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Location estimation is signi�cant in mobile and ubiquitous computing systems. �e complexity and smaller scale of the indoor
environment impose a great impact on location estimation. �e key of location estimation lies in the representation and fusion of
uncertain information from multiple sources. �e improvement of location estimation is a complicated and comprehensive issue.
A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem
and speci�c methods. �is paper reviews mainstream schemes on improving indoor location estimation from multiple levels and
perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common
indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation.
�is is followed by a discussion of probabilistic methods for location estimation, including Bayes �lters, Kalman �lters, extended
Kalman �lters, sigma-point Kalman �lters, particle �lters, and hiddenMarkov models.�en, we investigate the hybrid localization
methods, including multimodal �ngerprinting, triangulation fusing multiple measurements, combination of wireless positioning
with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus on the location determination approaches that
fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions
for future research.

1. Introduction

Location is the most fundamental and important context
in mobile and ubiquitous computing. A number of mobile
applications have the requirement on the location knowledge
of human or devices. It is estimated that people spend
about 87% of their time indoors [1]. Location-based services,
such as mobile social network [2] and Internet of �ings
(IOTs) [3], are extending to indoor environments. In outdoor
environment, theGlobal Navigation Satellite Systems (GNSS)
such as GPS can provide accurate location estimation, but
they almost do not work indoors [4]. To compensate the
drawback of GPS, some solutions have been proposed, such
as cellular-based positioning [5], but the accuracy achieved
is not high enough to meet the demand of most indoor
applications. Compared with open outdoor spaces, indoor

spaces are more complicated in terms of layout, topology,
and spatial constraints [6]. As a result, the wireless signal
suers from multipath eect, scattering, and nonline of sight
propagating. Such eects cause extra signal attenuation and
propagation time, thereby reducing the localization accuracy
of these methods that assume wireless signal traverses in a
straight line and depend on the time traveled or the signal
strength received to estimate the location [7]. On the other
hand, due to the small-scale of the indoor environment, most
applications have high demand for accuracy, for example, 1-
2m or better. �e accurate location determination remains
challenging for mobile indoor localization and inspires
researchers to constantly explore eective solutions.

Depending on whether there is a need for devices, indoor
positioning methods can be categorized into two types:
device-free and device-based [8]. �e former is still in its
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infancy and has a lot of limitations [9]. Because of this, the lat-
ter becomes themainstream of indoor positioning and is also
the focus of this paper. Typical device-based location sensing
methods include proximity [10, 11], triangulation [5], �nger-
printing [12], anddead reckoning [8, 13]. Aproximity location
sensing technique implies determining when an object is
“near” a known location. �ere are three general approaches
to sense proximity: detecting physical contact, monitoring
wireless cellular access points (APs), and observing automatic
ID systems [10]. Triangulation is known as the ranging-based
method, which commonly uses Wi-Fi, Bluetooth, UWB,
CSS, and RFID to obtain the measurements such as time
of arrival (TOA) [5, 10], angle of arrival (AOA) [5, 10],
symmetric double-sided two-way ranging (SDS-TWR) [14],
elapsed time between the two time of arrivals (ETOA) [15],
or received signal strength (RSS) [5, 10]. Based on these
measurements, the distances between the target and beacons
can be computed and then the location of the target can
be determined. Fingerprinting consists of two phases: o�ine
training and online location estimation. �e o�ine phase
detects the signal strength from the surrounding beacons and
collects location �ngerprints to create a �ngerprint database.
In the online phase, the target obtains a vector of signal
strengths in real time. �ese signal measurements are then
compared with the �ngerprints in the database. �e location
of the best matched �ngerprint is used as the estimated
location. Given the initial position, dead reckoning can in
real time infer the location of a mobile target equipped
with inertial measurement units (IMU) [13], for example,
accelerometers, gyroscopes, and magnetometers, based on
the moving direction, velocity, and sampling interval.

Since the accuracy is the key indicator to evaluate the
performance of a localization system [4], much research has
put emphasis on how to improve the accuracy and provide
users with reliable, accurate localization services. �e accu-
racy depends onmany factors such as the accuracy of wireless
ranging, the algorithm used to deal with measurements,
and even the geometric layout of nodes [16]. �e strategies
for enhancing accuracy typically focus on three directions
including optimizing hardware, improving location estima-
tion, and enhancing the geometric dilution of precision
(GDOP) [16]. In fact, compared with the geometric factor,
the environments and hardware play a fundamental role
in the performance of indoor localization. Since hardware
optimization is inevitably restrained by their own coverage,
time resolution, and cost, much attention in this �eld is given
to the improvement approaches of location estimation [17–
22].

�e process of localization contains measuring, location
update, and optional optimization [11, 23]. In the location
update stage, measurements are integrated into the posi-
tioning algorithm to compute the coordinates of a mobile
target [7]. �e in�uence from noise, multipath, obstruction,
and hardware clock dri� generates the uncertainty in the
raw measurements and signal metrics, such as distances,
thereby aecting the accuracy of location estimation. �is
further results in that the achieved accuracy cannot meet
the need of most of applications and the optimization step
needs to be executed. In practice, the optimization begins

with the processing ofmeasurements and persists throughout
thewhole localization process.�erefore, the steps of location
update and optimization can be taken as one step, namely,
location estimation. �e key of this step is to express the
uncertainty and to fuse multisource information [10].

Probabilistic techniques are eective tools to deal with
uncertainty problems. �e most widely used one is the
Bayesian �ltering. It can not only handle the uncertainty
problem but also fuse dierent measurements. �e family
of Bayesian �ltering includes Kalman �lters [24], extended
Kalman �lters [25], sigma-point Kalman �lters [26], particle
�lters [27], and hidden Markov models [28].

Each localization technique has its drawbacks when
comprehensively considering accuracy, cost, coverage, and
complexity. None of them can be suitable to all scenarios [4,
5, 10]. �e probabilistic methods can reduce the uncertainty
of location estimation to some extent; it cannot eliminate
the drawback inherent in a technique. In this sense, the
improvement of accuracy using the probabilistic method is
still limited. On the other hand, the combination of multiple
techniques can complement each other and further improve
the accuracy. Such combinations include multimodal �nger-
printing [29], triangulation fusing multiple measurements
[30], method combining wireless positioning with pedestrian
dead reckoning [31], and cooperative localization [23].

Fusing spatial contexts is another signi�cant approach
for optimizing location estimation. An interesting phe-
nomenon is that people usually complain that complex
indoor spaces make localization di�cult and troublesome,
while the complexity can assist the positioning algorithm
to achieve higher accuracy. For instance, compared with
outdoor spaces, indoor spaces are closed; moving targets
cannot pass a wall; entering a room has to go through a
door. �ese characteristics of indoor spaces can be utilized
to improve the localization results [32]. Also, there are o�en
landmarks within an indoor environment, including visible
landmarks, such as stairs, elevators, and corners, and invisible
landmarks, such as magnetic outlier points.�ese landmarks
[21, 33] impose the sensors to present some predictable or
special patterns. By recognizing and analyzing these patterns,
the localization results can be re�ned. Combining the geom-
etry, topology, and semantics of indoor spatial models with
Kalman �lters or particle �lters has been one of research
hotspots [10, 22, 34, 35].

�e core of designing an indoor localization system
is determining the location estimation approaches. �e
key of location estimation lies in the representation and
fusion of uncertain information frommultiple sources. Many
approaches to enhance indoor localization results have been
proposed. However, existing research generally focuses on
certain aspects of the problem and speci�c methods. �is
paper reviews typical schemes on improving indoor location
estimation from multiple levels and perspectives. By analyz-
ing the error sources of typical localization approaches, we
present a multilayered conceptual framework for location
estimation re�nement. Particularly, we discuss probabilis-
tic technique-based approaches, hybrid location estimation
approaches, and localization approaches that fuse spatial
contexts.�e basic rationales, state of the art, and advantages
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and disadvantages of these methods, as well as potential
combination among them, are given. �is can help peo-
ple not only comprehensively understand the improvement
approaches of location estimation but also select the most
eective solution when designing a localization system.

�is paper is organized as follows. Section 2 introduces
the concept of location accuracy and precision, error sources
of typical localization approaches. In Section 3, we present a
multilayered conceptual framework for location estimation
enhancement. Section 4 gives the mathematical foundation
of location estimation, that is, probabilistic techniques,
including Kalman �lters, extended Kalman �lters, sigma-
point Kalman �lters, particle �lters, and hidden Markov
models. �e application of Bayesian methods in dier-
ent levels is also explored. In Section 5, hybrid location
estimation methods are investigated, including multimodal
�ngerprinting, triangulation fusing multiple measurements,
combination of wireless positioning with pedestrian dead
reckoning, and cooperative localization. �e location esti-
mation improvement methods by fusing spatial contexts are
provided in Section 6, namely,mapmatching-aidedmethods,
landmark-aided methods, and spatial model-aided methods.
In Section 7, we discuss the open issues and comment on
possible future research directions. Finally in Section 8, a
conclusion is drawn.

2. Localization Accuracy Evaluation

Accuracy is one of the most signi�cant indicators of local-
ization performance. It is in�uenced by a lot of factors
such as environment noise, hardware error, and positioning
algorithms. �is section begins with the comparison of
accuracy and precision. �en an analysis of the error sources
of typical localization approaches is presented. Finally, a mul-
tilayered framework for localization accuracy improvement is
proposed.

2.1. Accuracy and Precision. Accuracy and precision are
usually regarded as the same concept, but they actually
measure dierent aspects. Accuracy refers to the closeness
degree between the truth and the measurement or how
approximate the observation is to the truth [36], which
is typically expressed as a distance interval such as 1–3m.
Precision represents the repeatability of measurements or
how o�en we can expect to get a certain degree of accuracy.
For the sake of simplicity, the accuracy and precision are
generally combined into one concept and simply called the
“accuracy” which is denoted by a distance interval.

2.1.1. Accuracy. Accuracy is the most vital indicator eval-
uating the performance of a positioning system, which is
de�ned with the average Euclidean distance between the true
location and the estimated location, also known as location
error [5]. In general, the location error can be expressed using
standard error, mean error, or median error. It is di�cult
to precisely give the accuracy in most cases since there are
many factors aecting the accuracy. �is means that even
the same system can show signi�cantly varying accuracy
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Figure 1: Precision comparison of dierent systems.

under dierent contexts. To better describe accuracy, the
distance interval is adopted, for example, 2-3m. Accuracy
can be regarded as a potential bias or oset of a system.
Generally, the higher the accuracy, the better the system.
Nonetheless, the excessive pursuit of accuracy o�en results
in the degradation of other aspects of performance (e.g.,
real time, complexity, and cost). �erefore, when choosing a
system or technology, we need to take into account not only
accuracy but also other performance characteristics in the
light of the requirements.

2.1.2. Precision. Precision measures the consistency of a
system working under a level of accuracy. For instance,
it can measure how robust the system is since it reveals
the performance variation over many trials. �e cumulative
probability function (CDF) is usually adopted to measure
precision [5] and is represented by the percentile format.
When we compare two systems, the system with the CDF
rising faster is considered to be the better one if they have
similar accuracy. For instance, suppose that there are two
localization systems: one with a precision of 70% within 1
meter (the CDF of distance error of 1m is 0.7) and 95% with
2.5m and the other with a precision of 55% within 1m and
95%within 2.2mas shown in Figure 1.�e latter is commonly
considered as the one with higher performance.

2.2. Sources of Localization Error. Location error is inevitable
for any indoor positioning systems. �e error can be divided
into three types: intrinsic error, extrinsic error, and algorith-
mic error [37]. Intrinsic error is caused by the limitation of
either hardware or so�ware. Extrinsic error stems from envi-
ronmental factors such asmultipath and shadowing,multiple
access interference, �uctuations in the signal propagation
speed, and the presence of obstructions. Algorithmic error is
determined by the rationale of the designed positioning algo-
rithm. Having a sound understanding to the error sources is
necessary to design a suitable solution.

2.2.1. Triangulation. �e triangulation technique computes
the location of a target by using the distances or angles
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Table 1: Accuracy comparisons of typical triangulation techniques.

Technique System Accuracy and precision Range

TDOA Zebra Dart [5] 0.3m (50%) 200m

AOA + TDOA Ubisense [5] 0.3m (99%) 30m

ETOA BeepBeep [15] 1-2 cm (92%) 10m

SDS-TWR nanoLoc [81] 1-2m 400m

RSS TIX [143] 5.4m (50%) 20–100m

between the target and beacons. �e distances are usually
deduced from TOA, TDOA, ETOA, SDS-TWR, RSS, and so
on. Such time-based rangingmethods have high requirement
on the hardware. For example, TOAandTDOAneed the time
synchronization between targets and beacons. An error of
1 ns in the temporal domain can cause an error of 0.3m in
the spatial domain. For those methods that do not need time
synchronization, such as SDS-TWR and ETOA, the most
important factor in�uencing accuracy is the processing of
the delay between the sender and the receiver. Because of
time-varying characteristics and low recognition rate, RSS-
based methods commonly suer from high location error.
ComparedwithTDOA,AOA-basedmethods demand special
hardware equipment, for example, directional antennas or
antenna arrays installed at the beacons [7]. AOA-based
methods also cost more for deployment and maintenance.
Moreover, the estimation using AOA is inaccurate when the
target is far from the beacons [5, 14]. Table 1 shows accuracy
comparisons of typical triangulation techniques.

