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Fungal glucose oxidase (GOD) is widely employed in the different sectors of food

industries for use in baking products, dry egg powder, beverages, and gluconic acid

production. GOD also has several other novel applications in chemical, pharmaceutical,

textile, and other biotechnological industries. The electrochemical suitability of GOD

catalyzed reactions has enabled its successful use in bioelectronic devices, particularly

biofuel cells, and biosensors. Other crucial aspects of GOD such as improved feeding

efficiency in response to GOD supplemental diet, roles in antimicrobial activities, and

enhancing pathogen defense response, thereby providing induced resistance in plants

have also been reported. Moreover, the medical science, another emerging branch

where GOD was recently reported to induce several apoptosis characteristics as well

as cellular senescence by downregulating Klotho gene expression. These widespread

applications of GOD have led to increased demand for more extensive research to

improve its production, characterization, and enhanced stability to enable long term

usages. Currently, GOD is mainly produced and purified from Aspergillus niger and

Penicillium species, but the yield is relatively low and the purification process is

troublesome. It is practical to build an excellent GOD-producing strain. Therefore, the

present review describes innovative methods of enhancing fungal GOD production by

using genetic and non-genetic approaches in-depth along with purification techniques.

The review also highlights current research progress in the cost effective production of

GOD, including key advances, potential applications and limitations. Therefore, there is

an extensive need to commercialize these processes by developing and optimizing novel

strategies for cost effective GOD production.
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OVERVIEW

Glucose oxidase (GOD; β-D-glucose:oxygen 1-oxidoreductase;
glucose aerodehydrogenase; E.C. 1.1.3.4.) is a very important
oxidoreductase enzyme (flavoprotein). Structurally, GOD is
a holoenzyme consisting of two identical 80 kDa subunits
at the active site that containing a cofactor flavin adenine
dinucleotide (FAD). These subunits act as a redox carrier
in catalysis. GOD belongs to the glucose/methanol/choline
(GMC) oxidoreductase family, which incorporates numerous
other industrially imperative catalysts, particularly in the field
of diagnostics, for example, cholesterol oxidase, choline oxidase,
methanol oxidase, alcohol oxidase, amino acid oxidase, and
pyranose oxidase (Ferri et al., 2011). These members of the
GMC oxidoreductase family share a homologous structural
backbone, including an adenine-dinucleotide-phosphate binding
βαβ-fold close to their amino terminus and five other segments
of conserved sequences dispersed throughout their primary
sequences (Horaguchi et al., 2012).

GOD catalyzes the oxidation of β-D-glucose into D-glucono-
δ-lactone at its first hydroxyl group using atomic oxygen
(O2) as the electron acceptor with the synchronous generation
of hydrogen peroxide (H2O2). Both end products break
down spontaneously and catalytically. Specifically, D-glucono-δ-
lactone is subsequently hydrolyzed slowly by enzyme lactonase
to D-gluconic acid (GA), while the generated H2O2 is broken
down to O2 and water (H2O) by catalase (CAT). GOD catalyzes
the oxidation of glucose, according to a ping-pong mechanism
(Leskovac et al., 2005).
The overall reaction is given below:

GOD (FAD) + β−D-Glucose → GOD (FADH2) + D-
Glucono-δ-lactone
GOD (FADH2)+ O2 → GOD (FAD)+H2O2

β−D-Glucose + GOD (FAD) + O2 → GA + GOD
(FADH2)+H2O2

GOD is profoundly particularly for the β-anomer of D-glucose,
while the α-anomer does not seem, by all accounts, to be
a reasonable substrate (Bankar et al., 2009b). Thus, GOD
shows bring down exercises while using 2-deoxy-D-glucose,
D-mannose, and D-galactose as substrates. Among enzymes
currently known to oxidize glucose; GOD is the best-known
because of its high degree of specificity. GOD can be obtained
from a large number of different sources, including red algae,
citrus fruits, insects, bacteria, plants, animals, and fungi. The
regular capacity of GOD in these organic frameworks is to act
primarily as an antibacterial and antifungal specialist through the
generation of H2O2. Among these sources, fungi have an eminent

Abbreviations: GOD, Glucose oxidase; GA, Gluconic acid; FAD, Flavin adenine
dinucleotide; H2O2, Hydrogen peroxide; rGOD, Recombinant glucose oxidase;
CAT, Catalase; SSF, Solid-state fermentation; SmF, Submerged fermentation; EFCs,
Enzyme fuel cells; BFCs, Biofuel cells; NFM, Nano-fibrous membrane; BRET,
Bioluminescence resonance energy transfer; CGM, Continuous glucose monitor;
CNTs, Carbon nano-tubes; CNCs, Carbon nano-chips; MET, Mediator electron
transfer; GMC, Graphitized mesoporous carbon; CL, Chemiluminescence; GLU,
Glutaraldehyde; HRP, Horseradish peroxidise.

status and industrially fungal sources have been preferred since
the early 1950s (Fiedurek and Gromada, 1997a).

For decades, fungi have been thoroughly inspected for GOD
production as cell factories due to their magnificent capacities to
use an assortment of carbon sources and to accumulate a large
proportion of natural GOD under stressed conditions (Bankar
et al., 2009b; Zehra et al., 2015). Because GOD from fungi
has applications in a broad spectrum, it must be stable at the
higher temperature and for a longer duration so that it can
be used economically. Nevertheless, the mechanisms of GOD
accumulation by different fungi are not fully understood, even
thoughmany successful attempts have beenmade to improve and
optimize fungal GOD production by using genetic modifications
and other approaches. The filamentous fungi Aspergillus and
Penicillium serve as industrial producers of GOD at a large
scale (Wong et al., 2008; Bankar et al., 2009b), among which
Aspergillus niger is the most ordinarily used for the industrial
yield of GOD (Pluschkell et al., 1996). Various properties of GOD
produced by A. niger are listed in Table 1, including methods
that have been reported for stabilizing GOD, the use of additives,
and engineering through site-directed or random mutagenesis
coupled to expression in heterologous hosts (Table 1).

Penicillium species such as Penicillium amagasakiense and
Penicillium variabile have been appeared to showmore invaluable
energy for glucose oxidation than A. niger (Kusai et al., 1960;
Witt et al., 1998). Further, GOD from Penicillium species has
been revealed to be effective because of its high specificity
for glucose, high turnover, high stability, safety and long-term
stability (Bodade et al., 2010; Konishi et al., 2013). Recently,
Courjean and Mano (2011) described the production of a
recombinant glucose oxidase (rGOD) from P. amagasakiense
displaying a more efficient glucose oxidation than the native
GOD from A. niger. Their results indicated that rGOD from
P. amagasakiense is a better candidate for development of
efficient bioelectrochemical devices. The success of Aspergillus
and Penicillium for industrial production of biotechnological
products is largely due to the metabolic versatility of these
strains and their generally recognized as safe (GRAS) status.
Therefore, fungal GOD has attracted the attention of many
biological experts and industrialists and has been the subject of
many investigations in various fields for decades because of its
numerous commercial applications.

Further, the most remarkable and novel application of GOD
has been found to be in the biosensors and biofuels in recent
years because GOD can serve as a useful tool for outlining
new and more proficient modern procedures. In addition, the
GOD combined with cross-linked enzyme aggregates of HRP
(horseradish peroxidase) are used in various sectors of food
and pharma industry for catalyzing cascade chemical reactions
(Zhang et al., 2016; Nguyen and Yang, 2017). Recently, the
GOD modified with hydrophilic polymers via in-situ RAFT
polymerization methodology showed higher enzyme bioactivity.
This efficient technique for the surface modification of enzyme
can be applied for the amelioration of other biomolecules,
and could envision broad application in varied areas such
as biomedicine, food industry, and biotechnology (Xu et al.,
2017a). Thus, widespread application and increasing demand
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TABLE 1 | Structural and functional properties of GOD from A. niger.

Features Properties

Localization Intracellular (van Dijken and Veenhuis, 1980; Sabir et al., 2007); extracellular (Mischak et al., 1985; Witteveen et al., 1992); both (Stosz

et al., 1998).

3D structure Homodimeric flavoenzyme with two identical 80 kDa subunits (Wohlfahrt et al., 2004); 10–25 wt% glycosylated; serine, glycine, glutamic

acid, aspartic acid, and alanine constitute more than 60% of the total amino acids.

Preferred carbon and

nitrogen sources for

production

Glucose, sucrose, and molasses (Hatzinikolaou and Macris, 1995); peptone and corn steep liquor (Kona et al., 2001; Canli and

Kurbanoglu, 2011).

Other preferred medium

components for production

n-dodecane, n-hexadecane, and soybean oil (Li and Chen, 1994); ammonium phosphate, sodium orthovanadate, hematin, choline, and

Tween 80 (Gromada and Fiedurek, 1996; Bankar et al., 2009a).

Inducers Glucose (Hatzinikolaou and Macris, 1995); calcium carbonate (Hatzinikolaou et al., 1996); manganese, cobalt, thioglycolic acid and

gluconic acid (Liu et al., 2001; Khurshid et al., 2011); EDTA and some metal ion such as Zn2+ and Fe2+ (Song et al., 2016).

