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Abstract: The electrochemical behavior of polycrystalline TiO2 anatase coatings prepared 

by a one-step hydrothermal synthesis on commercially pure (CP) Ti grade 2 and a 

Ti13Nb13Zr alloy for bone implants was investigated in Hank’s solution at 37.5 °C. The 

aim was to verify to what extent the in-situ-grown anatase improved the behavior of the 

substrate in comparison to the bare substrates. Tafel-plot extrapolations from the 

potentiodynamic curves revealed a substantial improvement in the corrosion potentials for 

the anatase coatings. Moreover, the coatings grown on titanium also exhibited lower 

corrosion-current densities, indicating a longer survival of the implant. The results were 

explained by considering the effects of crystal morphology, coating thickness and porosity. 

Evidence for the existing porosity was obtained from corrosion and nano-indentation tests. 

The overall results indicated that the hydrothermally prepared anatase coatings, with the 

appropriate morphology and surface properties, have attractive prospects for use in medical 

devices, since better corrosion protection of the implant can be expected. 
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1. Introduction 

A suitable combination of acceptable bulk mechanical properties and relatively good chemical 

stability makes titanium and its alloys the most used metals for body implants. The inertness of these 

materials is due to a biocompatible passivation layer of amorphous titanium dioxide, which is naturally 

formed on the surface [1,2]. Although this is considered as a protective interlayer between the hosting 

tissues and the foreign implant, it is too thin (only a few nanometres) and insufficiently stable under 

the action of body fluids to provide full corrosion protection, so that the bulk material may undergo a 

slow but lasting release of metal ions in the neighboring tissues. This may have an influence on 

defense mechanisms and cellular activity, and, as a consequence, adverse reactions and even implant 

rejection may occur [3,4]. For instance, vanadium, an alloying metal in Ti-Al-V alloys, has been found 

to be cytotoxic, producing harmful tissue effects [5–8], while aluminum has been suggested to be 

neurotoxic [9]. In addition, Ti-Al-V alloys are composed of a mixture of α (hexagonal close packed, 

HCP) and β (body-centered cubic, BCC) phases, resulting in a Young’s modulus that is typically much 

larger than that of bone, thus leading to undesirable stress-shielding effects and eventual loosening of 

the implant. To overcome this problem, metallurgical research has been directed towards the 

incorporation of “safer” alloying elements that promote the β-phase, which has a lower Young’s 

modulus than the α-phase. The use of the so-called β-stabilizer elements (Nb, Zr, Hf, Ta, Mo, etc.) has 

given rise to a new generation of Ti β-alloys. 

In addition, it is known that the structure, physico-chemical composition and morphological 

characteristics of the biomaterial’s superficial zone, which is in direct contact with fluids and corporal 

tissues, determine the host biological response. Thus, surface optimization is important in order to 

minimize adverse body reactions and improve implant osseointegration; this is generally realized by 

modifying and increasing the stability of the natural titania passive layer. Surface modifications can be 

achieved by various techniques, according to mechanical (machining, grinding, polishing, etc.), 

chemical (e.g., etching, sol-gel deposition, etc.), electrochemical (anodic oxidation, micro-arc 

oxidation, etc.), physical (physical vapor deposition, thermal spray, etc.) or thermal (sintering, thermal 

oxidation, etc.) treatments [1,10,11]. Additionally, hydrothermal treatment (HT) emerged as a simple 

and cost-effective technique to produce thin, firmly attached layers of anatase with a well-defined 

morphology and crystallography, which offer the possibility to be used as a barrier to hinder the 

release of alloying elements and to enhance the bioactivity [12]. The influence of the surface porosity 

(or density) and the film thickness on these two aspects has to be further considered, in order to predict 

the longer-term corrosion effects as well as any possible bone reaction [13]. 

In our previous report on hydrothermally grown anatase crystals on titanium substrates [14], we 

have shown that such nanostructured coatings lead to a crystal morphology and surface topography 

that result in hydrophilic behavior. Moreover, high photocatalytic properties (proven by caffeine 

degradation and radical formation studies) and, accordingly, super-hydrophilicity upon UV-irradiation 
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were observed. The combination of the two photo-induced phenomena may reduce the bacterial 

adhesion on the implant surface. Besides, in order to enhance the implant’s in vivo osseointegration, 

titania coatings are required to act as protective interlayers between the device and the surrounding 

tissues. Therefore, in the subsequent study the corrosion behavior of the anatase-coated Ti alloys was 

also examined. Relevant parameters related to the corrosion resistance were obtained by Tafel analyses 

of the corresponding potentiodynamic polarization curves. A correlation with surface morphology 

(e.g., porosity) was required to better interpret the corrosion data. In addition, nano-indentation of the 

selected anatase coatings was carried out to determine their hardness and elastic modulus. 

