, combining~at the
beam-splitters BS1 and BS2 in Fig. 1! the modes of the en
tangled two-mode squeezed vacuum with modes prepare
photon-number states, zero-photon measurement on th
flected beams then prepares a photon-added conditi
state. Whereas the nonclassical features of a single-m
squeezed vacuum can be strongly influenced in this w
@13,16#, we have not found a substantial improvement of t
degree of entanglement of the two-mode-squeezed vacu

We have considered here the case when Alice does
know the quantum state she wishes to teleport. Of course
quantum communication scheme can also be applied to o
situations, e.g., in quantum cryptography or state prepara
in a distant place, where Alice can know the state. In p
ticular, Alice can take advantage of her knowledge of t
dependence of the teleportation fidelity on the measu
quadrature-component values in Fig. 5 and communic
only the results of measurement which guarantee high fi
ity. In that case, the teleportation can be regarded as b
conditioned not only by the measured photon numbers in
entangled-state preparation but also by the measu
quadrature-component values. This together with the po
bility of optimization of probability versus fidelity sugges
that there is a rich area of possible exploration of the sche
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