Inhibitors Ag+, Hg2+, Cu2+, Mg2+, CaCl2 ions (Nakamura and Ogura, 1968; Toren and Burger, 1968; Singh and Verma, 2013); accumulation of

hydrogen peroxide (Kleppet, 1966; Song et al., 2016); arsenite, p-chloromercuribenzoate, phenylmercuric acetate (Nakamura and Ogura,

1968); hydroxylamine, hydrazine, phenylhydrazine, dimedone, and sodium bisulfate (Khurshid et al., 2011); guanidine hydrochloride, urea,

SDS (Song et al., 2016).

Bioreactor Benchtop (Liu et al., 2003); batch (Sarrafzadeh and Jafari, 2008; Canli and Kurbanoglu, 2011); fed-batch (Gu et al., 2015).

Strain improvement Gamma irradiation (Zia et al., 2012); UV irradiation (Ramzan and Mehmood, 2009; Rasul et al., 2011); random mutagenesis (Haq et al.,

2014); screening (El-Hariri et al., 2015); mutagenesis (Fiedurek et al., 1986, 1990; Markwell et al., 1989; Witteveen et al., 1990; Fiedurek

and Gromada, 1997a,b); protoplast fusion (Khattab and Bazraa, 2005); site-directed mutagenesis (Holland et al., 2012; Marín-Navarro

et al., 2015); chemically treated (Zia et al., 2010); biochemical mutation (Fiedurek and Szczodrak, 1995).

Recombinant glucose

oxidase

H. polymorpha (Hodgkins et al., 1993); S. cerevisiae (Blazic et al., 2013; Marín-Navarro et al., 2015); T. reesei (Mu et al., 2006); P. pastoris

(Guo et al., 2010; Kovačević et al., 2014; Meng et al., 2014; Gu et al., 2015; Qiu et al., 2016); P. nalgiovense (Geisen, 1995); Mucor

circinelloides (Bredenkamp et al., 2010); Kluyveromyces marxianus and Kluyveromyces lactis (Rocha et al., 2010); A. oryzae (Gregg,

2002); A. nidulans (Whittington et al., 1990; Luque et al., 2004); A. niger (Whittington et al., 1990; Pluschkell et al., 1996).

Optimization by statistical

methods

Response surface methodology (Liu et al., 2003; Farid et al., 2013); L27 Taguchi experimental design (Kriaa and Kammoun, 2016);

Plackett-Burman design (Bankar et al., 2009a).

Purification techniques Ammonium sulfate precipitation, gel filtration, Q-Sepharose and DEAE sepharose, DEAE-cellulose ion exchange and Sephadex G-200

size exclusion chromatography (Zia et al., 2013),

Half-life Approximately 30 min at 37◦C. Immobilized GOD would be more effective for application at 37◦C. Polyhydric alcohols, including ethylene

glycol, glycerol, erythritol, xylitol, sorbitol and polyethylene glycol have shown stabilizing effects (Ye et al., 1998). The lyophilized GOD

preparation remains stable for a minimum of 6 months at −20◦C (Kelemen and Lantz, 2008).

of GOD in different industries (chemical, pharmaceutical,
food, beverages, clinical chemistry, biotechnology, medical
diagnostics, environmental conservation, energy, textile, and
other industries) have led to the need to produce these
compounds extensively (Bankar et al., 2009b). However,
common sense utilization of enzymes is frequently restricted
by their quick inactivation at extreme temperature, pH or the
presence of surfactants upon exposure to elevated temperatures.
In the present review, the demands for GOD in human daily
life led us to emphasize and update the current status of GOD
requirements in daily life. Highly robust GOD forms are desirable
for these applications, which justify the development of strategies
for increasing the stability of this redox enzyme.

CURRENTLY REVIEWED POTENTIAL
FUNGAL SOURCES OF GLUCOSE
OXIDASE

The most common fungal sources of the enzyme GOD from the
genus Aspergillus are A. niger (Liu et al., 2001), A. tubingensis
(Kriaa and Kammoun, 2016), A. flavus (Bhat et al., 2013),
A. terreus (Anas et al., 2012), A. oryzae (Gunasundari, 2014),

A. carbonarius (Yang et al., 2014), and A. nidulans (Witteveen
et al., 1990), while those from Penicillium are P. amagasakiense
(Todde et al., 2014), P. variabile (Crognalea et al., 2008),
P. chrysogenum (Konishi et al., 2013), P. notatum (Nandy, 2016),
P. funiculosum (Esmaiilpour et al., 2014), and P. adametzii
(Mikhailova et al., 2007). Many other species of Penicillium have
also been reported to produce GOD, such as P. pinophilum
(Rando et al., 1997), P. canescens (Simpson, 2006), P. fellutanum
(Manivannan and Kathiresan, 2007), P. glaucum (Müller, 1928),
and Penicillium vitale (Dolgĭı M. L. et al., 1977; Dolgĭı N. L.
et al., 1977). Other reported fungal species include Talaromyces
flavus (Kim et al., 1990), Phanerochaete chrysosporium (Zhao and
Janse, 1996), Alternaria alternata (Caridis et al., 1991), Pleurotus
ostreatus (Shin et al., 1993), Pycnoporus cinnabarinus (Levasseur
et al., 2014), Rhizopus stolonifer (Guimarães et al., 2006), and
Flavodon flavus (Raghukumar et al., 2004).

STRATEGIES FOR IMPROVING GOD
PRODUCTION

For commercial applications, the production of GOD should
be cost-effective and economical. Concerning these facts,
researchers are putting their continuous efforts in opening and
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finding various facts and strategies. The large-scale application
of GOD through naturally-occurring wild-type fungal strains
has been hampered by low fermentation capacity, complicated
purification process, and low efficiency. Further, impairments
in the application of GOD are associated with an impurity in
resources of GOD, which, include CAT, cellulase, and amylase
(Frederick et al., 1990).

It is also important to note that during production, GOD
can be inactivated by H2O2. This occurrence results in its
accumulation during the oxidation reaction followed by pH
reduction, which may accompany the breakdown of D-glucono-
δ-lactone to GA, as well as inhibits enzyme production (Klibanov,
1983). It is by and large acknowledged that the appropriateness
of a protein for industrial purposes relies upon its high turnover
number, heat-stability, and dependability in different media
(Klibanov, 1983). Although the expression of GOD is not high
in its native state, engineering technologies have improved
our capacity for large-scale GOD production. Studies of the
enhancement of production and properties of GOD are still
receiving a great deal of attention, presumably because of the
current and extensive applications of this enzyme. Therefore, as
we named the enzyme “Biological God.” Practical perspectives
on the use of GOD include its high catalytic activity and
substrate affinity as well as high stability (Bhatti and Saleem,
2009). Therefore, the generation of ameliorated versions of
GOD is an important biotechnological objective. As an effective
biotechnological prospective, several strategies already available
for efficient production of GOD are discussed below.

Solid-State and Submerged Fermentation
Strategy
Production of GOD by fungi is commonly performed by solid-
state fermentation (SSF) and submerged fermentation (SmF;
Mirón et al., 2002, 2010). SmF has been found to be more
effective at producing GOD because it is easier to control the
environmental factors involved in this technique when compared
to SSF. Recently, Kriaa and Kammoun (2016) assessed the
variability of GOD by A. tubingensis CTM507 based on titers
measured under both SmF and SSF in association with growth
and substrate-consumption, suggested that comparatively better
results on fungal growth were obtained using SmF, whereas
SSF represented significantly higher GOD activity (170U/mL)
as compared to SmF (43.73U/mL). These findings improve
our understanding of the phenomena responsible for the
better ability of SSF than SmF to produce functional bio-
molecules. The studies also explain an SSF process for the
low-cost production of important enzymes with attractive
properties for commercial applications. These research findings
confirmed that A. tubingensis was able to exhibit remarkable
GOD activity when culture conditions were optimum as
compared to other producer strains. However, these traditional
methods for the production of GOD have reached their limit.
Accordingly, different strategies to overcome these limitations
and enhance their production have been explored, including
recombination, immobilization, mutagenesis and screening (Zia
et al., 2010).

Immobilization
Immobilized GOD has been widely investigated in the medical,
food and environmental fields. Recently, investigations of GOD
immobilization mainly focused on electrode modification for
biofuel cells (BFCs) or biosensors (Yang et al., 2016). Enzyme-
based biosensors have attracted a great deal of attention.
Methods used for their production often involve proper surface
immobilization of GOD and effective conversion of chemical
information to electronic signals. Biotechnological processes
in immobilized growing fungal cells, including those for
extracellular enzyme production, appears to produce results
more favorable than traditional fermentation methods since
immobilization enables the repetitive and continuous use of
the microbial cells (Correa et al., 2012). Although the native
GOD enzyme has attracted interest for its potential in a
variety of processes, this enzyme is unstable because of its
complex molecular structure. In this respect, knowledge of
the intimate interaction between the enzyme and ligands, in
vary conditions, is of great importance. For example, Szefler
et al. (2016a,b) studied the nature of polyethyleneimine-GOD
interactions by docking and molecular dynamics techniques
to provide a detailed information on the type, intensity,
and frequency of these interactions. Thus, the advancements
in the field of bioinformatics during the last decade have
also revolutionized the field of GOD immobilization. GOD
immobilization techniques provide several benefits, such as
faster reaction rates, enhanced stability, and easy product
separation from reaction mixtures, reduced wash-out, increased
productivity, and catalytic modulation with reduced operation
costs.