Wireless signal is susceptible to re�ection, refraction, and
diraction of objects in the space of interest. As a result,
the signal traverse in multipath is the main contributor to
the location error for time-based ranging methods [38]. �e
signal strength received from the direct path is also related to
the ranging error.When the strength is below a threshold, the
signal from the direct path would be omitted and the signal
from indirect pathswith stronger strengthwould be chosen to
compute ranging result. �is is called undetected direct path
and leads to large ranging error. Multipath, multiple access
interference, and obstructions also aect the performance
of RSS-based methods. �e general solution is building an
approximatemodel thatwell describes the environment. Such
a model usually needs to consider the size, texture, and
thickness of obstructions in the environment.

Except the accuracy of the ranging measurements, geo-
metric factors related to the relative location of the beacons
and the mobile devices also have a signi�cant in�uence
on the accuracy of the triangulation localization technique
[7, 36]. If the location is geometrically calculated using the
triangulation algorithm, the location error will be further
magni�ed by dilution of precision (DOP). �e general
form of DOP is geometric DOP (GDOP), which repre-
sents the magni�cation factor of the distances between the
target and the beacons. It explains how location accuracy
reduces with the eect of geometry. �e volume of the
shape formed by the unit-vectors from the target to the
beacons is inversely proportional to the GDOP. A higher
GDOP implies more uncertainty in the calculated location

and hence the lower location accuracy. To minimize the
GDOP, we should always distribute beacons as evenly as
possible.

�e research of GDOP focuses on optimizing the deploy-
ment manners or number of devices of localization system.
But this paper aims to explore the eective strategies and
algorithms of location estimation to particularly improve
localization accuracy. �e discussion about GDOP is not in
the scope of this paper. Readers who are interested in GDOP
are recommended to see [16].

2.2.2. Fingerprinting. Indoor �ngerprinting can use existing
signal sources to compute the location of a target. Because of
this, it has been a popular approach for indoor positioning.
Typically, signal sources include Wi-Fi, Bluetooth, GSM,
FM, DTV [29, 39, 40], terrestrial magnetism [41], lights,
and acoustic sources [2, 42]. An ideal signal source should
possess two properties: recognizability and stability. �e
time-varying characteristic is the most signi�cant factor to
aect the performance of �ngerprinting. In other words,
it is di�cult to match the online signal �ngerprints with
these �ngerprints collected and stored in the database in the
o�ine phase if the signal changes over time. �e mismatch
can lead to a large location error and even cause failure to
positioning.

Besides, sensors of dierent brands have dierent spec-
i�cations and varying sensor readings even at the same
locations [43]. �at is, if we use smartphones of a brand to
collect training �ngerprints and another brand’s smartphones
to receive online �ngerprints, there would be a mismatch
between training �ngerprints and online �ngerprints. Both
the time-varying characteristic of the signal and the RSS
dierence between sensors of dierent brands are illustrated
in Figure 2. �e data for Figure 2 was collected at the
same point using a smartphone of brand A and another
smartphone of brand B during one hour. It shows that Wi-Fi
RSS presents the normal distribution and �uctuates around
a mean value. Figure 2 also demonstrates that there is a
signi�cant dierence in the RSS collected from dierent
smartphones.

To illustrate the time-varying characteristic of the mag-
netic signal and the eect of dierent devices, we collected
magnetic strength at a region with an area of 2m × 14m.
�e magnetic distribution was calculated by interpolating.
Figure 3 shows how dierent two groups of data collected
at the same region during two dierent time periods
are. Similarly, there is a dierence between data collected
by dierent smartphones at the same time, as shown in
Figure 4.

2.2.3. PDR. PDR [44] is a localization solution of pedestrian
equipped with IMU sensors given the initial position. It
is likely to play an increasingly signi�cant role in indoor
tracking and navigation, due to its low cost and ability towork
without any additional infrastructure.�is is especially useful
in the blind or weak area of wireless signal. In general, PDR
can be divided into three steps: step event capturing, stride
length calculation, andheading evaluation.�emathematical
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Figure 2: RSS distribution for dierent smartphones.

formula of PDR is shown by (1) [13] where (��, ��) is the
coordinate of the user at time � and � and � indicate the stride
length and heading, respectively. Consider

[����] = [��−1 + �� ⋅ cos (��)��−1 + �� ⋅ sin (��)] . (1)

On the other hand, the problem that PDR suers from is
the cumulative error [45]. Because the location estimation is

always computed based on the prior result, the error accu-
mulates rapidly over time. �is means that the recalibration
is needed regularly in PDR. �e accelerometer embedded
in a smartphone can be used to capture step events and to
further compute stride length using stride models such as
Weinberg. But it is susceptible to walking speed, road slope,
and so on [46], giving rise to the inaccurate results of stride
length computation.

Comparatively, the error from heading detection has
a greater in�uence on the location estimation than that
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Figure 3: Magnetic strength distribution collected using the same smartphone at the same region in dierent time periods.
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Figure 4: Magnetic strength distribution collected by dierent smartphones at the same region in the same time period.

from stride length calculation [47]. �e readings from both
magnetometers and gyroscopes can be utilized to compute
the heading. However, the magnetometer is prone to the
disturbance of electric current and metals in the environ-
ment; the gyroscope has the dri� problem, which means that
the reading error rises over time. In addition, the tilt of the
smartphone can cause its heading to deviate from the user
walking direction [48]. �e poses of the smartphones also
contribute to the accuracy of heading evaluation, which need
to be taken into account in practice.

3. Conceptual Framework of Improvement
Schemes for Location Estimation

�e location error is unavoidable no matter which localiza-
tion approach is used. To reduce the errors from dierent
sources, a number of solutions for improving location esti-
mation have been proposed. However, most of the existing
research works generally concentrate on certain aspects
of the problem and speci�c methods. Here we provide a
comprehensive framework to introduce potential strategies
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Figure 5: A multilayered conceptual framework of improvement schemes for location estimation.

for location estimation enhancement, as shown in Figure 5.
�e bottom layer is positioning hardware, including wireless
modules (e.g., Wi-Fi, Bluetooth, and UWB) and motion sen-
sors (e.g., accelerometers, gyroscopes, and compasses). For a
particular localization technique, Bayesian �ltering such as

particle �lters, Kalman�lters, and hiddenMarkovmodels can

be utilized to �lter out the noise from measurements. �ere

are usually three options for �ltering: raw measurements,
signal metrics (e.g., distances), and coordinates. Also, as a
mathematical tool, Bayesian �ltering can be applied to fusion
of multiple localization techniques and fusion of spatial
contexts.

Except employing �ltering technique to control the
location error of single localization approach, researchers
have put forward a series of hybrid localization approaches.
�rough fusing dierent measurements and/or localization
techniques, it is possible to draw on each other’s strength
and to achieve an ideal accuracy. �e �ngerprinting error
stemsmainly from low recognition rate of �ngerprints, which
can be solved by adding the dimension of �ngerprints,
that is, multimodal �ngerprints. In this way, the reliability
as well as location accuracy can be improved signi�cantly.
�e main problem of PDR is that its cumulative error
increases over time. Combining PDR with geometric local-
ization techniques such as UWB TDOA can eliminate the

cumulative error and achieve a higher location accuracy.
Typically, the results of geometric localization system are
used to calibrate the results of PDR. On the other hand,
the results of PDR can be used to eliminate the incidental
error of geometric localization system. For triangulation, the
error sources are mainly multipath, re�ection, diraction of
the signal, and nonline of sight environment. Multimodal
localization approaches can combine dierent techniques or
measurements (e.g., RSS, TOA, and TDOA) to determine the
location.When a positioning technique oers poor accuracy,
another one with better performance can be chosen. For
example, AOA can be used to relieve the eect of multipath
and nonline of sight (NLOS) to obtain higher accuracy.
Dierent from approaches above, cooperative localization
is able to use the distances, neighbour relationships, and
other spatial information between mobile targets to improve
location estimation. Cooperative localization technique can
also be combined with multimodal �ngerprinting, which
can signi�cantly reduce the probability of mismatch between
�ngerprints and further obtain better location accuracy.

Indoor localization systems are considered to be one
of core components of mobile and ubiquitous computing
environment. In such localization systems, both Bayesian
�ltering-based approaches and multimodal localization
approaches utilize mainly the measurements from wireless
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Table 2: Comparison of dierent improvement strategies for location estimation.

Bayesian �ltering
Multiple localization technique fusion Spatial context fusion

Multimodal
�ngerprinting

Multimodal
triangulation

PDR
fusion

Cooperative
localization

Map
matching

Landmarks
Spatial
model

Accuracy
improvement

Medium Excellent Good Excellent Excellent Good Good Excellent

Deployment
eort

Nil High High Medium Medium Medium Low Very high

Applicability Very good Good Bad Good Average Very good Good Very good

Algorithm
complexity

Medium Medium High High High Medium Medium Medium

Hardware cost Nil Nil High General General Nil Nil Nil

network nodes and sensors. �ese measurements are o�en
regarded as the low-level context from the view of context
aware system. Besides, there are other higher level spatial
contexts [34] such as indoor maps, landmarks [21], and
spatial model [35]. �ese contexts can be used to restrain the
motion of a target and to eliminate the outliers of location
estimation, thereby optimizing location estimation. Recently,
fusion with spatial contexts has been an important method
for location estimation enhancement.

If the devices have enough computation resource, we can
further fuse multimodal �ngerprinting with PDR and even
mapmatching to obtain an ideal accuracy. However, themore
the information is fused, the higher the algorithmic com-
plexity as well as the cost is. Higher accuracy would reduce
the real time capability. When choosing a location estimation
scheme, there is o�en a need of “trade-o” between accuracy
and other factors (e.g., eort, applicability, complexity, and
cost). Table 2 demonstrates the performance comparison of
dierent approaches to improve location estimation.

4. Probabilistic Methods for
Location Estimation

As mentioned in Section 2, the noise in measurements is
inevitable due to complicated indoor environments and other
factors, causing the uncertainty of location information.
Bayesian �ltering estimates the states of a dynamic system
via probabilistic technique, which is suitable to deal with the
uncertainty problem caused by themeasurement noise. It can
be also applied to fusion ofmultiple sensors ormeasurements
to achieve higher accuracy. �is section begins with the
commonly used Bayesian �ltering approaches, including
Kalman �lers, extended Kalman �lters, sigma-point Kalman
�lters, particle �lters, and hidden Markov models. �en, a
special example is provided to illustrate how to use these
�lters to �lter out the measurement noise so as to improve
location accuracy.

Except Bayesian �ltering approaches, smoothing [18] is
another widely applied technology to process noise. It simply
computes the average value of measurements or estimates
within a sliding window. �ere are two types of smoothing
technology: time smoothing and space smoothing. Since

smoothing approach is simple and easy to implement, this
paper will not discuss it in depth.

4.1. Bayes Filters. Bayes �lters are powerful probabilistic
tools that probabilistically estimate a dynamic system’s state
from noisy measurements [36]. In the context of positioning
applications, the state can bemeasurements of dierent levels
such as RSSs, distances, angles, and coordinates. Deduced
from Bayesian rules, Bayes �lters use new observations to
calibrate probabilistic distribution [49]. �e basic Bayesian
rules can be interpreted as follows:� (� | ) = � ( | �) � (�)� () , (2)

where �(�) represent the prior probability of �, which is
known previous to new evidence  being available. �( |�)/�() indicates the eect of  on the belief of � and �(� |) is posterior probability. Bayes �lters aim to sequentially
estimate such beliefs over the state space conditioned on all
information included in the sensor data.

Assume that the state at time � is represented by random
variable �� and the sensor data consists of a sequence of
observations 1, 2, . . . , �. �e uncertainty at each time step
is expressed as a probability distribution over ��, called
belief, Bel(��). �e belief Bel(��) is de�ned as Bel(��) =�(�� | 1, 2, . . . , �). It means the probability of a target at
state �� given a sequence of observations 1, 2, . . . , �. To
avoid the fact that the computation grows exponentially over
time, Bayes �lters assume the system is Markov, meaning
that the current state �� includes all relevant information.
In other words, the current state �� depends only on the
prior state ��−1 and the states before ��−1 oer no additional
information.�is assumption allows us to work out the belief
without losing information. Bayes �lters use the following
equation to predict the state whenever a new observation �
is reported [36],

Bel− (��) = ∫� (�� | ��−1)Bel (��−1) ���−1, (3)

and then correct the predicted estimate using the new
observation � [36],

Bel (��) ←� ��� (� | ��)Bel− (��) . (4)
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Bayes �lters are an abstract concept and only provide a
framework that uses probabilistic technique to recursively
estimate the state. �e implementation of Bayes �lters needs
to specify both the state model and the measurement model.
Except processing the uncertainty of measurements, it can
also be used to fuse dierent measurements. Section 5 will
involve how to use Bayes �lter-based methods to combine
dierent positioning technologies and measurements.

Next, we will introduce the basic ideas of Kalman �lters,
extended Kalman �lters, sigma-point Kalman �lters, particle
�lters, and hiddenMarkovmodels. An example based onWi-
Fi positioning technique is given to illustrate that Bayes �lter-
based methods can be used in dierent levels to improve the
location accuracy.