2. Results and Discussion 

The results are presented as a comparison of the properties within two groups of samples 

synthesized by hydrothermal treatment (HT) on commercially pure titanium (CP Ti) or a Ti13Nb13Zr 

alloy (TNZ), as highlighted in Table 1. The samples were hydrothermally treated under slightly 

different conditions to form different coatings: the samples Ti-A and Ti-B were prepared using 

different sources of titanium ions, while different times of HT were used in samples TNZ-C and TNZ-D. 

The non-treated substrates (Ti NT and TNZ NT) were used as the reference materials. 

Table 1. Summary of the synthesis conditions and information about the titania grown 

crystals for samples Ti-A, Ti-B TNZ-C and TNZ-D. 

Sample Substrate Ti Ions Source Additives HT Time Estimated Crystal 

Size after HT 

Ti-A CP Ti Ti(iOPr)4 – 24 h 30–70 nm 

Ti-B CP Ti μm-TiO2 AC, NaOH, TMAH  24 h 10–20 nm 

TNZ-C TNZ Ti(iOPr)4 AC, NaOH, TMAH 24 h 50–150 nm  

TNZ-D TNZ Ti(iOPr)4 AC, NaOH, TMAH 12 h 10–20 nm 

2.1. Morphological Characterization 

As shown in field-emission-gun scanning electron microscope (FEG-SEM) images (Figure 1), the 

coatings completely covered the substrate surface; however, the crystals’ morphologies and 

dimensions were different. The coatings grown on the pure titanium substrates were composed of 

nanocrystals with dimensions ranging from 30 to 70 nm (Ti-A, Figure 1a) or 10 to 30 nm (Ti-B,  

Figure 1b). The same time of thermal treatment for the TNZ alloy (24 h) resulted in much larger  

(50–150 nm) TiO2 particles (TNZ-C, Figure 1c), while after only 12 h the estimated particle size was 

significantly smaller, 10–20 nm (TNZ-D, Figure 1d). In this case, a few large crystals, grown from the 

substrate with a flower/artichoke-like structure and randomly distributed, were also observed (inset in 

Figure 1d). Energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) 

analyses confirmed that the crystals composition was titanium dioxide. In the case of the TNZ samples, 

also ≈20 at.% of both zirconium oxide and niobium oxide were detected in addition to the TiO2 (data 

not shown). It was reported that from the electrochemical point of view, Ti- and Zr-rich regions are 

nobler than Nb-rich regions, giving more anodic protection [15], while Nb is able to stabilize the 

surface film, giving a higher cathodic protection [15] by filling the anion vacancies present on the 
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titanium oxide layer [16]. Thus, the presence of zirconium and niobium oxides in the HT coatings is 

supposed to enhance the corrosion properties of the bare substrate. 

Figure 1. SEM micrographs of: (a) sample Ti-A; (b) sample Ti-B; (c) sample TNZ-C;  

and (d) sample TNZ-D. 

 

Despite the variable morphology, the values of the surface mean roughness (Sa) and the  

root-mean-square roughness (Sq) obtained by atomic force microscopy (AFM) were not significantly 

different for all the samples (Sa = 9.1 ± 0.7 nm and Sq = 11.6 ± 1.0 nm) and, consequently, were considered 

negligible in this study. This decision was also supported by the findings of Aparicio et al. [17], who 

reported the ineffectiveness of the roughness on the qualitative electrochemical response of CP Ti and 

its alloys. 

2.2. Electrochemical Corrosion Properties 

During the stabilization time at the open-circuit potential (EOCP), the potential slightly shifted 

towards more positive values, indicating an increase in the surface oxide layer for the untreated 

specimens (Ti NT and TNZ NT) and the treated ones (with a minor variation). As shown by the EOCP 

values listed in Table 2, the non-treated Ti had a slightly nobler value at the open-circuit potential 

(−0.429 V/SCE, saturated calomel electrode) in comparison with the TNZ (−0.647 V/SCE), indicating 

the tendency of the of the TNZ to spontaneously passivate in the Hank’s solution is less than for the 

pure Ti. Nevertheless, both values lay in the passivity region of the TiO2 at pH 7.4 in the Pourbaix 

diagram for titanium at 25 °C [18]. Even if a comparison with the literature data is not easy, due to its 
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dependency on surface preparation, exposure time to the electrolyte and environment, potential scan 

rate, alloy composition and microstructure, etc. [19,20], the obtained EOCP data were in agreement with 

previous reports [21–24]. All the hydrothermally treated (HT) samples showed less-negative EOCP 

values, by about a factor of two, compared to the non-treated substrates Ti NT and TNZ NT. This 

confirms that the nanostructured titania coatings provided a more stable protection layer for the 

substrates in comparison with the natural passivation film present on the surfaces of the Ti alloys. 