Recently, for the production of a bioconjugated complex of
GOD, surface immobilization of GOD occurred covalently on
modified nano-particles of iron oxide. Further, the stability of
the immobilized and free enzyme was examined at different
pH and temperature as the enzymatic activity measurement.
The stability of the enzyme was shown to be enhanced by
immobilization. The experimental results confirmed that the
enzyme storage stability was improved upon binding to the
modified iron oxidemagnetic nanoparticles (MIMNs).Moreover,
kineticsmeasurements suggested that the immobilization process
had a small effect on the substrate and product diffusion
(Abbasi et al., 2016). Thus, for accelerating the rate of GOD
catalyzed reactions, a number of bioconjugates are used as
catalytic nano-devices, and employed in several biotechnological
processes to achieve different goals (Table 3). Nano-sizematerials
are currently receiving a great deal of attention for their use
as a supportive contribution to these purposes. These nano-
materials have the potential for widespread applications because
of their simple, non-chemical separation method (Huang et al.,
2003), and high enzyme loading capacity owing to their large
surface area in contempt of non-porous nature (Park et al.,
2011). Bankar et al. (2011) co-immobilized GOD and CAT
on an inorganic (non-porous glass beads) support matrix
using activators and a cross-linking agent and evaluated its
potential uses. They also optimized the immobilization process
parameters using statistical techniques to describe improvements
in immobilization yield.
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In addition, effective GOD immobilization also provides
stability and increasing the amount of enzyme activity, resulting
in increased electrical power through several enzyme fuel cells
(EFCs; Ramanavicius et al., 2005). A variety of methodologies has
been investigated for the development of fuel cells, such as direct
transfer of the electron between the enzyme and the electrode
without the use of redox solution mediator. On the other hand,
various electrode-based modified methods have been used in
EFCs for the immobilization of GOD, due to their enzyme-
dependent performance and the ability to immobilize on the
electrodes (Table 2). Among themethods, covalent bonding-base
methods are most studies methods, since these methods enable
immobilization of enzymes for a prolonged reaction time (Lee
et al., 2011).

Another unique strategy used for stabilization of GOD is
based on covalent glycosidation. Matos et al. (2012) chemically
modified GOD by covalent glycosidation with cyclodextrin-
branched carboxymethylcellulose (CMC-CD) polymers. The
obtained neoglycoenzyme contained 0.78mol of polysaccharide
per mol of GOD and retained 67% of its initial activity.
Further, it showed a better thermostability when compared with
free enzymes, which increased from 45 to 51◦C. In addition,
derivatization of GOD with CMC-CD increased its resistance to
inactivation at 45◦C by 2.2-fold, protected the molecule against
inactivation with the anionic surfactant sodium dodecyl sulfate
to the point that it retained 75% of its activity after an incubation
period of 3 h, and extended its pH tolerance toward alkaline pH
(7.5). Therefore, this strategy was confirmed to be an effective
strategy for enhancing the stability of this GOD.

Mutagenesis and Recombination
A number of efforts have been focused on the improvement of
GOD production through the specific selection of fungal isolates
using mutagenesis approaches and classical screening (Witteveen
et al., 1990; Ramzan and Mehmood, 2009). Traditionally,
strain development through mutagenesis requires a tedious and
lengthy process as it requires sophisticated screening methods
to identify and separate superior isolates among mutagen-
treated populations. However, a significant advancement of
screening methods is their simplicity because they do not
require understanding the molecular and physiological aspects of
manipulating the organism (Gromada and Fiedurek, 1997).

Mutagenesis of different fungi as a strategy for the
improvement of GOD production has successfully improved
enzyme activities by up to 77% (Ramzan and Mehmood, 2009).
Further, expression and optimization of GOD production have
been achieved through the application of recombinant DNA
technology in fungi other than their native sources to overcome
these difficulties. Cloning and overexpression of GOD in
Saccharomyces cerevisiae, Escherichia coli, and other fungal hosts
from Aspergillus and Penicillium species have been successfully
carried out (Park et al., 2000; Kapat et al., 2001; Malherbe et al.,
2003; Shaikh and Trivedi, 2016). Witt et al. (1998) cloned and
expressed the gene encoding P. amagasakiense GOD in E. coli.
Insoluble inclusion bodies were expressed as the activity of
GOD following reconstitution, that resulted in the active enzyme
to express the secondary structure composition and enzymatic

TABLE 2 | Updates on the development of GOD based enzymatic biofuel cell

(EBCs).

Description References

GOD from P. funiculosum 46.1 + HRP Ramanavicius et al.,

2015

rGOD from P. amagasakiense (wild type PaGODwt +

mutant PaGOD (PaGODmut) with

poly(3,4-ethylenedioxythiophene)-graphene

nanocomposite

Arribas et al., 2016

Entrapping cross-linked GOD aggregates within a

graphitized mesoporous carbon

Garcia-Perez et al.,

2016

Biofuel cell cathode with laccase-containing culture

supernatant from Pycnoporus sanguineus

Fokina et al., 2015

Mediator-less glucose/oxygen based biofuel cell with

laccase

Christwardana et al.,

2016

Mediator-less DET type biofuel cell enabled with carbon

nano-dots

Zhao et al., 2015

GOD + graphite particle with redox mediator

compression

Zebda et al., 2012

GOD immobilized with polyaniline nanofiber Kim et al., 2011

Immobilization of GOD on

modified-carbon-paste-electrodes

Ambarsari et al.,

2016

GOD immobilized through both cross-linking + physical

entrapment

Chung et al., 2016

GOD conjugated with site-specific gold nanoparticle Holland et al., 2011

GOD and bilirubin based electrodes Kim et al., 2009

Cross-linked GOD clusters Dudzik et al., 2013

Nano-tube ensemble films based GOD Miyake et al., 2011

Covalent co-immobilization of GOD and ferrocene

dicarboxylic acid

Shim et al., 2011

Co-immobilization of glucoamylase + GOD Lang et al., 2014

Electrically wired polyphenol oxidase + GOD Giroud et al., 2012

Graphene and multi-walled carbon nano-tubes (CNTs) Devadas et al., 2012

GOD-CAT co-immobilized catalyst

(CNTs/PEI/(GOD-CAT)

Christwardana et al.,

2017

MET by biocatalytic anode of sulfonated

graphene/ferritin/GOD layer-by-layer biocomposite films

Inamuddin et al.,

2016

properties similar to native P. amagasakiense (Witt et al., 1998).
Park et al. (2000) expressed the A. niger GOD gene successfully
in S. cerevisiae containing different promoters and terminators
and showed that the hybrid yeast ADH2-GPD promoter had high
amounts of GOD production. These possibilities dramatically
increased the range of industrial applications for GOD with
economic feasibility.

Several studies have revealed that GOD was one of the
largest foreign proteins able to be expressed heterologously.
Therefore, these expression systems are currently used for the
expression of GOD. Although recombinant species of Aspergillus
and Trichoderma and wild-type strains as hosts have shown
significant results in the production of heterologous proteins
(Nevalainen et al., 2005), since the morphology of mycelia
represents dramatic engineering challenges during submerged
fermentation (Wang et al., 2003). The presence of mycelia
produces highly viscous broth during fermentation, thereby
affecting the rate of agitation, pumping, and oxygen supply to
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the culture. In addition, the presence of mycelia also results in
non-ideal mixing of the broth and poor nutrition to the fungi,
resulting in the low yield recovery of the final product (Li et al.,
2000). Owing to this, yeast species are considered preferable
by the fermentation industries since they allow high biomass
production and easy cell separation from the culture during
submerged fermentation (Papp et al., 2006).

Various yeast species have been shown to be extremely
useful for the expression and analysis of rigid, particularly S.
cerevisiae, Hansenula polymorpha, and Pichia pastoris, which
have been researched for the last several years for high-yield
production of heterologous GOD with promising results. These
organisms offer certain advantages over bacteria as a cloning
host (Demain and Vaishnav, 2009). Specifically, they exhibit
rapid media growth with high cell biomass, and have the ability
to produce extracellular heterologous proteins with advanced
genetics than other eukaryotes. A. niger GOD can be produced
by S. cerevisiae at 9 g/L. Additionally, the P. pastoris yeast
expression system was successfully used to produce active GOD
originating from A. niger or from P. variable P16 that was
not over glycosylated (Guo et al., 2010; Qiu et al., 2016).
Naturally, A. niger or Penicillium spp. produce about 10%
glycosylate as an extracellular enzyme called GOD (Ferri et al.,
2011), whereas S. cerevisiae and H. polymorpha species of yeast
produce recombinant enzymes with a concomitant reduction
in enzymatic activities by hyperglycosylation (Romanos et al.,
1992). P. pastoris, a methylotrophic yeast has been reported to
be the most effective host for rGOD production (Zhou et al.,
2001). These studies illustrated the high potential for enhanced
production of GOD in yeasts.