4.2. Kalman Filters. �e Kalman �lters [25] are the most
frequently used variant of Bayes �lters that pursue the optimal
state estimation based on the minimum-variance principle.
�ey assume that the posterior density at every time step is
Gaussian and the state sequences are Markov. �ere are two
models that need to be used: state model and measurement
model. �e state model describes how the state changes over
time while the measurement model represents the change
of the state with measurement noise. To better illustrate the
rationale of the Kalman �lter, let �� and �� indicate the
sequences of the state and measurements, respectively. �e
corresponding state model and measurement model are as
follows:

State model: �� = ����−1 + V�,
Measurement model: �� = ���� + ��, (5)

where �� and �� are known linear functions, respectively,
and V� and �� are process noise andmeasurement noise. Both
V� and �� are assumed to be zero-mean Gaussian distributed
with known covariance � and �, respectively.

�e Kalman �lter consists of two stages: prediction and
update. In the prediction phase, the current state and process
noise variance matrix are used to compute the prior estimate
of next state; in the update phase, new observations can
be employed to optimize the prior estimate obtained in the
prediction phase to gain improved posterior estimation. �e
Kalman �lter proceeds recursively in the order “predicting-
measuring-updating.”

�e detailed calculation steps of Kalman �lters are as
follows:

(a) Utilizing the current state to predict the next state
with the assumption that the state model has no
in�uence from the noise:�̂−� = ����−1. (6)

(b) Predicting the error covariance matrix of next state:�−� = ����−1��� + �. (7)

(c) Computing the Kalman gain that minimizes the error
covariance matrix:�� = �−��� (��−��� + �)−1 . (8)

(d) Updating the target’s state using measurements and
Kalman gain:�̂� = �̂−� + �� (�� − ��̂−� ) . (9)

(e) Updating the error variance matrix using Kalman
gain: �� = (� − ���)�−� . (10)

Among the equations above, � and � are the target’s state
andmeasurements, respectively.� is the Kalman gain, � is the
identity matrix, and � is the error covariance.

Markoulidakis et al. [50] used Kalman �lters to optimize
the performance ofWi-Fi positioning system.�ree dierent
options were considered: �ltering of the sequences of RSS
measurements, �ltering of the distances between the target
and beacons, and �ltering of coordinates of the targets. It
turned out that �ltering of RSS measurements outperformed
the two other options and especially the performance of
�ltering of coordinates was theworst. Also, Kalman �lters can
be used to deal with the heading evaluation of DR [47], which
can combine readings from the gyroscope with readings of
the compass. In this way, the dri� problem of the gyroscope
and the in�uence ofmetals on the compass can be eliminated,
thereby achieving a more accurate heading evaluation.

Kalman �lters are the optimal solution to the positioning
and tracking problem if its assumptions hold. It has been
widely applied to robot navigation, control, computer image
processing, and tracking. However, the posterior density is
not necessarilyGaussian and in this case it does not work very
well.

4.3. Extended Kalman Filters. Dierent from Kalman �lters,
which can only deal with linear problems, the extended
Kalman �lter (EKF) is able to process nonlinear problems by
using the �rst term in a Taylor expansion of the nonlinear
function. A higher order EKF would keep further terms in
the Taylor expansion, but this is at the expense of additional
complexity, thereby restraining its applicability.

�e steps of EKF are described as follows:

(a) Employing the current state to predict the next state:�̂−� = �̂���−1. (11)

(b) Predicting the error covariance matrix of next state:�−� = �̂��−1�̂� + �. (12)

(c) Computing the Kalman gain that minimizes the error
covariance matrix:�� = �−� �̂� (�̂�−� �̂� + �)−1 . (13)

(d) Updating the target’s state using measurements and
Kalman gain:�̂� = �̂−� + �� (�� − �̂�̂−�) . (14)

(e) Updating the error variance matrix using Kalman
gain: �� = (� − ���̂) �−� . (15)
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In the equations above, the symbols are similar to those of

Kalman �lters except �̂ and �̂, which are denoted as

�̂ =  ! (�, V) � """"""""�=��−1 ,V=0 ,�̂ =  ℎ (�, �) � """"""""�=�� ,�=0 . (16)

�eEKF is originally used in the �eld of robot positioning
and tracking [25]. For instance, Jetto et al. [51] proposed an
adaptive EKF for the localization of mobile robots. Recently,
Yim et al. [52] developed an EKF-based Wi-Fi positioning
approach, which took the distances between themobile target
and wireless APs as inputs. In this way, a more reasonable
state model was designed according to user motion charac-
teristics and a better accuracy was achieved. Frank et al. [53]
utilized a two-layer EKF in which the bottom EKF was used
to process the data of inertial sensors and the upper EKF was
adopted to combine the output from the bottom EKF with
Wi-Fi positioning results.

�eEKF can deal withmany nonlinear and non-Gaussian
problems, and it has been widely used in many �elds.
However,�eEKF o�en approximates the probability density
function (PDF) of the observed signal as Gaussian distribu-
tion and does not consider the potential random variables
in the process of the state linearization. Instead, it only
employs the �rst-order term of the Taylor expansion of the
nonlinear function. �erefore, if the density is bimodal or
heavily skewed whereas Gaussian can never describe it well,
the EKF would fail to obtain the ideal performance [54].

4.4. Sigma-Point Kalman Filters. Unlike EKF, the sigma-
point Kalman �lter (SPKF) [26] introduces unscented trans-
form into the framework of EKF, which considers a set
of points selected from the Gaussian approximation to the
density, called sigma points. �ese points all are transmitted
via the true nonlinearity and are able to capture the truemean
and covariance of the Gaussian random variable.�e SPKF is
considered to be an alternative solution to the EKF since it
can better deal with nonlinear/non-Gaussian problems. �e
variants of the SPKF include unscented Kalman �lters (UKF)
[55] and central dierence Kalman �lters (CDKF) [56].

To better describe the SPKF, the weighted statistical linear
regression (WSLR) is utilized to rewrite the target’s state
model and measurement model; namely,

�� = ��,�−1��−1 + $�,�−1 + %�,�−1 (V�−1 + &�,�−1) ,�� = �ℎ,��� + $ℎ,� + �� + &ℎ,�, (17)

where ��,�−1, �ℎ,�, $�,�−1, and $ℎ,� denote parameters of
statistical linearization and &�,�−1 and &ℎ,� are linearization
errors of zero-mean variances ���,�−1 and ��ℎ,� , respectively.%�,�−1 is the input matrix. All the parameters can be

recursively worked out through the weighted statistical linear
regression method. �e procedures of standard SPKF can be
described as follows:

(a) Initialization:�̂0 = ' [�0] ,��0 = ' [(�0 − �̂0) (�0 − �̂0)�] ,�̂	0 = ' [�	0] = [�̂�0 V�0 �̂�0 ]� ,�	0 = ' [(�	0 − �̂	0) (�	0 − �̂	0)�] .
(18)

(b) Computing the sigma points:2	� = ' [�̂	��̂	� + √(5 + 6) �	� �̂	� − √(5 + 6) �	� ] . (19)

(c) Calculating the weighted statistical linearization of
the state transition function !(⋅):����−�+1 = 2
∑

�=0

2
∑
�=0

9�� (2��,� − �̂�) (2��,�+1|� − �̂−�+1)� ,
��,� = �����−�+1�−1�� ,$�,� = �̂−�+1 − ��,��̂�,���,� = �−��+1 − ��,�������,�.

(20)

(d) Updating measurements::�,�+1|� = ℎ� (2��,�+1|�, 2��,�) , ; = 0, 1, . . . , 25,
�̂−�+1 = 2
∑

�=0
9�� :�,�+1|�,

�̂��+1�̂−�+1 = 2
∑
�=0

2
∑
�=0

9�� (:�,�+1|� − �̂−�+1) (:�,�+1|� − �̂−�+1)� ,
���+1��+1= 2
∑
�=0

2
∑
�=0

9�� (2��,�+1|� − �̂−�+1) (:�,�+1|� − �̂−�+1)� ,
��+1 = ���+1��+1�−1�̂�+1�̂−�+1 ,�̂�+1 = �̂−�+1 + ��+1 (��+1 − �−�+1) ,���+1 = �−��+1 − ��+1�̂��+1�̂−�+1���+1.

(21)

(e) Computing the weighted statistical linearization of
the measurement transition function:�ℎ,� = ����+1��+1 (�−��+1)−1 ,$ℎ,� = �̂−�+1 − �ℎ,��̂�+1,��ℎ,� = �̂��+1�̂�+1 − �ℎ,��−��+1��ℎ,�.

(22)



Mathematical Problems in Engineering 11

In the equations above, 6 and 9 denote scalar weights,
respectively, and 5 is the dimension of the enhanced state.
�eSPKFhas been successfully applied to the positioning and
tracking �eld. For example, Paul andWan [56] used it to fuse
a dynamic model of human walking with a lot of low-cost
sensor readings to track 2D position and velocity; Crassidis
[55] employed it to combine GPSmeasurements with inertial
measurements from gyroscopes and accelerometers to com-
pute both the position and the attitude of a moving vehicle.

�e algorithmic complexity of the SPKF is similar to
that of the EKF, but it can accurately capture the posterior
mean and covariance to the second order for any nonlinearity.
Although it overcomes the drawbacks of the EKF, it is
sensitive to the initial value. A small error in the initial value
can be ampli�ed in the process of propagation and result
in a large error in the results. To relieve the eect of initial
error, the variance in�ation principle can be adopted. Besides,
sampling strategies and sampling rate have an in�uence on
the performance of the SPKF [57].

4.5. Particle Filters. Particle �lters [27] are numerical meth-
ods for approximating the solution of the �ltering problem
based on Bayesian estimation and Monte Carlo sampling.
�e basic idea behind particle �lters is to look for a set of
samples approximating the posterior probability density and
to replace the integral operation with the sample value to
estimate the ultimate state. Its calculation procedures can be
interpreted as follows:

(a) Initialization: draw a set of particles {��0}��=1 according
to the initial probabilistic density �(�0) and set the
weight for each particle to 1/@.

(b) Sampling: draw {���}��=1 according to the density func-
tion: {���}��=1 ∼ D (�� | �0:�−1, ��) . (23)

(c) Weight computation: the weight of each particle is
updated as

9�� = 9��−1� (�� | ���) � (��� | ���−1)D (��� | ���−1, �1:�) . (24)

Normalizing the weights,

9��� = 9��∑��=1 9�� . (25)

(d) State estimate: the probabilistic distribution �(�� |�1:�) a�er �ltering can be approximated as

� (�� | �1:�) ≈ �∑
�=1
9���G (�� − ���) ; (26)

thus, the ultimate state can be written as��� = �∑
�=1
9��� ���. (27)

(e) Resampling: a common problem encountered by the
particle �lter is the degeneracy phenomenon; that is,
all but one particle will have negligible weight a�er
a few iterations. Resampling is an eective method
to address this problem, which usually eliminates
particles with small weights and concentrates on
particles with large weights. �ere are many resam-
pling strategies [58, 59] such as strati�ed resampling,
residual resampling, and systematic resampling.

�ere are a number of variants of particle �lters such
as auxiliary particle �lters [60], regularized particle �lters
[61], adaptive particle �lters, and local linearization particle
�lters. Particle �lters have been widely used in outdoor or
indoor positioning, navigation, and tracking. For instance,
Gustafsson et al. [62] developed a particle �lter-based frame-
work that integrated map matching, GPS, and cellular tech-
nologies, which could be applied to navigation, tracking, and
anticollision of cars as well as aircra�s. Evennou and Marx
[31] developed a structure that consisted of a Kalman �lter
and a particle �lter to combine pedestrian dead reckoning
and Wi-Fi signal strength measurements. �e Kalman �lter
provided real time position and inferred position when
a user was in the wireless blind areas, while the particle
�lter was used to correct the dri� on the inertial sensors
[63–65]. As one of the most promising �lters for indoor
location estimation, the key advantage of particle �lters is the
capability to describe arbitrary probability densities and they
have been widely accepted [4, 8, 10, 13, 17, 19, 22, 27, 66–72].
Particularly, they are suitable for processing non-Gaussian,
nonlinear problems and able to converge to the true posterior
if there are enough large samples, which is unful�lled by
Kalman �lters. However, the performance of them depends
strongly on the number of samples used for �ltering. To
some extent, the more the samples, the higher the accuracy.
But this results in the rise of the computational complexity.
In the worst case, the complexity grows exponentially in
the dimensions of the state space [10]. In addition, there is
the degeneracy phenomenon a�er a few iterations, which
implies that we need to choose good importance density
or use resampling strategies. Overall, there is a need of
trade-o between the e�ciency and the real time capability.
In particular, inappropriate methods may lead to the bad
performance.

4.6. Hidden Markov Models. �e hidden Markov model
(HMM) [73] is developed based on the Markov model, in
which each state represents a physically observable symbol.
Compared with Markov models, which need each state to be
directly observed, HMM has no such restrictive requirement
and assumes that an observation is a probabilistic function
of hidden states. Due to the fact that physical states of many
applications are unobservable, HMM is more applicable than
traditional Markov models. A typical HMM is shown in
Figure 6 where we can see that there are �ve key components:

(a) I = {�1, �2, . . . , ��}, a set of@ hidden states. �e state
at time � is denoted by ��.
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Transitional probabilities

aij = P(Xt+1 = Sj|Xt = Si )

Evolution of states X1 Xk XT−1 XT

Emission probabilities bj(t) bj(t) = p(O(t)|Xt = Sj)

Observables O(1) O(k) O(T − 1) O(T)

Time
t1 tk tT−1 tT

Figure 6: Hidden Markov model [76].

(b) J = {1, 2, . . . , �}, a set of K observations. �e
observation at time � is denoted by �.