Table 2. Open-circuit potential (EOCP), corrosion potential (Ecorr), corrosion current density 

(Jcorr), corrosion rate (CR) and coating porosity extrapolated from the potentiodynamic 

polarization curves. The errors in the EOCP and Ecorr values are within ±0.005 V, whereas 

for Jcorr the value is typically around 0.1 × 10
−8

 A/cm
2
. 

Sample EOCP (V/SCE) Ecorr (V/SCE) Jcorr (A/cm
2
) CR (×10

−6
, mmpy) Coating Porosity 

Ti NT −0.429 −0.442 1.84 × 10−7 1.599 – 

Ti-A −0.288 −0.359 6.92 × 10−8 0.601 17% 

Ti-B −0.262 −0.303 6.52 × 10−8 0.568 7% 

TNZ NT −0.647 −0.683 6.63 × 10−8 0.510 – 

TNZ-C −0.250 −0.386 3.27 × 10−7 2.513 27% 

TNZ-D −0.317 −0.396 4.77 × 10−8 0.367 2% 

Figure 2 illustrates the polarization curves on a logarithmic scale (Tafel plots) for the 

hydrothermally treated Ti and TNZ samples in comparison with the non-treated substrates. All the 

anodic polarization curves showed the same trend, typical for a passive character. The absence of a 

sharp increase in the current density in the anodic branch up to 1.5 V proved that no breakdown of the 

coatings occurred; however, current fluctuations near the cathodic-anodic transition point might 

depend on two events that occurred simultaneously: the tendency of current to increase because of the 

anodic reaction and the inhibition of the active surface of the electrode (thus decreasing in current) due 

to the oxide film’s formation [25]. In contrast to the curves for the bare substrates, the curves for the 

coated samples shifted towards the anodic region, qualitatively suggesting an improvement in the 

corrosion resistance. 

Figure 2. Potentiodynamic polarization curves in Hank’s solution at 37.5 °C of (a) samples Ti 

NT, Ti-A, Ti-B; and (b) samples TNZ NT, TNZ-C, TNZ-D. 
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According to Tafel’s law, the logarithm of the current density in an electrochemical reaction varies 

linearly with the electrode potentials (at potentials away from the OCP) [26]. Although not all the 

curves exhibit Tafel behavior (the anodic branch shows an active/passive transition), it is still possible 

to determine the anodic Tafel line from the experimental data, as shown by McCafferty for the  

Ti case [26]. The values of the corrosion potentials (Ecorr) and the corrosion current densities (Jcorr), 

calculated by the extrapolation of the cathodic and anodic branches of the curves at zero over-potential, 

are listed in Table 2. As expected, comparing the EOCP and Ecorr values for the Ti NT and TNZ NT, no 

appreciable difference was observed, meaning that the natural passivation layer was not able to grow 

and improve the surface corrosion properties. On the other hand, the Ecorr of Ti-A and Ti-B slightly 

shifted with respect to their EOCP, suggesting that the coatings still had the ability to further passivate 

and stabilize, even after the 30 min of equilibration in OCP conditions. Moreover, considering the Ecorr 

relative to Ti NT, a variation of ~0.10 V with respect to the positive potentials for the samples Ti-A 

and Ti-B was observed. Such a shift of the corrosion potentials indicated that the TiO2-coated surfaces 

possess a higher corrosion resistance. The same trend was found in the case of the TNZ samples, with 

an increase of the corrosion potential that is even higher (~0.30 V) compared to the non-coated 

substrate TNZ NT. The corrosion potential enhancement for the TNZ-coated samples was expected, as 

a result of the presence of highly protective zirconium and niobium oxides in the HT coatings. 

Furthermore, the Ecorr values of the TNZ-C and TNZ-D were found to be similar to those for the Ti-A 

and Ti-B. This outcome demonstrated that the hydrothermal treatment is a simple but very powerful 

technique to grow very protective titania coatings, regardless of the substrate chemistry and composition. 

Concerning the values of the corrosion-current density, a variation in Jcorr of one order of magnitude 

was detected for the HT-treated Ti samples (~10
−8

 A/cm
2
) with respect to the Ti NT (~10

−7
 A/cm

2
). 