E. coli-based production of non-glycosylated rGOD has been
reported in an inactive apo-form (Witt et al., 1998), however,
use of other cofactors for its active holo-form expression is
still needed. Although reports have confirmed similar expression
properties of recombinant enzymes to the native ones, their
industrial applications still bear several limiting factors, such as
their higher cost and deficient reconstitution. GOD secreted by
yeast shows overexpression, which facilitates higher production
and purification and helps in enzyme modification by random
mutagenesis. A number of methods have been employed for
the initial screening of GOD mutant lines using fungal cultures
of the isolated clones (Zhu et al., 2006). Using an expression
system of S. cerevisiae, GOD was found to show an improved
catalytic reduction from A. niger (Zhu et al., 2007), which was
also produced as a tagged and/or bi-functional fusion enzyme
using the yeast expression system. However, limiting factors
of using yeast include their less potency during large-scale
GOD production due to α-1, 3-linked mannose residues and
hyperglycosylation, resulting in the removal of strong and tightly-
regulated promoters as well as causing an anti-genic response
(Adrio and Demain, 2014).

Enzymatic Engineering Techniques
Enzyme engineering using currently available methods such
as rational design, rational redesign, and directed evolution
can lessen or remove the limitations to the improvement of
GOD variants. Rational redesign strategies were recently used

to improve the catalytic function and stability of GOD. Holland
et al. (2012) combined genetic elements from the two most
widely studied GOD producers, A. niger, and P. amagasakiense,
by rational re-design, to produce an enzyme possessing the strong
catalytic capacity and stability. Fisher et al. (2014) also pointed
out that by using a rational enzyme engineering approach,
it is possible to construct a GOD having the stability of its
homolog from A. niger and the catalytic activity of its homolog
from P. amagasakiense to better carry out glucose oxidation in
industrial applications. Recently, Song et al. (2016) improved
the anti-oxidation properties of GOD against H2O2 (competitive
inhibitor) by designing mutants in which leucine was replaced
with methionine using computer-aided homology modeling with
the CDOCKER algorithm. The results obtained were consistent
with those of the computer-aided analysis, suggesting that this
method may be useful for enzyme structure optimization.

The directed protein evolution has recently come into use in
the molecular modification of GOD, and it is also expected to
improve the yield of GOD. Zhu et al. (2006) employed, directed
evolution to enhance the catalytic performance of GOD, which
resulted in a 1.5-fold improvement in kcat. Ostafe et al. (2014)
described an ultrahigh-throughput screening method for sorting
out the best GOD variants generated by directed evolution that
incorporated several methodological refinements such as flow
cytometry, in vitro compartmentalization, yeast surface display,
fluorescent labeling of the expressed enzyme, delivery of glucose
substrate to the reaction mixture through the oil phase, and
covalent labeling of the cells with fluorescein-tyramide. Similarly,
Prodanovic et al. (2011) employed an ultrahigh-throughput
screening system for GOD from A. niger by directed evolution
in yeast cells. Recently, Horaguchi et al. (2012) utilized a rational
amino acid substitution to engineer GOD with remarkably low
oxidative activity and high dehydrogenase activity, which was
higher than that of the wild-type enzyme. Marín-Navarro et al.
(2015) proposed a combined method employing random and
rational approaches to identify and structurally analyze amino
acid substitutions that increased the stability and activity of
A. niger GOD. Their results revealed structural motifs of the
protein are critical to its stability.

Although fungal sources offer a wide range of enzymatic
properties, new features such as marked product inhibition,
higher product yields, or secretion signal could be designed
into specific GOD using innovative tools of state-of-the-
art protein engineering. The high-level progress of GOD
production through the engineering of strains was recently
reviewed by Liu and Piwu (2013). Similarly, Suraniti et al.
(2013) successfully redesigned a key amino acid of GOD
from P. amagasakiense using non-active site mutations to
enable improved biotechnological applications, especially in
EFCs. Optimization of GOD can be achieved by employing
modern molecular level tools and techniques in association
with bio-process engineering technologies that may result in
economically feasible enzyme production system. Application
of efficient recombinant microbial technologies on new
resources of GOD and protein engineering technology have
proved significant efficacy to convert GOD into a relevant
synthetic tool. Thermostability of GOD may further enhance
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its industrial value in addition to its boosting functional food
market.

APPLICATIONS OF GOD IN VARIOUS
SECTORS

Applications in Various Food Sectors
In Baking Industry
GOD is an efficient oxidant for the production of bread with
improved quality and extended loaf volume in the baking
industry (Rasiah et al., 2005; Wong et al., 2008; Steffolani et al.,
2010). H2O2 produced by GOD yields more elastic and viscous
dough (Vemulapalli et al., 1998). In addition, Vemulapalli and
Hoseney (1998) reported the drying effects of GODon the dough,
which were mediated by the gel-forming ability of water-soluble
pentosans, reduction in sulfhydryl content, and the increase of
viscosity in the water-soluble dough. Also, GOD has been found
to display protein cross-linking in the dough (Rasiah et al.,
2005). GOD improves the quality of bread and strengthening
of wheat dough when used as an additive (Bonet et al., 2006).
GOD also enhances the viscoelasticity of dough (Kouassi-Koffi
et al., 2014). Specifically, Kouassi-Koffi et al. (2016) assessed
the effects of wheat dough viscoelasticity by adding GOD to
predict final bread quality. However, enzymes must be added
with care since undesirable effects can be caused by excessive
enzymes. GOD, along with lipase also enhances the quality and
shelf-life of pan bread (El-Rashidy et al., 2015). Dagdelen and
Gocmen (2007) studied the effects of GOD along with ascorbic
acid and hemicellulase on bread quality and dough rheology
and found that bread quality is mainly dependent on original
wheat flour quality, while dough rheology depended on the
amount of enzyme. The combination of GOD, α-amylase, and
xylanase on dough properties and bread quality were also studied
by Steffolani et al. (2012). Kerman et al. (2014) investigated
strengthening properties of wheat dough and quality enhancing
parameters of wheat bread in response to the addition of
GOD along with ascorbic acid. Similarly, da Silva et al. (2016)
also verified the performance of xylanase and its interaction
with GOD and ascorbic acid on the quality of whole wheat
bread. Furthermore, the addition of basal additives as well as
ascorbic acid (32%), α-amylase (4.2%), and GOD (63.8 %) to
wheat flour, reduced crumb firmness and chewiness, as well
as improved adhesion, elasticity, cohesion, and bread volume
specifically (Kriaa et al., 2016). Recently, the synergistic effects
of amyloglucosidase, GOD and hemicellulase utilization on the
rheological behavior of dough and quality characteristics of bread
was studied by Altınel and Ünal (2017). Decamps et al. (2013)
revealed the molecular mechanism of dough and bread stability
improvement by the pyranose oxidase from Trametes multicolor
and GOD by A. niger during the cross-linking of gluten protein
and arabinoxylan by the formation of H2O2. Aprodu and Banu
(2015) studied the effects of Psyllium, pea fiber, oat bran, water,
and GOD on rheology and baking properties of gluten-free bread
made from maize, and it was suggested that GOD has significant
ability to improve the specific bread volume for all types of
fibers.

In Beverage Industry
GOD plays a novel role in the manufacturing of beverages
because it is used to diminish the low alcohol substances of
wine by eliminating the residual glucose that would otherwise be
converted into alcohol through anaerobic fermentative processes.
Moreover, the H2O2 produced during chemical processes
imparts a bactericidal impact on acidic corrosive and lactic
corrosive microbes amid the fermentative procedures. This
process must be conducted by adding GOD prior to fermentation
as GOD utilizes a portion of the glucose presents, making it
inaccessible for liquor aging, bringing about wine with decreased
alcohols and simultaneous generation of H2O2 that reduces the
growth of fermentative microorganisms. The H2O2 produced
could easily be removed from the system using CAT, which
breaks it into oxygen and water. The bactericidal effect of H2O2

reduces the addition of other chemical preservatives in the
wine (Malherbe et al., 2003). It has been well-demonstrated
that pre-treatment of grape juice by GOD/CAT enzyme system
can reduce alcohol fermentation potency significantly through
conversion of available glucose to GA. Similarly, the technical
feasibility of GOD/CAT enzyme system was investigated as an
alternative to decrease the glucose concentration and eventually
production of reduced red wine (Valencia et al., 2017). GOD
has shown significant efficacy on determining glucose content in
body fluid and effectively removes oxygen and residual glucose
from beverages (Yildiz et al., 2005). Lopes et al. (2012) developed
a biosensor composed of GOD and immobilized HRP, which
efficiently determined glucose content in beverage samples such
as orange juice, as well as energetic and sport drinks. GOD
bound emulsified nano-particles of bovine serum albumin along
with chymotrypsin results in soft drinks/non-alcoholic beverages
being free from turbidity and opalescence while maintaining
their pH as acid regulators (Sharma, 2012). Further, Mason
et al. (2016) demonstrated the potential role of a novel glucose
electrochemical biosensor based on the immobilization of GOD
into a nylon nano-fibrous membrane (NFM) during analysis of
glucose in commercial beverages and monitoring of the brewing
process for making beer.