(c) � = {L��}, the transition probability matrix, whereL�� indicates the transition probability from state �� to
state ��,L�� = � (�� = �� | �� = ��) , 1 ≤ ;, N ≤ @. (28)

(d) O = {$��}, the emission probability matrix, where $��
indicates the emission probability at time � from state��,$�� = � (� = � | �� = ��) , 1 ≤ ; ≤ @, 1 ≤ � ≤ K. (29)

(e) P = {P�}, the initial state distribution, 1 ≤ ; ≤ @.

Let 6 = {�, O, P} represent the parameters of a HMM
and J = {1, 2, . . . , �} is a sequence of observations; there
are three basic problems: (i) evaluation problem: compute the
probability �(J | 6), given the HMM and the observation
sequence; (ii) decoding problem: work out the most likely
sequence of hidden states that produced this observation
sequence, given theHMMand the observation sequence; (iii)
learning problem: how to adjust the model parameters 6 to
maximize �(J | 6).

In the context of location estimation, a hidden Markov
model describes the temporal correlation of a user’s posi-
tions. �e state corresponds to location and the observation
depends only on the current position. Kontkanen et al. [74]
demonstrated the feasibility of HMM to track the target in
the areas of wireless radio networks. When the target was
moving at a normal speed, it was possible to observe a
series of continuous, dynamic measurements, upon which
the location estimation problem could be modelled into a
function of time. �e location of a target at the current
time step only relied on that at the previous time step.
In this way, it signi�cantly reduced the error of location
estimation when performing dynamic tracking. Wallbaum et
al. [75] used the HMM to improve the accuracy of Wi-Fi
positioning technology. In their research, Wi-Fi �ngerprints
were considered as hidden states and RSS measurements as
observations. �is was enhanced by [76, 77], who further
introduced PDR to accurately generate the state model.
Dierent from other researches, Park et al. [28] took the
reference points of Wi-Fi �ngerprints as the state of HMM
and eliminated a large part of location error.

In comparison with other Bayesian �ltering techniques,
the HMM has its special advantages. It is more suitable
for the fusion of dierent types of measurements and/or
localization approaches. �is is because Kalman �lters or
extended Kalman �lters have the Gaussian assumption,
which con�icts with some positioning measurements [77].
Also, the e�ciency of HMM is higher than particle �lter
which requires high computation resources. In particular,
without any restrictions on the motion of the target, the
HMM is more applicable to represent the complex motion of
indoor targets [77].

4.7. Applications of Bayesian Location Estimation. Bayesian
�ltering is an eective tool to process the measurement
noise as well as fuse dierent types of measurement or
localization techniques. It has been demonstrated that the
measurement noise can be processed in dierent levels [50],
such as RSS, distances, and coordinates, as shown in Figure 7.
�is subsection provides a �ltering framework for location
estimation, which does not rely on a particular �lter.

Let Q� represent the state of the target at time step � andR� is the corresponding observation. �us, the state model
and measurement model can be written as follows.

State model Q� = �Q�−1 + ΓT�. (30)

Measurement modelR� = �Q� + U�, (31)

where � and � denote the state transition matrix and
measurement matrix, respectively. T and U are zero-mean
Gaussian random variables.

Taking Wi-Fi positioning technique as an example, we
introduce how to use the �lter in dierent levels and to
describe the corresponding models. In the process of Wi-Fi
�ngerprint positioning, the RSS measurements between the
target and the beacons are collected at �rst; then compute the
distances between the target and the beacons using typical
RSS-distance model or curve �tting; �nally, the coordinates
of the target can be calculated via trilateration or multilater-
ation. �e state models and measurement models for three
�lters (RSS �lter, distance �lter, and coordinate �lter) are
presented in the following.

(1) RSS-Based Filter. For RSS �lter, the state vector and
observation at time � are written as

Q� = ((((
(

RSS (1, �)
RSS (2, �)
RSS (3, �)
VRSS (1, �)
VRSS (2, �)
VRSS (3, �)

))))
)

,

R� = (RSS� (1, �)
RSS� (2, �)
RSS� (3, �)) ,

(32)



Mathematical Problems in Engineering 13

Distance
function
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/Multilateration
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Measurement-

(RSSI/TOA/AOA)
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coordinates

Layer 1 �lter Layer 2 �lter Layer 3 �lter

Figure 7: Applications of �ltering algorithm in location metrics of dierent levels.

where RSS(;, �), ; = 1, 2, 3, indicates the actual RSS of the
target to the ;th beacon at time � and RSS�(;, �) represents
the corresponding observation. VRSS(;, �) is the rate of the
change in the RSS between the target and the ;th beacon.�e
corresponding matrices in the state model and measurement
model are as follows:

� = (((((((
(

1 0 0 _ 0 00 1 0 0 _ 00 0 1 0 0 _0 0 0 1 0 00 0 0 0 1 00 0 0 0 0 1
)))))))
)

,

Γ = (((((((
(

0 0 00 0 00 0 0_ 0 00 _ 00 0 _
)))))))
)

,

� = (1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 0) ,
(33)

where _ denote the time interval of sampling. A�er �ltering
of RSS, the ultimate coordinate can be worked out by
trilateration, where the distances required can be obtained
using typical RSS-distance model.

(2) Distance-Based Filter. If the �lter is used to deal with
distances between the target and beacons that are obtained

using the RSS-distance model, the corresponding state and
measurement can be revised as

Q� = ((
(

�(1, �)� (2, �)� (3, �)
V� (1, �)
V� (2, �)
V� (3, �)

))
)

,
R� = (�� (1, �)�� (2, �)�� (3, �)) ,

(34)

where ��(;, �) denotes the observed (computed by the RSS-
distance model) distance between the target and the ;th
beacon and V�(;, �) is the rate of change in the distance. �e
matrices �,�, and Γ have the same value as in the RSS �lter.

(3) Coordinate-Based Filter. If the input of the �lter is
coordinates, the �lter is called coordinate �lter. It can be
Kalman �lter, particle �lter, or other �lters. For such �lter, the
state vector and measurement vector are described as

Q� = (� (�)� (�)
V� (�)
V� (�)) ,

R� = (�� (�)�� (�)) , (35)

where Q� is a vector consisting of the coordinate and
speed of the target and R� is the observed coordinate. �e
corresponding matrices, �,�, and Γ, are given as

� = (1 0 _ 00 1 0 _0 0 1 00 0 0 1) ,
Γ = (0 00 0_ 00 _) ,
� = (1 0 0 00 1 0 0) .

(36)
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5. Hybrid Methods for Location Estimation

As analyzed in Section 2.2, each type of measurement has
its own inherent error characteristics, which means that the
accuracy improvement of one single technique is always lim-
ited. Comprehensively, considering the cost, infrastructure,
mobile device, and accuracy of localization systems, none of
the techniques and algorithms can ful�ll the requirements of
all the applications.

On the other hand, with the development of mobile
communication technologies, wireless infrastructures are
increasingly available in indoor environments, and many
dierent types of smart mobile devices and sensors are
becoming ubiquitous. �is leads to the constant emerging
of novel applications, such as mobile social networks. In
this case, it is highly likely that there exist dierent types
of wireless networks or signals in the same environment.
For example, a factory would use UWB networks for the
location-based service while Wi-Fi networks for the Internet
connection service. Besides, modern mobile devices are
equipped with wireless modules (e.g., Wi-Fi and Bluetooth)
and sensors (e.g., accelerometers, gyroscopes, compasses,
and barometers). �is has strongly driven the development
of hybrid localization techniques combining heterogeneous
measurements and approaches. �e hybrid methods can
exploit their positive aspects and limit the impact of their
negative aspects and hence signi�cantly improve the location
estimation.

�is section reviews some major hybrid localization
methods. In this paper, hybrid localization methods are
classi�ed into four categories: multimodal �ngerprinting,
triangulation fusing multiple measurements, the combining
wireless positioning with pedestrian dead reckoning, and
cooperative localization.

5.1. Multimodal Fingerprinting. A large number of indoor
localization techniques adopt �ngerprint matching as the
basic scheme of location estimation. �is process normally
consists of two stages: the o�ine training phase and the
online location estimation phase. �e o�ine phase is also
called training phase, in which a radio map of the area in
study is built. Signal characteristics (e.g., RSS) from multiple
beacons are registered at reference points (RPs). �e online
phase is also called localization phase, in which the mobile
devices collect signal characteristics in real time and estimate
its location through bestmatching between the signalmetrics
being collected and those previously registered in the radio
map. Together with no special demands on infrastructures
and mobile devices, the characteristics of low cost and high
accuracy make �ngerprinting a very popular localization
technique and well-studied.

As mentioned in Section 2.2.2, an ideal �ngerprint signal
source should be recognizable and stable. �e most popu-
lar �ngerprint signal for indoor localization is Wi-Fi RSS.
Actually, other kinds of RSS measurements (e.g., Bluetooth,
FM, DTV, and GSM), magnetic strength, and even ambient
features (e.g., sound, light, and color) can also be considered
as �ngerprints. One common solution for improving �n-
gerprinting is to enhance the recognition rate of �ngerprint

signals. Since �ngerprint signals present a great dierence
at distinct positions, extending the dimension of �ngerprint
signals can dramatically improve the recognition rate. In this
section, themultimodal �ngerprinting techniques fusingWi-
Fi RSS with other �ngerprint signals are described as follows.

5.1.1. Combining Wi-Fi with Magnetic Strength. Wi-Fi signal
has global recognizability, because the MAC address of every
AP is unique worldwide. However, due to the signal �uctua-
tion, the local recognition rate of Wi-Fi RSS is normally low.
Wi-Fi RSS-based �ngerprinting can only acquire an accuracy
of about 3m. In contrast, magnetic strength has relatively
high local recognition rate. In particular, when there are
metals and electric devices around, magnetic �ngerprinting
can achieve high localization accuracy. Angermann et al.
[78] drew a conclusion through detailed experiments that the
resolution of magnetic signal could reach centimeter-level
accuracy. However, it could not be recognized globally. �e
fusion of Wi-Fi and geomagnetic signal can make up the
drawbacks of both sides, realizing �ne-grained localization
accuracy globally [79]. Geomagnetic �ngerprints have two
forms. One is the triple composed by magnetic strength
sensed from the three-axis magnetometer. �e other is the
geomagnetic magnitude at a certain location. �e former
considers the attitude of mobile devices when collecting
�ngerprints, while the latter does not need to consider. �is
is because no matter what the attitude of mobile devices is,
theoretically, the geomagnetic magnitude of a location does
not vary. �e two forms can be given as follows:!�1 = {(��1,RSS1) , {��2,RSS2} , . . . , {���,RSS�} ,

mag �,mag �,mag �} ,!�2 = {(��1,RSS1) , {��2,RSS2} , . . . , {���,RSS�} ,
magnetic} ,

(37)

where (��1,RSS1) represents that the signal strength of��1 is
RSS1 andmag �, mag �, mag � aremagnetic strength sensed
from three axes of magnetometers, respectively. magnetic is
the geomagnetic magnitude.

5.1.2. Combining Wi-Fi with Other Opportunistic Signals.
Opportunistic signal here refers to these signals existing
in our environment, which are not specially created for
positioning purpose, such as FM, GSM, DTV, and Bluetooth.
�ere is no essential dierence between Wi-Fi and these
opportunistic signals when they act as �ngerprints. �ese
wireless signals are sent by globally unique beacons and then
received by mobile devices. During this process, the mobile
devices can extract some useful information, such as RSSs,
signal to noise ratio (SNR), multipath, and distances, which
all can be used to generate �ngerprints [29]. Moreover, Wi-
Fi �ngerprint database can be expanded through adding
its dimension using these opportunistic �ngerprints. As a
result, the accuracy of location estimation can dramatically
be improved [29, 40, 80]. Figure 8 shows the architecture of
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Figure 8: Architecture of multimodal �ngerprinting approach (fusing Wi-Fi and Bluetooth).

multimodal �ngerprinting fusing Wi-Fi with Bluetooth. �e
corresponding �ngerprint form is given as follows:!� = {(��1,RSS1) , (A�2,RSS2) , . . . , (���,RSS�) ,(OI1,measurement1) , (OI2,measurement2) , . . . ,(OI�,measurement�)} , (38)

where (��1,RSS1) represents that the signal strength of
Wi-Fi ��1 is RSS1. OI� refers to Bluetooth beacon, and
measurement� denotes the corresponding measurement sig-
nal. Apart from the above mentioned opportunistic signals,
some ambience features such as light, color, and even back-
ground sound can also be utilized to enhance �ngerprinting
[2, 42].

As an improvement scheme for location estimation,
multimodal �ngerprinting has no special requirements for
infrastructures and just the need to collect available signals
from surrounding environments. Combining dierent types
of �ngerprints together to generate multidimensional �n-
gerprints can considerably improve the recognition rate of
�ngerprints and therefore the localization accuracy.However,
the disadvantages of all the �ngerprinting approaches are
that the training process for collecting �ngerprints is labor-
intensive and time-consuming. Although researchers have
proposed many unsupervised techniques for training �nger-
prints, most of them highly depend on the availability of �ne-
grained �oor plans or initial positions of users. �erefore,
these solutions are not always ideal for many applications.

5.2. Triangulation Fusing Multiple Measurements. Triangula-
tion uses geometric properties of the triangle formed by the
target device and the beacons to estimate location, and it can
fall into two categories: lateration and angulation. Lateration
measures the distances between mobile targets and multiple

beacons, which are used to estimate the position of mobile
targets. �erefore, lateration is also regarded as a ranging
technique. While angulation calculates the position through
measuring the angles between mobile targets and multiple
beacons [5].