Such an outcome indicated that the rate of the oxidation process for the coated Ti substrates was 

reduced by the presence of the layer of titania nanocrystals, and as a consequence, the lifetime of the 

HT-coated titanium, under the applied conditions, was enhanced. The corrosion rate (CR) values are 

consistent with this trend (Table 2). Besides, no substantial enhancement in Jcorr was noticed after the 

hydrothermal treatment of the TNZ samples (Jcorr for TNZ NT in agreement with [27]). For the sample 

TNZ-C, the Jcorr was even slightly worse compared to the TNZ NT. These results indicate that the 

TiO2-coating on the TNZ alloys delayed the onset of corrosion but did not slow down the corrosion 

rate with respect to the TiO2-coated titanium. As a result, further optimization of the synthesis 

parameters of the TNZ coatings series is required. 

Although a lot of data on bare Ti and Ti13Nb13Zr can be found in the literature, information 

regarding the corrosion properties of synthesized TiO2 coatings is difficult to pin down. In fact, the 

variety of synthesis techniques, the different polarization parameters (e.g., scan rate, experimental 

time, potential, etc.) and the solutions used make any comparison very difficult. Nevertheless, a 

general consideration can be made. 

Karpagavalli et al. [28] created an amorphous TiO2 layer on Ti6Al4V by electrodeposition and 

subsequent annealing. A variation of about +0.10 V in Ecorr (comparable with the HT TiO2 coatings on 

Ti) was observed, while almost no difference in Jcorr was obtained, compared the TiO2-deposited 

Ti6Al4V with Ti6Al4V in Hank’s solution. Similar variations in Ecorr and Jcorr were reported in [29], 

where Ti6Al4V substrates were spin-coated with TiO2 nanoparticles and then subjected to a further 

heat treatment. Indeed, an improvement of about +0.2 V in Ecorr and of one or two orders of magnitude 
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in Jcorr was obtained, when comparing the results in the present study with the data obtained by  

Indira et al. [30], where the authors used anodized titanium sheets soaked in Hank’s solution for 1 h or 

7 days. Furthermore, in Yu et al. [24], 400-nm anatase nanotubes were grown on Ti by anodisation and 

then crystallized by sintering. Equivalent corrosion values in Hank’s solution were obtained, proving 

that, besides more “conventional” methods for anodisation, a hydrothermal treatment is a powerful and 

very simple synthesis technique to obtain corrosion-resistant anatase coatings. Hydroxyapatite/titania 

(HA/TiO2) coatings were prepared using a hydrothermal-electrochemical co-deposited method by  

Xiao et al. [31]. They showed that such prepared composite coatings exhibited a better electrochemical 

behavior than pure HA coatings and uncoated Ti metal. Baszkiewicz et al. [32] also used a 

hydrothermal treatment on titanium as a second step after plasma electrolytic oxidation, in order to 

create titanium oxide layers enriched with HA in simulated body fluid (SBF). In this case the corrosion 

resistance of the HT layers was lower than that of the non-modified titanium. This outcome, combined 

with the considerations discussed within this section, indicated that the choice of synthesis parameters 

during the hydrothermal treatment is fundamental. Another advantage of the hydrothermally grown 

TiO2 coatings is their crystallinity. Park et al. [33] stated that in the case of a post-anodisation heat 

treatment, the crystallization of the TiO2 nanotubes on Ti rendered the layer very stable, showing the 

most effective corrosion resistance. In the case of the hydrothermal treatment, fully nanocrystalline 

coatings can be created in a one-step procedure, without any need for further post-treatment. To the 

best of our knowledge, we report for the first time the corrosion behavior, in a Hank’s balanced salt 

solution (HBSS), of polycrystalline anatase coatings prepared only by hydrothermal synthesis. 

2.3. Thickness, Porosity and Nanomechanical Behavior 

Figure 3 shows the Auger electron spectroscopy (AES) depth profiles of the HT samples, which 

present the depth distribution of elements in the subsurface region. These profiles were obtained by ion 

etching with a rate of 2.0 nm/min. The oxide thickness was estimated from the etching time needed to 

reach the oxide/substrate interface. The oxide surface on all the samples was fairly rough, as can be 

seen in the SEM micrographs in Figure 1. This could strongly affect the quality of AES depth profiles. 