Use for Production of Dry Egg Powder
GOD has been used effectively to remove remaining glucose and
oxygen from foods to extend their shelf-life (Zia et al., 2012).
The reaction of protein amino group and reducing sugars is
known as non-enzymatic Maillard browning, which results in
the formation of unwanted flavor and undesirable browning in
dried egg powder, suggesting prior removal of glucose content
from the liquid egg before its drying (Sisak et al., 2006). Removal
of glucose provides dried egg powder a prolonged shelf-life
and increased microbial tolerance. Also, production of H2O2 by
Maillard reaction helps to destroy unwanted microbes normally
found in liquid egg (Dobbenie et al., 1995), while it can later be
evacuated utilizing a moment catalyst, CAT, which changes over
H2O2 to oxygen and water (El-Hariri et al., 2015). GOD/CAT
is utilized to expel glucose amid egg-powder production for
use in the baking industry, which prevents browning during
dehydration brought about by the Maillard response, and to
give slight improvements to the crumb properties of bread and
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croissants (Rasiah et al., 2005). Increasing browning mediated by
the Maillard reaction is also a noteworthy aspect causing harmful
effects to eggs and potato products. Application of GOD may
provide sustainable results to reduce unwanted browning in the
same manner (Low et al., 1989).

Applications in Various Pharma/Medicine
Sectors
Use of Gluconic Acid (GA) Production in the

Food/Pharma Industry
One of the major applications of the GOD catalyzed reaction
is the production of GA and its derivative salts. GA was found
to play extensive roles in different sectors of food industries
and utilized as a causticity controller, raising specialist, color
stabilizer, an antioxidant and chelating operator in bread, feeds,
beverages, and so on (Brookes et al., 2005). In dairy industries,
GA is used for the cheese curd formation, improvement of
heat stability of milk, prevention of milk stone, and cleaning of
aluminum cans. However, GA is most widely used as acidulant,
sequestrant as well as potential anti-oxidant in various industries
(Golikova et al., 2017). In the pharmaceutical based industries,
the metal derived Na, Ca, Zn, and Fe salts of GA is widely used
in the synthesis of important drugs including sodium, calcium or
ferrum gluconates, and glucono-delta-lactone which have diverse
industrial applications (Ramachandran et al., 2006; Golikova
et al., 2017). Sodium gluconate has great potential to chelate
metal ions and can be used to remove bitterness from food stuff
(Costa et al., 2015; Pal et al., 2016). Pharmaceutical application
of calcium gluconate has been confirmed for the treatment of
calcium associated deficiencies (Khurshid et al., 2013), whereas
for the treatment of common cold, wound healing, and zinc-
deficiency associated with delayed sexual maturation, infection
susceptibility, mental lethargy, and skin rashes have been well-
treated using zinc gluconate.

GA can be produced through biochemical, electrochemical,
bioelectrochemical, and fermentative processes, although
fermentative processes are preferred for GA production as
other approaches are expensive and less productive (Wong
et al., 2008; Pal et al., 2016). It has been reported that GA
production through GOD catalyzed reaction is highly dependent
on the substrates used, oxygen concentration and temperature
(Ramachandran et al., 2006; Khurshid et al., 2013). Moreover,
the catalytic efficiency for the conversion of glucose to GA is
highly dependent on the stability of GOD. Recently, it has been
demonstrated that enzymatic cross-linking with GLU modified
on inorganic support (SiO2) system provides most active and
stable system that causes the maximum (up to 85%) yield of
GA (Golikova et al., 2017). Several studies have been conducted
to optimize the production of GA. For example, Purane et al.
(2011) optimized parameters such as glucose concentration,
inoculum density and inoculum age for GA production using
P. chrysogenum 724 and found that the maximum amount of GA
produced (31.16 g/L) was reported at a glucose concentration of
100 g/L. Ping et al. (2016) demonstrated the effects of oxygen
supply on intracellular flux distribution for enhanced production
of sodium gluconate by A. niger and reported that the higher

oxygen concentration was required for enhanced synthesis of
GA. Further, Ramezani et al. (2013) reported the effects of
hydrodynamic properties on kinetics parameters to achieve
higher GA production by using GOD. It was found that the
increased oxygen gas velocity resulted in the increasing rate of
glucose oxidation reaction because of the higher transformation
of oxygen from a gas to a liquid state. Optimization of mass
transfer characteristics and operating condition during GA
production with immobilized GOD, it was found that a bubble-
column reactor had better mass transfer properties because
it provided higher GA production under low GOD activity
relative to other reactors. Recently, many investigations have
investigated GA production using substrates through multi-
enzymatic steps. Mafra et al. (2015) developed a method for GA
production using sucrose as the substrate that was catalyzed
by a multi-enzymatic system, including invertase, GOD, and
CAT in an air-lift reactor. Similarly, Silva et al. (2011) reported
the production of GA using sucrose and multi-enzymatic
components in batch and membrane continuous reactors. GA
production through fermentative processes also depends on
morphological parameters of the fermenting organism used.
Indeed, it was reported that the dispersed pattern of the mycelial
morphology of A. niger resulted in increased GA production
rather than pellet morphology (Lu et al., 2015). GA production
through fermentative processes is the most widely accepted
technique and the most common challenge to these methods is
downstream processing (separation and purification). However,
these hurdles can be resolved by membrane-based separation
(Pal et al., 2016).

Use as an Antioxidant/Preservative Agent
Many food products contain oxygen, which promotes bacterial
growth. In canned/bottled/packaged food, it is important to
maintain an anaerobic condition, thus, removal of oxygen is
essential in packaged food products (Kirk et al., 2002). Karimi
et al. (2012b) studied the removal of dissolved oxygen from water
through the reduction of glucose, catalyzed by GOD and CAT
enzymes. Moreover, GOD could be utilized for the removal of
oxygen from the top of bottled beverages such as wine and beer
to maintain the taste and flavor (Labuza and Breene, 1989; Wong
et al., 2008).

Non-enzymatic browning of processed fruits and tomato
puree can be controlled using the GOD/CAT system during
storage. Food deterioration and rotting of high-fat nourishments,
for example, mayonnaise and mixed greens dressing are
associated with lipid peroxidation (Isaksen and Adler-Nissen,
1997), where the application of the GOD/CAT system has
potential to retard lipid peroxidation during storage (Bankar
et al., 2009b). The GOD/CAT system has the oxygen scavenging
ability, thereby making oxygen unavailable for lipid metabolism
during oxidation of glucose (Isaksen and Adler-Nissen, 1997).
The overall GOD catalytic reaction consumes two glucose
particles and an oxygen molecule, resulting in the production
of two GA molecules. During the reaction, the consumption
of oxygen allows GOD to be used as a strong antioxidant and
scavenger of oxygen, thus facilitating its application as a food
preservative due to stabilizing effect. Additionally, GOD has been
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effectively used in the food system as a strong stabilizer due
to its oxygen removing ability and prevents color and flavor
loss in a variety of beverages including canned fish, beer, soft
and energetic drinks (Crueger and Crueger, 1990; Bhat et al.,
2013). GOD can also be used instead of potassium bromate as
an oxidizing agent in bread making (Moore and Chen, 2006).

Use in Oral Care
GOD and lactoperoxidase have been used in oral health-care
products due to their antimicrobial potential (Afseth and Rolla,
1983; Güneri et al., 2011). TheH2O2 produced by GOD functions
as a valuable bacteriocide. Streptococcus mutans, which inhabits
the oral cavity and causes tooth-decay, is carried by almost
every human being. The ability of GOD to kill S. mutans can
be improved by enzymatic fusion using heavy-chain antibodies
(Etemadzadeh et al., 1985). Hill et al. (1997) reported that
GOD and/or GOD with HRP encapsulated reactive liposomes
were found to exhibit antibacterial effects against tooth decay
bacteria in saliva, suggesting their potential efficacy in oral
hygiene. Senol et al. (2005) reported the antibacterial activities of
oral care products containing GOD against ventilator-associated
pneumonia pathogens.