�e coexistence of heterogeneous networks in the envi-
ronment enables users to simultaneously obtain various tri-
angulation measurements. �e most common signal metrics
of ranging approaches are RSS, TOA, TDOA, and Time
of Flight (TOF). In particular, RSS has become a standard
parameter of most wireless devices, and it can be easily
acquired through pervasive devices. For instance, nanoLoc
[14, 81] is able to obtain TOF and RSS at the same time.
However, under dierent wireless channels and network
conditions, TDOA, TOA, AOA, and RSS have dierent error
characteristics, and correspondingly dierent localization
algorithms will be adopted. In general, localization tech-
niques based on one single measurement cannot reach a
satisfactory accuracy, particularly in NLOS environments
where positioning results tend to present a larger deviation.
�eoretically, hybrid localization techniques [36, 49, 82],
such as TOA and RSS [30, 83–85], TDOA and AOA [86,
87], RSS and AOA [88, 89], TOA and AOA [90–92], and
fusing multiple measurements can overcome the shortages
of localization technique with single measurement. �ere
are several typical measurement fusion models explored as
follows.

�e most common fusion models of multiple measure-
ments include least squares (LS) or weighted least squares
(WLS) [86, 89, 90], maximum likelihood (ML) [30, 88],
Bayes �lters [87], and Taylor series [85]. Eachmodel provides
dierent trade-os between the positioning accuracy and
complexity. �e general framework of multimodal triangu-
lation is shown in Figure 9.
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Depending on the way of measurements fusion, multi-
modal triangulation can be divided into two basic categories:
fusion between distance measurements and fusion of dis-
tances and angle measurements. Because each category has
similar fusion methods, we just consider the fusion of TDOA
and AOA and the fusion of RSS and AOA as the examples.
Chan and Ho [93] proposed a widely used fusion algorithm
based on TDOA, which could achieve a great positioning
accuracy in the Gaussian noise environment. Particularly, the
fusionmethod of TDOA andAOA is based on Chan andHo’s
algorithm. By adding an anglemeasurement error in the orig-
inal TDOA error equations to form a 2D nonlinear equation
set, the estimated location of targets can be computed using
twice the least squares (LS) [86].

�e fusion algorithm of RSS and TOA tends to combine
the distance metric obtained by using RSS and that acquired
by using TOA between mobile targets and beacons. In a
sense, this equals increasing the number of beacons in the
environment (i.e., RSS and TOA metrics extracted from
dierent beacons) or increasing the dimension of observation
values (i.e., RSS and TOA metrics derived from the same
beacon) [84]. �e following is the speci�c fusion algorithm
of RSS and TOA by employing extended Kalman �lter.

Suppose that there are 5 UWB beacons and K ZigBee
beacons in the environment and RSS is obtained from
ZigBee beacons, while TOA is obtained from UWB beacons.
Observation vector of extended Kalman �lter can be de�ned
as

z� = [zdist,�

zRSS,�
] , (39)

where zdist,� = [�̃�1 ,� �̃�2 ,� ⋅ ⋅ ⋅ �̃��,�] and zRSS,� =[�̃�1,� �̃�2,� ⋅ ⋅ ⋅ �̃��,�]� denote the distance observation

vector obtained by TOA and the RSS observation vector from

ZigBee beacons, respectively. �̃�� ,� represents the estimated
distance between the mobile target and the ;th UWB beacon

at time �. �̃�� ,� is the RSS measurement between the mobile
target and the ;th ZigBee beacon at time �. �e vectorℎ(�̂�|�−1) in this hybrid algorithm is given as

ℎ (x̂�|�−1) = [ℎdist (x̂�|�−1)ℎRSS (x̂�|�−1)] , (40)

where ℎdist(x̂�|�−1) represents the Euclidean distances
between the mobile target and all the beacons at time �. For
the ;th beacon

dist (x̃�, x��) = √(�̃� − ���)2 + (�̃� − ���)2 (41)ℎRSS(x̂�|�−1) is RSS between the mobile target and all the
beacons at time �. ���(x̂�|�−1) is the RSS that mobile target
receives from ;th ZigBee beacon, expressed in dBm. RSS is
modeled by the log-normal shadowing path loss model and
is de�ned as follows:��� (x̂�|�−1)= �0

− 10�log10(√(�̃� − ���)2 + (�̃� − ���)2�0 ), (42)

where�0 represents the signal power received from a distance�0 and � is the path loss exponent.
�e hybrid Jacobian matrix can be de�ned as

H� = [Hdist,�

HRSS,�
] , (43)

where Hdist,� is the Jacobian matrix of ℎdist(x̂�|�−1) which can
be estimated with a priori state vector x̂�|�−1. �us, it can be
de�ned as

Hdist,�

= [[[[[[[[
�̃� − ��1

dist (�̃�, ��1) �̃� − ��1
dist (�̃�, ��1) 0 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅�̃� − ���

dist (�̃�, ���) �̃� − ���
dist (�̃�, ���) 0 0

]]]]]]]]
, (44)

whereHRSS,� is the Jacobianmatrix of ℎRSS(x̂�|�−1) and is given
as

HRSS,� = − 10�
ln (10)

⋅ [[[[[[[[[[

�̃� − ��1
dist2 (�̃�, ��1) �̃� − ��1

dist2 (�̃�, ��1) 0 0... ... ... ...�̃� − ���
dist2 (�̃�, ���) �̃� − ���

dist2 (�̃�, ���) 0 0
]]]]]]]]]]
. (45)

�e hybrid covariance matrix R� of the observation vector is
de�ned as

R� = [Rdist,� O
×�

O�×
 RRSS,�
] , (46)
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Figure 10: Architecture of PDR-based hybrid location estimation.

where O
×� and O�×
 represent zero matrices with sizes 5×K andK× 5, respectively. Rdist,� is the covariance matrix of
UWB distance measurement matrix, which is denoted as

Rdist,� = diag (p2�	1,� ⋅ ⋅ ⋅ p2�	�,�) , (47)

where p2�	�,� is the initial variance of the distance measure-

ment from ;th UWB beacon. RRSS,� indicates the covariance
matrix of ZigBee RSS measurements, which is represented as

RRSS,� = diag (p2��	1,� ⋅ ⋅ ⋅ p2��	�,�) , (48)

where p2��	�,� is the initial variance of the shadowing for the;th ZigBee beacon.
�e drawback of multimodal triangulation is that it relies

too much on positioning hardware. Although the fusion of
TDOA and AOA is theoretically feasible, wireless network
devices in real world that can support TDOA and AOA
measuring are rare. In particular, RSS, TOA, and TDOA
ranging and AOA measuring are easily aected by various
factors such as multipath and NLOS. It is, today, still di�cult
to eliminate these eects. In general, when choosing two
or more techniques and/or measurements for fusion, there
should be at least one kind of techniques or measurements
which are not aected by multipath and NLOS. For example,
we usually combine triangulation with PDR [94, 95] or �n-
gerprinting, because PDR and �ngerprinting are less aected
by multipath and NLOS.

5.3. Hybrid Location Estimation by Fusing PDR. PDR is
a self-localization and navigation technique, which can be
realized on current mobile devices (e.g., smartphones and
tablets) equipped with IMU. From a known position, we
can infer users’ location at next step by detecting users’ step
events and estimating the length and heading of each step.
PDR is a relative localization approach, and current location
estimation depends on the prior estimation. Although each
estimation might have quite small error, the cumulative error
grows quickly over time, leading to the fact that PDR is not
suitable for long time tracking tasks. In contrast, each location

estimation from absolute localization techniques (e.g., Wi-Fi,
UWB, and magnetic �ngerprinting) has nothing to do with
the previous positioning results. However, the localization
results of the absolute techniques during a short time may
dramatically jump for a variety of reasons mentioned above.
For example, two successive estimation results (e.g., in a 3 s
interval) may present a dierence at ten or dozens of meters,
which is obviously impossible for normal people movements.

�e combination of PDR and absolute localization tech-
niques can complement each other. �erefore, it can reduce
the possibility of jumping estimations and obtain accurate
and reliable localization results even during a long time
tracking. Besides, it can work functionally even when mobile
targets walk into the blind area of wireless signal, for example,
tunnels, where other localization techniques almost do not
work.

�e methods for fusing PDR and wireless localization
techniques are commonly based on Bayes techniques, such
as Kalman �lters [96], particle �lters [64], and the HMM
[76]. �e measurements of PDR, including step length and
heading, are normally used to generate the motion model
in Bayes �lter to predict targets’ location. �e metrics such
as distance and location estimated from Wi-Fi and UWB
[66, 94, 96] act as the observations.�e typical architecture of
PDR-based hybrid location estimation is shown in Figure 10.
Next, we give a detailed example of fusing PDR and Wi-
Fi �ngerprinting with particle �lter. �e state vector of

targets is denoted as Q� = (�� �� ��)�, consisting of their
coordinates and headings.�emeasurement model and state
model in particle �lter are given as follows.

Measurement model

R� = ( ����Q��)+ q, (49)

where �� is the step length at time � which is calculated with
accelerometers. �� is the angular velocity at time � which is
measured with gyroscopes. Q�� is the estimated location by
Wi-Fi �ngerprinting at time �, and q represents the Gaussian
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random process. Since the heading is �ltered by a Kalman
�lter, the orientation change G�� can be obtained directly
from the Kalman �lter.

State model [63]

Q� = (��−1 + �� ⋅ cos (��−1 + G��)��−1 + �� ⋅ sin (��−1 + G��)��−1 + G�� ). (50)

�e computational steps of particle �lter are described as
follows.

(a) Initialization: calculate the initial position and head-
ing of targets with Wi-Fi �ngerprinting and compass
measurement, respectively.

(b) Prediction: sample � particles ��� according to the state
model.

(c) Weight update: update the weight of each particle with
the following equation [31]:

9�� = 9��−1 ⋅ 1√2Pp exp[[−
sssssQ�� − Q���sssss22p2 ]] , (51)

where Q��� is the location of the ;th particle at time� and p is the con�dence of measured location with
Wi-Fi �ngerprinting. �e smaller p will be, the more
con�dent the user is at the measured location. �e
weight of all particles is normalizedwith the following
equation:

9��� = 9��∑��=1 9�� . (52)

(c) State estimate: the state probability distribution�(�� |�1:�) a�er �ltering can be approximately represented
as

� (�� | �1:�) ≈ �∑
�=1

9��� G (�� − ���) ; (53)

then, we are able to obtain the position estimation
with the following equation:

Q�� = �∑
�=1
9������. (54)

�e challenge for PDR-based hybrid location estimation
lies in the correct estimation of users’ movement heading,
because heading errors aect the PDR estimation the most.
Aswe havementioned earlier, estimated heading is not always
coincident with users’ moving heading due to the tilt of
mobile devices, which is especially the case for smartphones.
Many research works assume that users hold the phones in
hands and keep the �-axis of phones coincident with users’
moving heading [96]. Actually, this assumption is very

demanding because users may place their phones in any
attitudes, such as holding them in hands, putting them in
pockets, or keeping them near the ear for calling. Also, it is
impossible for users to keep their phones in one single
attitude all the time, and the changes between dierent
attitudes may occur frequently. To address this problem, Rai
et al. [64] proposed a method through using the spatial
constraints to mitigate the negative eects caused by the tilt
of mobile devices. But it is not easy for the public to get such
a speci�c indoor �oor plan. How to correctly estimate the
walking heading is the key problem the PDR-based fusion
solution is faced with.

5.4. Cooperative Location Estimation. Cooperation between
peer nodes, inwireless sensor networks, is used for improving
the performance and the coverage of networks. Recently,
cooperation technique is introduced to the navigation and
positioning �eld to improve the accuracy of traditional local-
ization techniques [23, 67, 97]. Depending on the require-
ments for the infrastructure, the traditional indoor localiza-
tion techniques fall into two basic types: infrastructure-based
(e.g., Wi-Fi, UWB, and ZigBee positioning systems) and
infrastructure-free (e.g., PDR) localization.�e former needs
to deploywireless beacons and depends on themeasurements
between the mobile target and beacons to localize, such
as the signal strength, distances, and angles. Infrastructure-
free localization is also called self-localization, in which the
mobile device collects the sensor data from the IMU sensors
embedded in it and estimates its location. However, both of
the two common localization techniques ignore themeasure-
ments between mobile targets. In cooperative localization,
mobile targets within the communication range can interact
with each other to obtain their spatial relations, for example,
proximity and distances. Such spatial information between
neighboring nodes can contribute to improve the localization
accuracy and robustness. Moreover, in infrastructure-based
localization, when mobile targets do not sense adequate
beacons (e.g., the number is less than 3), neighboring nodes
can be regarded as the alternatives of missing beacons and
thereby extend the coverage of localization system. As shown
in Figure 11, the traditional infrastructure-based localization
approach can only locate a limited number of mobile targets,
because other targets cannot receive measurements from
adequate enough beacons. In contrast, in cooperative local-
ization, all the mobile targets can exchange measurements
with their neighboring nodes within the communication
range and then use these measurements to enhance location
estimation.

�ere are two basic parts in cooperative localization
systems: traditional localization and peer-to-peer communi-
cation. �e cooperative localization problem can be repre-
sented as follows: estimating a parameter � standing for the
locations of all mobile targets from an observation �. Here, �
denotes not only the measurements between mobile targets
and beacons but also that between mobile targets. Typically,
cooperative localization obtains the distance measurements
[97] among peers through a variety of signal metric tech-
niques, such as RSS-based signal propagation model or
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Figure 11: Traditional localization and cooperative localization.