Use as an Antimicrobial Agent
GOD has antimicrobial activity against different foodborne
pathogens. GOD has shown enormous potential to inhibit
the growth of various foodborne pathogens, including
Clostridium perfringens, Campylobacter jejuni, Salmonella
infantis, Staphylococcus aureus, and Listeria monocytogenes
(Tiina and Sandholm, 1989; Kapat et al., 1998; Cichello,
2015). Further, GOD covalently immobilized on biorientated
polypropylene films was found to inhibit the growth of E. coli
and B. subtilis (Vartiainen et al., 2005). Murray et al. (1997)
reported inhibitory effects of culture filtrates of transformed
T. flavus against Verticillium dahliae in vitro and found that
the GOD secreted from T. flavus dramatically inhibited the
microsclerotial and hyphal growth of the large proportions of
V. dahliae. Malherbe et al. (2003) reported that the S. cerevisiae
transformants harboring the GOD gene from A. niger exhibited
antimicrobial efficacy in plate culture assay against lactic acid
and acetic acid producing bacteria. Zia et al. (2013) also observed
the antibacterial activity of GOD produced by A. niger. GOD
produced by P. chrysogenum showed antifungal activity against
different fungal pathogens (Leiter et al., 2004). GOD and its
products such as H2O2 and GA showed in vitro antimicrobial
activity against Paenibacillus larvae ATCC9545 (Sagona et al.,
2015). Application of edible antimicrobial films has been
approved to enhance the shelf-life of food products by releasing
enough amount of antimicrobial substances on the surface of
food products. The antimicrobial activity of the edible films
containing antimicrobial agents, nisin (N), and/or GOD, into the
matrix of whey protein isolate (WPI) films was assessed against
Brochothrix thermosphacta (NCIB-10018), Listeria innocua
(ATCC-33090), E. coli (JM-101), and Enterococcus faecalis
(MXVK-22). The greatest antibacterial activity was observed
in WPI films containing only GOD (Murillo-Martínez et al.,
2013). The polyamide and ionomer films with immobilized GOD

inhibited the growth of bacteria such as E. coli CNCTC 6859,
Pseudomonas fluorescens CNCTC 5793, Lactobacillus helveticus
CH-1, Listeria ivanovii CCM 5884 and L. innocua CCM 4030
on agar media (Hanušová et al., 2013). Recently, a new photo-
dynamic glucose-based antimicrobial system encapsulating
GOD, HRP, and BRET (bioluminescence resonance energy
transfer) was developed for the inactivation of various bacterial
and fungal pathogens through the network of organic and
inorganic materials (Yuan et al., 2015).

Use as Biosensors in Medicine Industry
Biosensors are widely used in the food industry, monitoring
of environmental hazards, and clinical applications. GOD has
been widely employed in glucose-based biosensors because of
its high selectivity for glucose and functionality under extreme
temperature, pH, and ionic resistance. Glucose biosensors for
diabetic blood monitoring are very convenient, reliable, rapid,
and accurate. Many studies have been conducted to develop
sophisticated advanced technologies, and better alternatives such
as point sample tests, and the continuous glucose monitor
(CGM) are being developed (Wang and Lee, 2015; Sode et al.,
2016). The CGM sensor has shown a significant role in diabetes
as an alternative means while measuring blood glucose level
and provides an alarming node on events associated with blood
glucose metabolism (Wang and Lee, 2015). Further, in recent
years, the drawbacks and limitations associated with glucose
biosensors have been nullified using advanced approaches such
as electrodes, membranes, enzyme immobilization, and nano-
composite film modified electrodes.

The glucose biosensor system works on the concept of
catalyzation of β-D-glucose oxidation by the immobilized GOD
using molecular oxygen, resulting in the production of GA and
H2O2. Amperometric glucose biosensors can be divided into
three generations based on their operative principles. In the
first generation biosensors, the concentration of oxygen/H2O2

is measured through an appropriate electrode and used as
an indicator for glucose monitoring. The chemical reaction
leading to oxidation of glucose causes depletion of oxygen or
production of H2O2. The involvement of other redox species
was the major problem associated with this generation. In
second generation biosensors, mediators are involved in the
backward and forward flux of electrons between the enzyme and
electrodes, but this generation of biosensors had a low turnover
rate and reduced proximity between the electrodes. Hence, these
biosensors suffered from redox interferences (mostly oxygen).
However, in the greatly advanced third generation biosensors,
a method of direct electron transfer from enzyme to electrode
was developed through “wired” relay centers (Wong et al.,
2008) by immobilizing enzymes within the thin films with
differentmodifications. The direct electron transfer process could
be achieved through several modifications and the biosensors
developed based on such modified electrodes have been found
to have good reproducibility, selectivity, and stability for
glucose oxidations. Velmurugan et al. (2015) reported the direct
electron transfer reaction of GOD at gold nanoparticles-electro
activated graphite/screen printed carbon electrode (AuNPs-
EGr/SPCE).
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The method of immobilization of GOD is considered a
pivotal factor for the development of highly stable glucose
biosensors with long-term operational life. The various methods
by which GOD is incorporated into a biosensor include
absorption, covalent attachment, cross-linking and micro-
encapsulation (inert membrane entrapping enzyme into the
transducer surface). Moreover, such immobilization could be
achieved through one or in combination with others. Hong et al.
(2016) developed biosensors based on GOD immobilized on
graphene oxide (GRO) through various preparative approaches
including enzyme adsorption (EA), enzyme adsorption and
cross-linking (EAC), and enzyme adsorption, precipitation and
cross-linking (EAPC). One of the most important aspects of such
GOD based immobilization is the greater loading of enzymes
for the efficient functioning which makes the overall system
stable and selective in the form of cross-linking precipitated
GOD aggregates. It has been reported that the problem
of enzyme absorption on GOD based biosensors could be
improved by using silicalite modified electrodes. The response of
glutaraldehyde (GLU) cross-linked along with GOD adsorption
on the silicalite-modified electrode (SME; GOD-SME-GLU)
was found to be much more sensitive and reproducible than
alone GOD-GLU based biosensors and have been employed in
determining the concentration of glucose in juicy nectars and
fruits (Dudchenko et al., 2016). Recently, the uses of carbon
nano-chips (CNCs) have been used to modify the glassy carbon
electrode for immobilizing GODwith the help of chitosan. These

GODs/CNCs based system have increased the electrochemical
response when used in GOD based bioelectronics devices (Kang
et al., 2017). The properties of the immobilized enzyme in
biosensors depend on both the enzyme and the supportive
material involved (Ang et al., 2015). The two major limitations
that restrict the immobilization of GOD on solid electrodes
include inadequate electrical communications between the active
sites of GOD and the surface of electrodes including enzyme
leaching.

A huge range of electrode substrates has been used
recently to overcome these problems which include metal-based
nano-particles, carbon nano-tubes (CNTs), mesoporous silica,
polymers, and sol-gels (Table 3). However, the electrocatalytic
activities of GOD toward the oxidation of H2O2 in GOD
based amperometric biosensors has been improved through the
use of multilayered reduced graphene oxides (MRGO) sheets
(Hossain and Park, 2017). In one such type of amperometric
biosensor, GOD was immobilized onto MRGO sheets, and
decorated with platinum and gold flower-like nanoparticles
(PtAuNPs) modified Au substrate electrode. It has been found
such fabricated MRGO/PtAuNPs modified hybrid electrode
reveled higher electrolytic oxidation of H2O2 (Hossain and Park,
2017). Apart from these methods, the use of CNTs is considered
a notable advancement in biosensing for the construction of
glucose sensors due to their ability to promote the reactions
of electron transfer of biologically significant biomolecules.
Low-site-density based nano-electrodes aligning CNTs have been

TABLE 3 | Recent developments in immobilization of GOD biosensor.

Immobilization method Description

Biosensor based on GOD

immobilized on different

substrates/modified

electrodes through physical

absorption/chemical

cross-linking/covalent

attachment/microencapsulation

Chitosan submicron particles (Anusha et al., 2015); chitosan-based porous composite (Susanto et al., 2013); carbodiimide-treated

activated carbon particles (Bailey and Cho, 1983); polyaniline film cross-linked with GLU (Gaikwad et al., 2006); polypyrrole-poly (vinyl

sulphonate) composite film crosslinked with GLU (Çolak et al., 2012); nitrogen doped carbon dots electrodes (Ji et al., 2016); porous

gold electrodes (Toit and Lorenzo, 2014); bulk and porous SiO2 (Libertino et al., 2008); poly (propylene imine) dendrimer (Shukla et al.,

2013); screen-printed electrodes with organosilicon sol-gel matrix (Kamanin et al., 2014); microparticles based on poly-methacrylic

acid (p-MAA; Pérez et al., 2016); aromatic redox probes intercalation (binding of redox-active tetraalkylammonium ions to DNA; Nguyen

et al., 2016); GOD cross-linked with GLU adsorbed on silicalite modified electrode (GOD-SME-GLU; Dudchenko et al., 2016); GOD

crosslinked with GLU and fluorescent oxygen films (Su et al., 2017).

Nanoparticles based

nanocomposites for GOD

immobilization

Graphite electrodes with colloidal gold nanoparticles (German et al., 2010); silicalite and nano beta zeolite (Soldatkin et al., 2015);

co-immobilization with gold nanoparticles (Neto et al., 2015); nickel oxide nanoparticle (Salimi et al., 2007); nickel oxide nanoparticle

modified carbon paste electrode (Erdem et al., 2013); Pt/functional graphene sheets/chitosan/silica nanoparticle (Wu et al., 2009);

poly(methyl methacrylate)-bovine serum albumin core (PMMA-BSA)-shell nanoparticles (He et al., 2009, 2012); thiolated gold

nanoparticles (Pandey et al., 2007); iron oxide magnetic nanoparticles (Abbasi et al., 2016); GOD + ETM immobilized on graphite

pre-modified gold nanoparticles (AuNPs; German et al., 2015); GOD + fluorescent labeled gold nanoparticles (GOD-FLAuNPs;

Muthurasu and Ganesh, 2016); carbon paste electrode (CPE) with zinc oxide (ZnO) nanoparticles (Shamsazar et al., 2016); gold

nanoparticles-electroactivated graphite/screen printed carbon electrode (AuNPs-EGr/SPCE; Velmurugan et al., 2015); carbon coated

nano tin sulfide assembled on glass carbon electrode (GCE; Chung et al., 2017).

Nanotubes

/nanowires/nanofibers/nanorod-

arrays

GOD-single wall carbon nanotube composites (Lyons and Keeley, 2008); double-stranded DNA single-walled carbon nano-tube

hybrids (Xu et al., 2007); gold nanoparticles decorated graphene nanotubes (Devasenathipathy et al., 2015); graphene

oxide-multiwalled carbon nanotubes hybrid (ERGO–MWCNT; Mani et al., 2013); single wall carbon nanotube (Tsai et al., 2009);

multi-walled carbon nanotube (MWCNT)-titanate nanotube (TNT) nanocomposite (Liu et al., 2015); platinum modified carbon nanotube

electrode (Tang et al., 2004); horseradish peroxidase + glucose oxidase cross-linked to multiwalled carbon nanotubes (Xu et al., 2014);

ZnO nanowires + silicon nanowires (Miao et al., 2016); electrospun Mn2O3 nanofibers (Ding et al., 2011); nanorod arrays (ZnO) + gold

nanoparticles (Zhao et al., 2015); GOD + carbon nano-chips (CNCs) + chitosan (Kang et al., 2017); ZnO nanorods based

non-enzymatic fluorescent based biosensor (Mai et al., 2017); GOD immobilized on PVA/PAA nanofiber matrix (Kim and Kim, 2017).

Graphene-based GOD

immobilization

Graphene oxide (Sehat et al., 2015); graphene-PPy (Alwarappan et al., 2010); metal decorated graphene (Baby et al., 2010);

graphene/nafion (Chen et al., 2010); graphene-CdS (Wang et al., 2011); electrografting of thionine diazonium cations onto glassy

carbon electrodes + graphene nanosheets (Shervedani et al., 2016); graphene quantum dots (Razmi and Mohammad-Rezaei, 2013).
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used for the detection of glucose (Lin et al., 2004), which showed
good signal-to-noise ratio and detection limits.

The use of nano-materials in biosensors and bioelectronic
devices has provided a new platform for efficient glucose
monitoring due to their improved response time, high
sensitivities, low detection limits, wide range linearity, and
low power requirements. Recently, the real-time monitoring
of glucose concentrations in GOD based biosensors has been
achieved through the use of plasmonic nanoparticles/nanorods
(Xu et al., 2017b). A list of major nano-materials, CNTs, and
carbon nano-fibers (CNFs) used as electrical connectors between
the electrode and the redox center, are given in Table 3. Wang X.
et al. (2016) recently reported optimization and characterization
of covalent immobilization of GOD using multi-walled carbon
nano-tubes (MWCNTs) to maximize the loading of GOD,
thereby, increasing the longevity of electric power or sensing
signals.

Use for Inducing Resistance
GOD also plays an important role in the induction of
defense responses in plants. Transgenic Trichoderma atroviride
incorporating multiple copies of a GOD-encoding gene from
A. niger was able to produce H2O2 after infection by fungal
pathogens and showed higher antimicrobial activity against
fungal pathogens as well as induced systemic resistance in
plants (Brunner et al., 2005). Involvement of H2O2 during the
plant resistance to bacterial disease agent was also revealed in
Arabidopsis plant challenged by transconjugants of Pseudomonas

syringae pv. phaseolicola expressing the avirulence genes avrPpiA
and avrPphB matching the RPM1 and RPS5 resistance genes
(Soylu et al., 2005). The application of genetic engineering
tools has provided sustainable results in GOD expression
in plants with increasing resistance to plants from bacterial
infections (Wu et al., 1995). Further, Maruthasalam et al. (2010)
reported that fungal GOD expression in transgenic tobacco
plants provides them resistance from the cold by activating
antioxidative defense system. EndogenousH2O2 levels of tobacco
plants (Nicotiana tobaccum L. cv. SR1) were enhanced by
constitutively expressing a GOD gene isolated from A. niger,
and transgenic tobacco plants exhibited resistance to leaf spot
fungal disease and bacterial wilt disease (Selvakumar et al.,
2013). Similarly, the GOD gene from A. niger was inserted
into potato plants, which resulted in leaves and tubers that
produced high amounts of H2O2 constitutively and acquired
resistance to the bacterium Pectobacterium carotovorum sub
sp. carotovorum and the fungi Phytophthora infestans and
V. dahliae (Bastas, 2014). Kachroo et al. (2003) also reported that
GOD-overexpressing transgenic rice plants showed enhanced
resistance to both Magnaporthe grisea and Xanthomonas oryzae
pv. oryzae. Moreover, GOD isolated from A. tubingensis CTM
507 was found to have reduced spore formation, mycelial cord
induction and mycelical vacuolization of pathogenic Fusarium
solani.Hence,A. tubingensisCTM507 suppressed the pathogenic
attack and manifestation of disease in tomato (Kriaa et al.,
2015).

Applications in Textile and Energy
Production Sectors
Use for Enzymatic Bleaching in the Textile Industry

Bleaching provides decolorization of natural pigments with
a pure white appearance of the fibers. GOD has proven to
be effective in the production of H2O2 for bleaching in the
textile industry, the most effective bleaching agent of industrial
significance (Bankar et al., 2009b; Saravanan et al., 2010; Mojsov,
2011; Soares et al., 2011). H2O2 produced by GOD decolorizes
paprika dye effluent (Gonçalves et al., 2012) and malachite
green (Karimi et al., 2012a). Moreover, the GOD application
to the bleaching of textiles during upstream resizing and
bio-scouring processes has shown promising results with the
additional release of glucose (Buschle-Diller et al., 2002). The
immobilization of GOD enzyme for the generation of H2O2

and its optimization has significantly affected the processing of
bleaching in textiles. Tzanov et al. (2002) suggested the use of
covalently-immobilized GOD on alumina and glass underpins
for increased re-usage efficiency of enzymatic bleaching in
textiles. The stability of GOD has been enhanced by a few
immobilization procedures on different backings (Quinto et al.,
1998; Tzanov et al., 2002; Blin et al., 2005; Betancor et al.,
2006; Godjevergova et al., 2006). Recently, Aber et al. (2016)
utilized a bio-fenton procedure for the decolorization of a dye-
solution with in situ production of H2O2 by enzymatically
catalyzed oxidation of glucose. They developed the optimal
decolorization conditions by immobilizing GOD on magnetite
nano-particles (Fe3O4) and reported that the best decolorization
was achieved at a temperature of 10◦C, pH of 6, GOD/support
ratio of 1,800U/g and time of 2.5 h. Under these conditions,
they found that 450 U of GOD immobilized/grams of magnetite
and that this system could be efficiently used for the oxidation
of glucose and in situ generation of H2O2 for the removal of
acid yellow 12. Farooq et al. (2013) compared conventional
bleaching with GOD catalyzed bleaching of knitted cotton fabric
and found that enzymatic bleaching led to better whiteness and
mechanical properties such as tensile strength and tear strength.
Furthermore, H2O2 produced by GOD was shown to be a
significant alternative to the most extensively used commercial
H2O2, in the textile processing industries. Moreover, Tzanov
et al. (2001) found that the whiteness index of fabrics increased
in response to a high concentration of glucose followed by
a significant decrease in glucose concentration. However, the
initial high concentration of glucose may cause discoloration of
fabrics due to the presence of residual glucose. This problem
can be overcome by using an excessive amount of GOD with
an increased incubation time (Saravanan et al., 2010). Other
important aspects of enzymatic processing in textiles are that
the H2O2 generated during bleaching produces a comparable
effect to scoured woven cotton fabric, while the GA produced
acts as a chelator for metal ions, removing the need for use of
an additional stabilizing agent (Tzanov et al., 2002). Additionally,
the simultaneous application of GOD with peroxidases in the
decoloration process improves bleaching of natural fibers (Opwis
et al., 2008).
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Use in Improving Biofuel Production
Biofuel cells (BFCs) use either enzymes or whole cell organisms
as a biocatalyst to generate power directly from fuel substrates
(glucose and ethanol). These enzyme-based systems are
considered better alternatives for the development of future
implantable devices (Sode et al., 2016). During the last decade, the
rapid progress in enzyme-based BFCs allowed the development
of membrane/compartment-less devices for miniaturization
and use in implantable devices such as insulin pumps and
glucose sensors in artificial pancreata and pacemakers (MacVittie
et al., 2013; Falk et al., 2014). The design for manufacturing
BFC is adjusted in such a way so that one electrode consisting
of electro-conductive material is modified by a biocatalyst
(enzymes) for specialized oxidation and reduction reactions.
In one approach to the construction of BFCs, the catalytic
reactions occurring at the anode are either mediated by GOD or
glucose dehydrogenase and coupled with reduction reactions at
the cathode mediated by di-oxygen reducing enzymes such as
laccases, bilirubin oxidase or cytochrome oxidase (Barrière et al.,
2006; Figure 1). More recently, efforts have been put forward to
improve the catalytic efficiency of this system several folds by
co-immobilization of GOD with other enzymes such as CAT.
Christwardana et al. (2017) developed membrane less glucose
biofuel cells (GBFCs) system for enhancing the power generation
of membrane-less BFCs using GOD-CAT co-immobilized
catalyst (CNT/PEI/(GOD-CAT) and reported that the system
have increased the biocatalytic efficiency of GBFCs due to some
synergistic mechanisms including removal of harmful H2O2

moiety by CAT and the simultaneous activation of GOD based
desirable reactions.