TDOA. Others would capture the social relationships (e.g.,
encountering) [20] between mobile targets to improve local-
ization. In the cooperative localization system, the traditional
localization techniques could be self-localization [67, 98, 99]
or infrastructure-based localization (e.g., Wi-Fi APs-based
[100] and UWB beacons-based [101]).

We categorize cooperative localization as Bayesian or
non-Bayesian (deterministic) [23], depending on whether or
not we consider � as a realization of a random variable.

5.4.1. Non-Bayesian Estimation. Non-Bayesian estimators
treat a target’s location as an unknown deterministic parame-
ter, and it includes the least squares (LS) estimator and the
maximum likelihood (ML) estimator. �e LS estimator
assumes � = !(�)+�, where!(⋅) is a known function and � is
the measurement error. �e LS estimate of � is obtained by
solving the following optimization problem:��LS = argmin�

ssss� − ! (�)ssss2 . (55)

�eML estimator considers the statistics of noise sources and
maximizes the likelihood function:��ML = argmax� ��|� (� | �) . (56)

Raulefs et al. [102] proposed an UWB cooperative local-
ization solution, in which particle �lter was used to track
targets’ locations. Levy �ight model was used to represent
the motion model of users and the initial position was
estimated with UWB beacons. During the tracking process,
the distances between mobile targets and beacons as well as
other peer nodes could be obtained and used to compute

the location of a mobile target through nonlinear weighted
least squares algorithm. �e estimated location was then
treated as the observation of particle �lter. Vaghe� and
Buehrer [103] put forward a long term evolution- (LTE-)
based cooperative localization solution.�e targets could not
only receive observed time dierence of arrival (OTDOA)
of the noncooperative signal from LTE beacons but also
interact with peer nodes to obtain round-trip time (RTT) of
the cooperative signal. Finally, ML was used to fuse the two
kinds of measurements to accurately calculate the location of
targets. Liu et al. [100] adopted the deterministic cooperative
localization method, in which acoustic ranging technique
was introduced to obtain the accurate distance among the
peer nodes. Also a distribution graph of mobile targets
was created. �e distribution graph of mobile targets was
then matched with the distribution graph of �ngerprints to
improve the localization accuracy. �is algorithm represen-
tatively used the spatial constraints betweenmobile targets to
reduce the probability of erroneous �ngerprint matching.

5.4.2. Bayesian Estimation. Bayesian estimation uses proba-
bilistic techniques to compute targets’ locations, which treats
the location as a realization of a random variable � with an a
priori distribution ��(�). Bayesian estimation methods can
be generally divided into two types: the minimum mean
squared error (MMSE) estimator and the maximum a
posteriori (MAP) estimator. MMSE tries to minimize the
estimation error as follows:

��MMSE = ∫���|� (� | �) ��. (57)
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�e MAP estimator �nds the mode of the a posteriori
distribution, and it can be treated as the regular ML
estimator: ��MAP = argmax� ��|� (� | �) . (58)

Tseng et al. [67] proposed a self-localization-based coop-
erative scheme where the mobile target obtained the nonco-
operative measurements (TOA) between itself and beacons
and cooperative measurements (TOA) between itself and
peer nodes. Particle �lter was used to track the mobile users
and these noncooperative and cooperative measurements
were treated as the input of the observationmodel. Strömbäck
et al. [104] achieved tracking of mobile targets through PDR
and the distance between mobile targets obtained by the
wearable UWB modules. �ese two kinds of signal metrics
were fused by the Kalman �lter, and the the accuracy was
improved. Li et al. [105] proposed a similar PDR-based
cooperative localization approach, in which PDR was used
for self-tracking and acoustic ranging technique was used
to detect proximity. When the proximity of two mobile
targets was detected, whichmeant that their current locations
would be equal, the PDR tracking results of two targets then
were calibrated. It could eliminate the accumulative error
caused by tracking a single target with PDR. �is process
was also implemented with the Kalman �lter. Jun et al. [20]
implemented a cooperative localization solution from the
perspective of social sensing. By utilizing the encountering
and nonencountering events in social activities to constrain
users’ possible locations, the accuracy of existing localization
techniques such as Wi-Fi �ngerprinting and PDR could be
enhanced. �e encountering and nonencountering events
were detected with the built-inWi-Fi modules. Finally, users’
location is estimated with probabilistic methods.

Cooperative localization techniques depend on the inter-
action and information exchange between mobile targets.
However, in the places with a high density of mobile targets,
such as airports, the communications between each pair of
mobile targets would bring great pressure to the network and
even give rise to network congestion. Moreover, this would
signi�cantly increase the power consumption for mobile
targets. On the other hand, when determining the location
of each mobile target, cooperative localization algorithm
commonly needs to refer to spatial information between
current node and its neighboring nodes. More o�en, in order
to obtain better localization results, we need to take into
account the globally spatial distribution of all nodes.�us, the
computational complexity of cooperative localization algo-
rithm may be very high. In general, in order to measure the
spatial information between mobile targets, mobile devices
require the access to the physical processing units or the
additional functional modules. �ese requirements would
not be met in many applications. For instance, most of
commercial smartphones do not allow average users to access
some particular underlying hardware, such as the bottom
layer interfaces of acoustic sensors, which is necessary to
acquire the distance between two smartphones [15].

6. Location Estimation by Fusing
Spatial Contexts

Although hybrid localization can signi�cantly improve loca-
tion estimation, they have the particular demands for infras-
tructures and mobile devices, especially for sensors and
wireless protocols. In many cases, these requirements cannot
be met at all. Toomuch dependence on positioning hardware
would limit the use of hybrid schemes in many applications.
�us, it is necessary to make use of the context information
derived from nonlocalization devices in order to improve the
location estimation. In fact, on the one hand, the complex and
constrained indoor spaces give rise to so much troubles for
localization. On the other hand, they also provide the rich
spatial contexts for enhancing localization results [34]. �ese
spatial contexts typically include the indoor structures (e.g.,
rooms, corridors, and stairs), facilities (e.g., desks, doors, and
elevators), and various landmarks (e.g., corners and signal
blind areas). In particular, they can be used to constrain
mobile targets’movement and/or calibrate localization results
and, therefore, eliminate some erroneous estimation results.
Currently, fusion with spatial contexts has become an impor-
tant method for improving location estimation.

6.1. Map Matching-Aided Estimation. Indoor maps, the main
carrier of spatial contexts and the foundation of indoor LBS
applications, are now widely used to aid indoor localization.
�is process is also called map matching. Map matching
is �rst applied in the intelligent transport system (ITS), in
which the spatial road network is used to determine the
spatial reference of the vehicle’s location a�er the coarse
location is obtained from traditional positioning technologies
such as GPS or PDR. �e main purpose of map matching
is to identify the correct road segment on which a vehicle
is traveling and to determine the vehicle location on that
segment [106]. �e assumption of this algorithm especially is
that the vehicle is constrained to a �nite network of roads.
Obviously, this is valid for most vehicles under most condi-
tions, although problemsmay be encountered in o-roadway
situations such as car parks or private lands.

Outdoor map matching techniques can be divided into
three basic types: geometric matching, topological match-
ing, and probabilistic matching. In addition, some �ltering
algorithms (e.g., particle �lters or extended Kalman �lters)
o�en are utilized in the matching. A geometric matching
algorithm makes use of the geometric information of the
spatial road networks by considering only the shape of
the links, instead of the relationship of the links. �is
algorithm can be further divided into three subtypes: point-
to-point matching, point-to-curve matching, and curve-to-
curve matching [107]. Topological matchingmakes use of the
geometry as well as the connectivity and contiguity of the
links [108].�e probabilistic matching requires the de�nition
of an elliptical or rectangular con�dence region around a
position obtained from a navigation sensor. Typically, this
region can be obtained based on GPS positioning results and
its error variance. �en, this region will be superimposed
on the road network to determine a road segment on which
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the vehicle is traveling. �e road networks or segments
of outdoor environments mainly contain the properties of
width and length. In contrast, indoor environments have
a completely dierent scale, and the internal structure is
also more complicated. Also, most of the indoor localization
applications are pedestrian-oriented and other slow moving
targets. Compared with the �xed movement patterns of cars
on the roads, which is always along the road direction,
humans’ indoor movement behaviors have high randomicity
and are not unpredictable. In sum, indoor map matching
algorithmhas a large dierence from that of the outdoors, and
next we will explore the indoor map matching techniques in
detail.

Indoor environments and outdoor environments have
similar spatial constraints, which can be used to rule out some
incorrect positioning results, thereby improving the accu-
racy of traditional positioning techniques. �eoretically, the
estimated results of targets could be anywhere that the posi-
tioning infrastructure covers. Actually, it is impossible for tar-
gets especially pedestrians to be at some speci�c places due to
the constraints of indoor spaces. Moreover, indoor spaces are
typically divided into rooms, corridors, stairs, and other
building structures. For instance, it is unreasonable that the
estimated location is in the area occupied by obstacles. If two
consecutive estimations with 1 s interval cross a wall and they
are far away from the nearest exit (e.g., door) of the wall, we
think this kind of trajectory is incorrect.

Similarly, indoor map matching methods can also be
divided into three categories: point-to-point matching
(geometry), trajectory matching (topology), and Bayesian
methods. Point-to-point algorithms match the estimated
coordinate points with the locations of indoor environments
based on �oor plans. �e most typical point-to-point
algorithm is the landmark matching [21], which �rst
observes some sensor data or detects users’ activities and
then calibrates targets’ locations to some landmarks, such as
visible landmarks (e.g., elevators, stairs, and corners) or
virtual landmarks (e.g., the spot with an unusual magnetic or
wireless signal �uctuation). Landmarks-based localization is
a relatively new technology, which involves a wide range of
background knowledge, so we will elaborate it in Section 6.2.

Trajectory or topology matching usually makes use of
the geometry and topology information of corridors, corners,
and rooms, which is matched with captured trajectory to
obtain a global optimal estimation. Lan and Shih [109]
inferred the user’s last-visited corner by calculating the geo-
metric similarity between the user trajectory and that of the
�oor plan. To be speci�c, the geometric similarity between
two graphs was estimated by comparing their shapes, vertex
angles, and relative edge lengths. In this way, map matching
could calibrate PDR errors caused by gyroscopes. Park and
Teller [110] proposed the concept of motion compatibility for
indoor localization, assuming that users’ initial locationswere
unknown and they walked with smartphones in the indoor
space. A�er a period of time, a trajectory would be generated
and a sequence of user motions such as walking, turning, or
opening the doors were also detected along the trajectory by
using the user’s inertial sensors. Finally, the �oor path whose

activities were best matched with the sensed activities was
regarded as the estimated trajectory.

In fact, a more eective method is to use the Bayesian
techniques to reduce uncertainty of the location estimations
that violate the space constraints, such as walking through
walls or obstacles. Bayes �lters (e.g., Kalman �lters, particle
�lters, or HMM) are the most commonly used techniques for
fusing spatial constraints or contexts [32, 111]. To illustrate, we
take particle �lter as an example to introduce the basic fusion
approach, in which space constraints are mainly used for
updating the weights of particles. If the predicted location of
a particle is considered to be invalid, the weight of the particle
will be assigned to 0. Also, we should make sure that newly
generated particles are not in the invalid areas when initiating
and resampling particles:

� (��� | ��−1) = {{{0 resides in invalid areas� (��−1) otherwise. (59)

Particularly, Widyawan et al. [68] proposed a backtracking
particle �lter for fusing map matching and PDR, which
mainly used the historical trajectories of particles to improve

estimations. If particle ��� is invalid at time �, the previous
state estimates at time � −K can be re�ned by removing the
invalid particle trajectories. �is is based on the assumption
that an invalid particle is the result of a particle that follows an
invalid trajectory or path. Obviously, the recalculation of the
previous state estimation ��−� without invalid trajectories
will facilitate better estimates. If elevators, stairs, and other
vertical passages are represented in the maps and barometers
are used to measure the altitude of the building �oor [13], not
only canwe re�ne the 2D location estimations but also we can
re�ne 3D localization results.

In addition to re�ning localization accuracy, map match-
ing can also be used to calibrate the error of heading sensors
(e.g., the compass and gyroscope). Li et al. [65] used an
enhanced particle �lter to model users states, including the
position, step length, and heading. When tracking users in
corridors, the most likely reason for particles to cross walls
is the heading estimation error rather than step length model
error.�erefore, the corresponding particles are removed and
we only resample the heading for newly generated particles
while the step lengthmodel remains the same. Bao andWong
[32] used mapmatching to improve the localization accuracy
and calibrate the error of moving heading. �e algorithm
�rst determined if users were walking on corridors and then
the heading of corridors was utilized to calibrate the moving
heading of users.

Point-to-pointmatching is simple and has high operation
e�ciency, which can be treated as a search process. Yet it
is sensitive to the recognition rate of landmarks, and incor-
rect matching may result in the bigger localization errors.
Additionally, it is di�cult to correctly match user’s current
location to one of two speci�c locations being near each other
(e.g., two corners with approximately equal angles and two
locations with an unusual magnetic �uctuation).

Trajectory matching considers more geometric and topo-
logical information. It has better robustness and smaller
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matching error than point-to-point matching, though the
algorithm complexity is higher. �e biggest weakness is that
its real time capability is poor because the matching process
starts onlywhen thewalking trajectory becomes long enough.