Most of the output voltage and current signals in a typical
BFC depends on the concentration of fuel, hence, enzyme-based

BFCs could serve as an alternative means of an enzyme sensor
system (Katz et al., 2001). Recently, there has been a great deal
of efforts toward the development of bio-electrochemical devices
based on unique enzymes. The presence of electron transfer sub-
units or domain in these enzymes imparts specificity to directly
transfer electrons to the electrodes during a bio-catalytic reaction
(Tsugawa et al., 2012).

The sensitivity and conversion efficiency of BFCs are highly
determined by efficient electron transfer occurring at the enzyme
active center and electrode interface. However, these critical
factors of sensitivity and conversion efficiency lead to difficulty
in GOD catalysis based BFCs because the redox center inside
this enzyme is buried inside the structure, a long way from
any feasible electrode binding site (Sode et al., 2016). This
problem can be resolved by using artificial electron acceptors
and mediators or by precisely modifying the electrode surface
with nano-scale conductive materials. The mediator assists in
this electron transfer reaction through a mediator electron
transfer (MET) mechanism by using little redox dynamic
particles/polymers as electron bearers (arbiters) to/from one
electrode to another or bio-catalytic site (Barton et al., 2004;
Figure 2). These mediators can be polymerized specifically onto
the surface of electrodes or co-immobilized with GOD to
facilitate the rate of electron transfer by several-fold. Recently,
a novel method entrapping cross-linked aggregates of GOD
within a graphitized mesoporous carbon (GMC) network has
been reported for the production of GOD nano-composites with
an ability to provide the maximum rate of electron transfer
and high electrical conductivity (Garcia-Perez et al., 2016).
In contrast, the application of CNT immobilized GOD has
given promising results (Ivnitski et al., 2007). Nano-carbon
functionalization has shown perfect compatibility with other

FIGURE 1 | Generalized diagram of typical enzymatic biofuel cell (EBC) with associated components.
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FIGURE 2 | Generalized diagram of an enzymatic biofuel cell (EBC) with a mediator bioanode and direct electron transfer (DET) based biocathode (mediators are

involved in fluxing electron flow between enzyme and electrode).

biological and chemical approaches with enhanced enzymatic
functionality in implanted BFCs. Babadi et al. (2016) found
that they could generate biocatalyst either by direct transfer of
electrons or redox mediators for electron transfer. Some recent
approaches to the development of enzyme-based BFCs are listed
in Table 2.

The use of immobilization facilitates retention of biomass
in reactor geometry, enabling their economic reuse and
development of the continuous process. The technique also
improves stability and prevents product contamination, paving
the way for use of crude enzyme preparations such as whole cells
in the bioprocessing (D’Souza, 2002). However, limitations such
as lower power supply and reduced theoretical voltage (limited
by the redox potential of cofactors and/or mediators employed
in the anode and cathode) of a single BFC make it inadequate
for providing power to any biomedical devices. Therefore, bio-
capacitors have been developed using charge pumps connected
to fuel cells. This novel approach has generated high voltage
with sufficient temporary currents to operate an electric device
without changing the design and construction of the EFC (Sode
et al., 2016). The limited life expectancy of BFCs could be
enhanced using technologies that favor enzyme stability, whereas
power supply could be resolved by improving catalytic efficiency
using directed evolution or other protein engineering methods.

Other Miscellaneous Applications
In addition to the above-mentioned benefits, GOD could be
used in some miscellaneous applications. For example, GOD
has been used in several immunoassays and staining techniques
and shown to have an ability on the removal of an excess level

of glucose (Megazyme, 2003). From the geochemical prospects,
GOD can be used for the preparation of leaching solutions, since
both H2O2 and GA produced by GOD have a significant role in
leaching (Wong et al., 2008). In medical sectors, GOD is widely
employed in the monitoring of diabetic patients to measure
their blood glucose activities using finger-prick blood samples.
In addition, GOD induces several apoptosis characteristics viz,
mitochondrial dysfunction, accumulation of Bax and release
of cytochrome C in mitochondria, accompanied by activation
of caspase-9 and caspase-3 (Rost et al., 2007; Kumar and
Sitasawad, 2009; Yu et al., 2016). Moreover, GOD was also
reported to induce cellular senescence in immortal renal cells
through integrin-linked kinase (ILK) by downregulating Klotho
gene expression, an aging- related kidney-secreted hormone with
antioxidant properties (Yamamoto et al., 2005; Troyano-Suárez
et al., 2015). Apart from these applications, it has been reported
that the enzymatic activity of the white rot fungi P. chrysosporium
is very effective in the presence of GOD and could be used in
the biodegradation of lignin, recalcitrant pollutants, pulping and
bleaching treatments (Ansari et al., 2016). Wang C. et al. (2016)
developed a chemiluminescence (CL) amplification platform
based on hollow structural calcium carbonate (HCC)/lucigenin
and GOD (HLG) film and found that the GOD immobilized
in the confined space of HCC particles exhibited improved
biocatalysis. The visual CL bio-platform showed outstanding
performance with high selectivity, a wide linear range and a low
detection limit for sensing trace glucose. Recently, Nascimento
et al. (2016) suggested the use of single cell “glucose nano-
sensors” as nano-pipettes for tracing out cancer cells from normal
cells. These nano-pipettes functioned as specifically developed
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nano-sensors to measure the glucose level in single cells with
temporal and spatial resolutions. The covalently immobilized
GOD at the sensor tip interacted with glucose forming GA,
which was measured as the change in impedance due to the
drop in the pH. Bandodkar et al. (2016) suggested the use of
wearable chemical sensors and showed their promising effects in
continuous monitoring of the user’s health and fitness.

Diets supplemented with GOD have been reported to enhance
growth performance, increase the contents of growth and
development-related hormones and improve the fecal microflora
of growing piglets (Tang et al., 2016). These changes might
be attributed to the functional activities of GOD in the
gastrointestinal tract, which utilizes O2 and produces H2O2

and GA. Using a similar approach, Tang et al. (2013) found
that the contents of serum related hormones, intestinal health
and growth performance of piglets can be effectively improved
by a diet supplemented with 100 g/t GOD. However, more
research is needed to determine the various effects of dietary
GOD supplementation on other parameters of intestinal health.
Moreover, during localization microscopic studies, GOD was
used in single molecule localization microscopy (SMLM) buffers
to decrease the solution oxygenation as well as to prevent
fluorophore photobleaching (Szczurek et al., 2017).

FUTURE DEMANDS AND
IMPLEMENTATIONS

The above review explains the potential applications of GOD
in various industries with increasing demand in the food
and flavoring, pharmaceutical, biotechnology and bioelectronic
sectors. With a predicted annual growth rate of 7.6% per
annum, the market value of the GOD enzyme increased to
$6 billion by 2011 (The Freedonia Group, 2007). Although
a plethora of microbial resources are currently available for
efficient production of this enzyme, only a small fraction of
microbial entities, particularly some selected strains of fungi and
yeast, is currently exploited for the production of the enzyme.
Further, huge attention should be paid on finding new sources
of GOD and to develop cost effective fermentative processes
for the efficient production and commercial exploitation of
the enzyme. However, we currently do not have sufficient

information available regarding the commercial production of
GOD through fermentative processes and its further subsequent
uses in different industries. Recently, enzyme immobilization
processes and other technological innovative approaches have
drawn scientific attention because of the potential for developing
novel methods for the GOD production at large scale. However,
problems such as diffusional constraints and decreased enzyme
activity after immobilization have further limited the uses
of immobilized GOD and therefore need to be improved
to achieve greater benefits. The recent advancements in the
field of bioinformatics can also revolutionized the field of
GOD immobilization through docking and molecular dynamics
techniques which can provide detailed information about the
enzyme and ligands interaction. Further, the advances in DNA
and RNA sequencing and their bioinformatic analysis can
also provide novel insight into the structure and function
of GOD. Large scale and efficient uses of GOD in various
industrial sectors could be achieved through the use of modern
biotechnological approaches such as concoction adjustment
of existing chemicals through protein designing, site-directed
mutagenesis, and recombinant expression of GOD genes in other
potential microbes that could be further used at large scale to
meet future demands. Fortunately, the different recent trends as
mentioned throughout this review suggest that we are on the path
of establishing a worldwide bio-based economy, and GOD may
have a great contribution in this context.
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