Map matching algorithms based on Bayesian theory can
�nely represent the probability of each location and update
the probability with the spatial constraints in maps. Com-
pared with point-to-point matching and trajectory matching
which use spatial contexts in a coarse-grained level, Bayesian
approaches obviously can achieve better localization accuracy
and high real time ability. However, they are computationally
expensive. Concerning this issue, Xiao et al. [112] proposed
a lightweight map matching algorithm, which replaced
Bayesian techniques (e.g., Kalman �lters, particle �lters, and
HMM)with conditional random�eld (CRF), to fusemultiple
localization techniques (e.g., Wi-Fi, Bluetooth, and PDR)
and the �oor plan. Unlike existing techniques that model
the problem using directed graphical models, the proposed
algorithm used an undirected graphical model which was
particularly �exible and expressive. CRF allowed a single
observation to be related with multiple states and multiple
observations to inform a single state. �erefore, it could
express the extent to which observations support not only
states but also state transitions. Experiments showed that
CRF was more computationally e�cient than traditional
techniques and it was able to accurately track the location of
a user from accelerometer and magnetometer measurements
only.

Map matching can signi�cantly improve the localization
accuracy. Moreover, there are no additional requirements
on mobile devices and infrastructures except a digital map.
�erefore, among many studies, map matching is always an
indispensable component of optimizing methods for indoor
mobile location estimation. However, detailed indoor maps
in many environments may not always be readily avail-
able. On that issue, simultaneous localization and mapping
(SLAM) and crowdsourcing techniques [113–115] have been
used to automatically construct reliable indoor maps.

6.2. Landmarks-Aided Estimation. Landmarks are features
or unique signatures which can be easily reobserved and
distinguished from the environment and can also help peo-
ple to recognize the space [116]. Landmarks have typical
characteristics: easily reobservable, distinguishable from each
other, and stationary. For instance, the Statue of Liberty
is just a good landmark as it is unique and can easily be
seen from various locations. Actually, landmarks for indoor
localization are originally used in SLAM [117, 118], in which
landmarks are also named geometric beacons. SLAM is used
to track robots moving in unknown environment and simul-
taneously construct the indoor maps. In particular, indoor
mapping refers to capturing the landmarks (e.g., planes,
corners, cylinders, and obstacles) when a robot is moving
in the unknown environment and determining its location.
�en, a simple indoor map is constructed based on these
landmarks whose locations have been determined. When a
robot reports a newly observed landmark, the algorithm will
match the landmarkwith the constructedmap and determine

Laser scan Landmark Data
association

Odometry
change odometry update reobservation new observations

capture

EKF/PF/. . . EKF/PF/. . . EKF/PF/. . .

Figure 12: �e work�ow of typical SLAM algorithms.

the robot’s location. �e work�ow of typical SLAM algo-
rithms is shown in Figure 12.

Currently, most of users’ mobile devices (e.g., smart-
phones and tablets) have been equipped withmany advanced
wireless modules (e.g., Wi-Fi and Bluetooth) and IMU sen-
sors (e.g., accelerometers, magnetometers, and gyroscopes).
�erefore, users have the access to many landmarks like
robots. Wang et al. [21] proposed to use the smartphones to
sense the landmarks in indoor environments which could
then help to improve the localization accuracy of users.
Landmarks are certain locations of indoor environments
where signatures are identi�able on one or more sensing
dimensions. For instance, an elevator imposes a distinct pat-
tern on a smartphone’s accelerometers; a corridor-cornermay
denote a big angle change measured by gyroscopes; a speci�c
spot may experience an unusual magnetic �uctuation; we
may encounter some signal blind areas where there are no
wireless signals at all, such as Wi-Fi and GSM. Shen et al.
[33] treated the places in the corridors where Wi-Fi RSS
presented a peak value as landmarks, that is, Wi-Fi-Marks.
Normally, the trend of the received Wi-Fi signal strength
changes from increasing to decreasing when moving along
the pathway. In fact, these kinds of landmarks naturally exist
in the environments, and the number is large. Most o�en,
in the o�ine phase, we obtain the locations of landmarks
throughmap searching and/or machine learning.�en when
the mobile user observes these landmarks during the online
phase, the user’s location can be calibrated by the locations of
these landmarks.

Landmarks can be further classi�ed into seed landmarks
and organic landmarks. �e former is o�en the building
components and indoor facilities (e.g., elevators, stairs, and
exits). At these places, the sensor readings would present
some special characteristics. Particularly, the locations of seed
landmarks can be easily obtained through indoor maps. In
order to distinguish dierent activities (e.g., climbing up and
down elevators, walking up and down stairs, and walking on
�oors), some classi�cation approaches are needed such as
the least square support vector machine (LS-SVM) and the
decision tree [119, 120]. Organic landmarks cannot be directly
obtained through searching maps; instead they are perceived
by sensor data. For example, magnetic �uctuation spots have
to be identi�ed with magnetometers. �e locations could be
also derived through some automatic learning approaches,
such as clustering techniques (e.g., �-means and DBSCAN).

Because landmarks are only related to the physical space,
theoretically, landmark-based localization does not depend
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on infrastructures and the only one thing needed is the
mobile device equipped with IMU sensors for perceiving
landmarks. �erefore, landmark-based localization is gener-
ally considered as a low-cost solution for accuracy improve-
ment compared with other traditional solutions.

�e key challenge for this solution is the correct recogni-
tion and matching of landmarks. �e main factors that aect
the recognition andmatching of landmarks are the changes of
environment, heterogeneous mobile devices, and dierences
between training objects. �e changes of environment can
give rise to the changes of locations of landmarks and
further the recognition and matching errors. For instance,
the addition of newWi-Fi APs in the environment represen-
tatively may result in the disappearance of some previously
existing Wi-Fi signal blind areas; the movement of a metal
object location is likely to cause the location changes of
magnetic �uctuation spots. For the changes of landmarks, we
have to adaptively learn the changes, whatever the changes
are. Moreover, the sensor readings derived from the same
landmarks may be very dierent if heterogeneous mobile
devices are used, because of the same reasons mentioned
in Section 2.2.2. Taking the Wi-Fi signal blind area as an
example, phones of brand B have a smaller Wi-Fi RSS value
than that of brand A according to our experimental results.
In our experiments, when measuring the RSS value from the
same AP at the same location, the RSS for phones of brand
B is −78, while that for phones of brand A is −60. If the
RSS value is below −100, we will regard the corresponding
AP as invisible. �erefore, when a spot is determined as the
signal blind area with phones of brand B, this is not the case
for phones of brand A. As for this issue, we can suppose
phones of the same brand have the same or similar sensor
speci�cation. During the process of learning landmarks, it
is necessary to extract and record sensor readings with the
brand of the phones. While matching landmarks, only these
landmarks with the same brand will be chosen and matched.
In addition, the dierence of motion patterns from training
users may lead to the training results being invalid. �is
means the sensor reading learnt by a user at a landmark
may be inconsistent with that collected by another user at
the same landmark, for example, assuming that there are two
users A and B performing the training task where A is much
taller than B. Because taller people tend to have a greater
acceleration comparedwith shorter one, the incorrect activity
recognition can occur if we use the data collected by A to
match with the data from B.

To further address the landmarks mismatching issue, the
batch gating [121] and trajectory matching [110] can be used,
which match multiple landmarks (i.e., several continuous
landmarks detected on a traveling path) at one time.

6.3. Spatial Models-Aided Estimation. Although map match-
ing can improve the location estimation, it primarily uses
the geometric and topologic information of indoor spaces
to constrain targets’ movement and only limited spatial
information is utilized. Moreover, landmarks can calibrate
the localization results and it is a low-cost solution for
improving localization accuracy. However, it is not easy to

correctly identify enough landmarks. Landmarks matching
is another challenge for this technique. An indoor spatial
model [35, 122] typically represents the static and mobile
real-world objects and their properties such as locations
and spatial relationships in indoor moving environment.
Static objects commonly include the building, �oors, rooms,
doors, sensors, obstacles, and other objects of interest.Mobile
objects generally refer to the persons. A typical spatial model
contains more �ne-grained and rich geometric, topological,
and semantic information, which can be used to further
improve the location estimation and further realize richer and
more reliable location services [35, 122, 123]. Currently, the
most commonly used spatial models for assisting localization
are grid models [124] and graph models [125, 126]. Corre-
spondingly, spatial model-aided localization approaches can
fall into grid-based methods and graph-based methods.

6.3.1. Grid Model-Based Methods. �e grid model partitions
a space into regular cells with semantics (e.g., wall, obstacle,
and open area); for example, a piece of room is considered
a grid cell, and each grid cell is linked to its neighbors. �e
size of each grid is also able to be adjusted for dierent
applications. Since the gridmodel does not abstract the space,
it is able to describe the locations of almost all objects in
indoor environments accurately and continuously.

Each grid contains a value for the probability that the
tracked object is located within this cell. Obviously, for
static objects, that is, obstacles (e.g., furniture and walls),
the probability for corresponding cells is 0. �e grid model
is especially suitable for computation, because it can be
also regarded as a matrix which enables many matrix-based
computation. �e drawbacks of the gird model are that it
needs to store too many grids in the memory and update the
probability of all grids when new observations are available.
�erefore, the model faces the challenge of high memory
cost and computational complexity. Moreover, the number
of grids needed grows exponentially with the dimension of
grids; hence it is just used to solve low-dimension problems,
such as the heading or location of users. Figure 13 shows a
square-shaped grid model.

Fox et al. [127] proposed a grid-basedMarkov localization
algorithm. It used a �ne-grained grid model to represent the
state space of robots and divides the indoor space into regular
3D grids (10 cm–40 cm). When the robot moved or received
new sensor data (ultrasound sensors), the probability of each
state (grid) was updated. To update the state spaces e�ciently,
two techniques were developed: precomputation of the
sensor model and the selective update scheme. Bohn and
Vogt [128] proposed a high-level sensor fusion architecture
which could support an arbitrary number of sensors. �e
probabilistic localization algorithm was used to fuse map
knowledge and high-level sensor to increase the accuracy and
plausibility. �e indoor space was represented as a 2D grid
with a �xed cell size. Each cell contains three probabilities: the
probability that the target was located within this cell;
probabilities for movement into the eight adjacent cells;
probability for staying in the cell. Invalid locations (e.g., walls
and obstacles) had an in�uence on the probability calculation
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Figure 13: Square-shaped grid model [126].

of cells. �e cell with the maximum probability would be
selected as the target’s location. Bhattacharya et al. [129]
divided the grocery into cells with the same size. �e grid
model was applied to constrain the localization results of
targets, so as to improve the localization accuracy of Wi-Fi
�ngerprinting.

Essentially, the spatial model-based methods use the spa-
tial constraints to limit the movement of targets.�e location
of targets is narrowed to a smaller probability space, so as to
automatically rule out some erroneous estimations. �e key
point lies in the mining of available spatial information to
constrain users’ movement which is represented in the spatial
model. Some typical spatial constraints represented in the
grid model are as follows.

(i) Bu
er: a buer is de�ned as a search region of
current location and centers at the known previous
location. �e range of the buer usually depends on
the walking speed and the time interval of location
determination. We just need to determine users’
location within the buer, and the locations out of the
buer can be ruled out directly.

(ii) Shortest path distance: based on the spatial connec-
tivity of grid model, there are several algorithms
to calculate the shortest path distance, for example,
Dijkstra’s algorithm, A∗ search algorithm, and so
on. Dierent from the shortest path distance, the
Euclidean distance is the straight-line distance with-
out considering the obstacles or walls between two
cells (Figure 14). Obviously, the shortest path distance
is more reasonable than the Euclidean distance to
represent the distance users move in the indoor
environment. In order to obtain the range of the
buer, we need to determine whether it is possible
for a user to travel from the current location to each
cell of grid model in a certain interval (e.g., 2 s). For
example, assuming a user walk at about 1.5m/s and
the interval between two location estimations is 2 s,
these cells with a shortest path distance below 3m to
the user’s current location will be added to the buer,
while the others will be excluded.

(iii) Moving heading: if there is no turn at the previous
location, we believe that there is a very high proba-
bility that the current moving direction is the same as

Figure 14: �e Euclidean distance and the shortest path distance
between two cells.

the previous one. Based on this assumption, we can
further rule out some cells out of the range of the
moving heading with a deviation angle. For instance,
we can calculate the angle between the current mov-
ing heading and the surrounding cells. When this
angle is beyond an angle threshold (e.g., 30), the
corresponding cell is invalid. While for the cells
ful�lling this requirement, they will be assigned with
dierent probability values according to the angle.
Figure 15 describes the angle between the heading
vectors of the grid cells.

(iv) Occupancy grid: users cannot freely move in the
indoor environment, because it o�en have only lim-
ited free space (e.g., rooms and corridors) and may
contain a number of obstacles (e.g., desks and walls).
�ese physical structures occupy some cells of the
grid model, to which users cannot move. �erefore,
these occupancy grids can be deleted from the can-
didate grid cells for users’ location estimation; that is,
the probabilities for the occupancy grids should be set
to 0.

In addition, many other spatial constraints represented in
grid model can also be used. For instance, the one-way
passage (e.g., the check-in path of the metros) only permits
the moving along one direction and the other is forbidden;
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Figure 15: �e angle between moving heading and cells.

users tend to walk on the central area of the corridors, instead
of close to thewalls; the opening and closing state of the doors
also aect users’ movement. In sum, grid model can provide
lots of spatial information to improve location estimation.
�e research focuses of themethod are how to correctlymine,
represent, and use as much spatial constraints as possible.

6.3.2. Graph Model-Based Methods. Grid model is a geo-
metrical spatial model and the computational complexity
of grid model-based location estimation can be reduced
by nonmetric representations of an environment, such as
typical graphmodel. Actually, in indoor environments, users’
movement is o�en in a more determined way directed to
some destination than random walk [71]. Moreover, users
normally move in a more natural way. For instance, when
walking in an indoor environment, they tend to move along
the main axes of rooms or corridors. So we can naturally
represent typical human motion on graphs [70]. �is can
reduce the degrees of freedom from user movement and
therefore improve location estimation even when using
only sparse, noisy information provided by sensors, such
as enhancing robustness and decreasing the computational
complexity (e.g., the number of particles for particle �ltering).
Graph-based motion models represent an indoor space as a
graph where nodes model prede�ned locations (e.g., places,
doors, and points of interest) extracted either manually or
automatically from the environment, and links or edges
stand for the connections that make it possible to move
through these locations. �e graph model can be categorized
into �ve dierent kinds [35]: place graphs, visibility graphs,
generalized Voronoi graph (GVG), �ne-grained graphs, and
sensor-based graphs. Figure 16 shows the walkable graph
model from Level 4 of our o�ce building.

Krumm et al. [130] used HMM to fuse the graph of
indoor environment for improving the location estimation
of �ngerprinting with 433HZ RF technology. It de�ned the
transition probabilities between connected nodes according
to the node connectivity in the graph. For example, if the
probability of a target moving from a node in an o�ce to
another node outside the o�ce’s door was 0.05 within 1 s,

the probability of the target being in the o�ce was then
0.95. In that case, sensor measurements (e.g., RSS) could be
treated as the observations of HMM. Experiments showed
that the graphmodel could e�ciently enhance the traditional
positioning technologies, especially in robustness. Liao et
al. [70] utilized the Voronoi graph of the environment to
accurately determine the locations of users by representing
typical human motion along the main axes of the free
space. Particularly, the particle �lter was used to estimate
the locations of users on the Voronoi graph. Lee and Chen
[131] used a �oor model to improve the location estima-
tion of Wi-Fi �ngerprinting. �e �oor model allowed to
query the zones (e.g., rooms and corridors) and the paths
between the zones. Moreover, in order to disambiguate the
user’s location, previous locations in the �oor model were
used to eliminate candidate locations that were not likely
to be reachable from the previous locations. Jensen et al.
[132] proposed a graph model which could represent the
connectivity and accessibility of the indoor space. Based on
the constructed topological graph, the deployment graph of
RFID readers was built by combining with the maximum
speed of users to improve the tracking accuracy of tradi-
tional RFID positioning technique. Nam [133] employed the
topological graph to aid localization.�e spatial relationships
between indoor entities (e.g., rooms, corridors, and corners)
and the user’s activity events (e.g., turn le� and turn right)
were used to improve the localization accuracy. Particularly,
when the user’s activity (e.g., turning) was detected using
the IMU sensors, estimated trajectory containing sequential
activities would be compared with the topological graph.
In this way, the tracking errors of IMU sensors could be
calibrated. Hilsenbeck et al. [22] designed a fusion method
of multiple sensors based on a variant of the GVG, making
the best of Wi-Fi and motion sensors (e.g., accelerometers,
gyroscopes, and compasses). �e particle �lter for location
estimation was formulated directly on a fully discretized,
graph-based representation of the indoor environment; that
is, the state space consists of the discretized nodes in the
graph. Particularly, in this model, the narrow parts of the
building were treated as one-dimensional Voronoi diagram
and the large open spaces as two-dimensional grid graph.
�erefore, the proposed localization approach could reduce
the computational complexity and at the same time achieve
high accuracy. Nurminen et al. [71] implemented a graph-
based particle �lter algorithm for pedestrian tracking. �e
graph was used to derive users’ motion model in the envi-
ronment, whileWi-Fi measurements were used to update the
weights of particles. �e main contribution was inferring
users’ motionmodel via the graph.When the estimated users’
location reached a link endpoint, the probabilities of other
links being selected as the next link were computed based on
the graph.

Graph model-based methods have the merit of high
e�ciency because they represent distributions over a smaller
scale of discrete state space, which is the key to decrease
computational complexity as mentioned above. �e draw-
back of graphmodel, generally, is that the represented indoor
space is relatively coarse-grained and lacks the geometric
details of locations. �e graph model-based methods are
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Figure 16: �e walkable graph model of indoor space: path links (green) and nodes (red).

o�en adequate if the sensors in the environment provide
only very imprecise location information.�ey are especially
suitable for pedestrian localization and tracking.

Although spatial model-based methods (grid-based and
graph-based) can signi�cantly improve the localization per-
formances, constructing a re�ned spatial model is a labor-
intensive and time-consuming task. It is true, in particular,
for the large and complex indoor environments, such as
shopping malls. Sometimes, it is even di�cult to build the
�oor plan, not to mention the more complex spatial model.
�erefore, constructing spatial model only for the purpose
of assisting localization is not cost-eective. A reasonable
solution for this issue is to provide value-added services for
users on the basis of constructed spatial model, for example,
the indoor navigation service, moving objects queries. In this
way, constructing spatial model is worthwhile. For instance,
IndoorGML [134], a candidate OGC standard, aim to provide
a common framework of representation and exchange of
indoor spatial information. Particularly, it is based on the
requirements from indoor navigation and is still facing many
challenges. Recently, crowdsourcing, a promising solution,
brings a hope to the indoor spatial modelling through
users’ trajectories, which is worthwhile to further study
[8, 72, 135].

7. Open Issues and Future Research Directions

�e location estimation has always been a hot topic in the
�eld of indoor localization and tracking, and lots of progress
has been made as mentioned in our review. However, there
are still some open issues limiting the widespread application
of indoor localization techniques, which deserve further
research. For instance, how to reduce the eorts (e.g., on

constructing �ngerprint database and �oor plans) is still a
tough challenge. Moreover, the current methods of location
estimation can be improved and extended. In this section,
we present a list of some promising research directions of
improvement schemes for indoor location estimation.

(1) Automatically Updating Fingerprint Database. Finger-
printing-based localization requires labor-intensive
on-site survey activities for constructing an accurate
�ngerprint database. Although crowdsourcing �nger-
printing techniques have been successfully utilized to
generate the �ngerprint database [64], it is challeng-
ing to update these �ngerprints when a change (e.g.,
the removal or addition of an AP and adjustment of
indoor structures) happens. �e �ngerprints are
commonly in�uenced by environmental factors, the
brands and models of the devices. �e strategies to
automatically update the collected �ngerprints espe-
cially on a large scale are still required to be further
investigated.

(2) Fusing Multiple Contexts. Existing solutions usually
use the limited spatial contexts. For example, most of
them only utilize indoor maps. In fact, far more con-
texts can be used to reduce the uncertainty of location
estimation, such as mobile social information [20],
users’ pro�les, preferences, and activities. Using more
contexts can lower the cost, reduce uncertainty, and
enhance user experience.

(3) Crowdsourcing Spatial Model Construction. Users’
smartmobile devices are generally equippedwith var-
ious IMU sensors (e.g., accelerometers, gyroscopes,
and magnetometers) which can record users’ activ-
ities and trajectories at any time and any places.
�e tremendous trajectories crowdsourced by users
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can be utilized to automatically construct and update
the indoor maps without any prior knowledge about
the indoor spaces [8, 72, 135]. However, the indoor
spaces contain abundant semantics, not only the basic
structures represented by a map but also landmarks
and so on. It is a challenging task to construct spatial
models with much more semantics in a crowdsourc-
ing way.

(4) Infrastructure-Less or Device-Free Localization. Most
traditional indoor localization technologies require
users to wear RF tags or carry themobile devices.�is
leads to a rise in the cost of deployment and mainte-
nance. So far, the lack of infrastructure remains one
of the key factors limiting the widespread application
of indoor localization technologies. Andmore impor-
tantly, in some applications, such as the emergency
response and indoor intrusion detection, we cannot
guarantee that localization targets will wear RF tags or
carry the mobile devices. �erefore, the research that
can reduce the dependence on infrastructures [136–
138] and even do not depend on any mobile devices,
that is, device-free, has become a hot topic in recent
years [139, 140].

(5) Performance Evaluation Schemes. �ere are a lot of
performance indicators for an indoor localization
technique, such as accuracy, complexity, cost, power
consumption, and usability. Dierent systems or solu-
tions have varying performance; hence it is necessary
to develop a performance evaluation scheme to help
customers choose appropriate devices, systems, or
solutions. For instance, for cost-sensitive applications,
the opportunistic techniques [141] should be adopted;
the semantic localization approach [2, 142] should be
used to enhance the usability and lower the power
consumption for user-friendly cases.

(6) Online Localization Approaches. Most past studies
pro�t from o�ine methods where the data are col-
lected in the mobile devices but processed o�ine on
a back-end server. Although the computation ability
of mobile devices has been signi�cantly enhanced
recently, it is still necessary to develop real time,
online, and energy-saving applications in order to
prolong the battery life and meet the demand in real
world. �e major challenge that online localization
methods face is to achieve the ideal performance
trade-o (e.g., accuracy, power consumption, usabil-
ity, and security) on the resource-limited platform.

8. Conclusion

In this paper, we provided a review of the state-of-the-
art in the improvement schemes for indoor mobile loca-
tion estimation, especially targeting probabilistic techniques,
hybrid localization methods, and localization methods by
fusing spatial context. �e accurate localization determina-
tion is always the most signi�cant challenge in the indoor
localization �eld, and the key of location estimation is the
representation and fusion of uncertain information from

multiple sources.We analyze themain error sources of typical
localization approaches and propose a multilayered concep-
tual framework for improvement schemes of the location
estimation.

Due to the eect of multipath, NLOS, hardware errors,
and so on, the localization measurements are inevitable to
contain uncertainty in the indoor environment. �e Bayes
�lters are powerful statistical tools, and they use probabilistic
techniques to estimate the state of dynamic systems from
noisy data.�e Bayes �lters are especially suitable for �ltering
measurements of dierent levels, such as RSSs, distances,
angles, and even locations, as well as fusing multiple sensor
data. �erefore, Bayes �lters have become the basic math-
ematical models and tools used in the majority of location
estimation approaches. �e most commonly used Bayes
�lters include Kalman �lters, extended Kalman �lters, sigma-
point Kalman �lters, particle �lters, and HMM. Each indoor
localization technology or approach has its own inherent
defects, when we comprehensively consider their accuracy,
cost, coverage, complexity, and so on. �at is, none of the
techniques can ful�ll the requirement of all applications.
Although the Bayesian techniques can signi�cantly reduce
the uncertainty of location estimation to some extent, they
still fail to completely eliminate the inherent drawbacks of
single localization technology or approach.�e hybrid local-
ization schemes through fusing multiple localization tech-
niques ormeasurements can combine each other’s advantages
and, therefore, considerably enhance the location estimation.
We discuss four typical hybrid localization schemes: multi-
modal �ngerprinting, triangulation fusingmultiple measure-
ments, method combining wireless positioning with PDR,
and cooperative localization. Although hybrid localization
schemes can eectively improve the localization accuracy,
they depend too much on the localization hardware, and
thereby both the cost and the complexity are high. Actually,
the spatial contexts of the indoor environment, such as the
commonly used indoor maps, can be used to assist the
localization. Recently, the location estimation methods by
fusing spatial contexts especially, such as the landmarks
and indoor spatial models, have become a quite hot topic.
But constructing re�ned indoor maps or spatial models is
a labor-intensive and time-consuming task and is still a
challenge.

Obviously, every solution has its own drawbacks. �e
schemes for indoor mobile location estimation with high
accuracy as well as widely accepted cost, complexity, and
eort are still a challenge. In particular, the improvement of
location estimation is a complicated, comprehensive issue.
As for practical applications, we have to comprehensively
consider the requirements of speci�c applications on the
accuracy, cost, complexity, deployment eorts, and existing
devices and infrastructures and then choose one or the
combination of multiple technologies and/or approaches
presented in this paper.
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localization by dual foot-mounted inertial sensors and inter-
agent ranging,” EURASIP Journal on Advances in Signal Process-
ing, vol. 2013, article 164, 2013.

[99] Z. Yang, X. Feng, and Q. Zhang, “Adometer: push the limit of
pedestrian indoor Localization through crowdsourcing,” IEEE
Transactions onMobile Computing, vol. 13, no. 11, pp. 2473–2483,
2014.

[100] H. Liu, Y. Gan, J. Yang et al., “Push the limit of WiFi based
localization for smartphones,” in Proceedings of the 18th Annual
International Conference on Mobile Computing and Networking
(MobiCom ’12), pp. 305–316, ACM, Islanbul, Turkey, August
2012.

[101] N. A. Alsindi, K. Pahlavan, B. Alavi, and X. Li, “A novel
cooperative localization algorithm for indoor sensor networks,”
in Proceedings of the 17th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC
’06), pp. 1–6, Helsinki, Finland, September 2006.

[102] R. Raulefs, S. Zhang, C. Mensing, C. Ghali, and J. Hachem,
“Constrained indoor distributed cooperative positioning,” in
Proceedings of the 8th International Workshop on Multi-Carrier
Systems and Solutions (MCSS ’11), pp. 1–5, Helsinki, Finland,
May 2011.

[103] R. M. Vaghe� and R. M. Buehrer, “Improving positioning in
LTE through collaboration,” in Proceedings of the 11thWorkshop
on Positioning, Navigation and Communication (WPNC ’14), pp.
1–6, Dresden, Germany, March 2014.
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