Due to the shadowing effect related to the surface roughness, the oxide crystals would not be etched 

uniformly by the ions, and therefore the oxygen signal in the AES profiles would persist for deeper 

regions than the real ones, giving an artefact signal. To avoid this, two ion guns from different 

directions were used to etch the titania crystals more uniformly. The oxide/substrate interface was 

estimated at the point where the oxygen concentration fell to half of its maximum value [34]. In all 

cases TiO2 was found to be formed at the surface. It appeared that for the TNZ-C (Figure 3c) the 

oxygen concentration remained as twice as high in comparison with the titanium for more than  

200 min of etching time, indicating that the thickness of the TiO2 coating was greater than 400 nm. For 

this sample the oxide/substrate interface was not reached during the whole sputtering process. In 

contrast, for the other three examined samples (Figures 3a,b,d) the rapid oxygen decrease implies 

much thinner coatings. The estimated thicknesses are summarized in Table 3. From these results, the 

best corrosion resistance would be expected for the sample TNZ-C, due to the largest coating 

thickness, and, on the other hand, the smallest for the Ti-B (Figure 3b) and TNZ-D (Figure 3d). 

Unexpectedly, Ti-B and TNZ-D exhibited the best electrochemical behavior, despite their small 
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thickness, an effect that could be connected with the compactness of the tiny anatase crystals that 

formed the coatings (Figures 1b,d, respectively). On the other hand, as mentioned above, the corrosion 

current density appeared worse in the case of the TNZ-C. This is evidence that the corrosion behavior 

cannot be fully related only to the coating thickness, but can also be influenced by the dissimilar 

porosity of the layers. For instance, even if the coating on sample TNZ-C is thick, the SEM image 

(Figure 1c) reveals its apparently high porosity. This feature possibly enlarges the exposed surface area 

to the HBSS (active anodic area), so that a consequent decrease in the total resistance would be 

expected [35]. In fact, although the corrosion potential shifted toward cathodic values with respect to 

the bare substrate, the corrosion rate was significantly higher. Furthermore, as suggested by  

Aparicio et al. [17], the increase of the current density might also be correlated with the surface 

compressive residual stresses, which in the case of sample TNZ-C may reside within the nanocrystals. 

Figure 3. Auger electron spectroscopy (AES) profiles of the coatings on the samples:  

(a) Ti-A; (b) Ti-B; (c) TNZ-C; and (d) TNZ-D (etching rate: 2 nm/min). The thickness of 

the TiO2 anatase is indicated in each case. 

 

Table 3. Coatings thickness as obtained from AES; hardness (H) and reduced modulus of 

elasticity (Er) as obtained from nano-indentation measurements. 

SAMPLE Thickness (nm) H (GPa) Er (GPa) 

Anatase-TiO2 bulk – 11.6 [36] 140 [36] (100–280 [37]) 

Ti NT – 10.7 ± 0.2 126.8 ± 1.9 

Ti-A 30 ± 6 10.8 ± 0.3 204.9 ± 4.9 

Ti-B 14 ± 3 14.5 ± 0.3 171.9 ± 2.6 

TNZ NT – 7.6 ± 0.1 109.5 ± 1.1 

TNZ-C > 400 2.8 ± 0.1 74.6 ± 1.4 

TNZ-D 12 ± 3 8.3 ± 0.1 106.2 ± 2.0 

It is known that surface porosity has an effect on the corrosion behavior of alloys for biomedical 

applications [33] and that differences in Er are dependent on the compactness of the coatings 

themselves [34,35]. According to the literature data [36,37], the Young’s modulus and the hardness (or 

compressive yield stress) can be correlated with porosity. Accordingly, indirect information about the 
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porosity of the coatings was acquired in two different ways: (a) from the results of potentiodynamic 

analyses and (b) from the modulus of elasticity measured by nano-indentation, employing Equations (2) 

and (3), respectively (refer to experimental section). 

The calculated values of the coating porosity from the potentiodynamic analyses are listed in Table 2. 

The trend of the values was in agreement with the visual feedback from Figure 1. Nano-indentation 

measurements on such prepared samples, and consequently calculations using Equation (3), were very 

challenging since several factors (i.e., indentation size effect, surface roughness, nanostructured 

surface, corrective factors, etc.) need to be taken into account in order to avoid errors as much as 

possible and interpret the data correctly. So, although a rather small force was applied (0.3 mN), the 

displacement, or indentation depth, resulted in ≥20 nm in all samples (Figure 4). Bückle’s rule predicts 

no influence on the mechanical properties if the indentation depth is 1/10 of the overall film thickness. 

This implies that the measured mechanical properties in most of the coatings investigated here (in fact, 

all except the coating TNZ-C) were influenced, to a certain extent, by the contribution from the metallic 

bulk. The reduced Young’s modulus (Er) of the anatase coatings on the Ti appeared much more similar 

to the values reported in the literature for the anatase TiO2 (100–280 GPa) than for the ones reported on 

bulk rutile TiO2, which range between 340 and 380 GPa [34,38]. The Er values are significantly higher 

than those reported for the non-treated annealed titanium metal (120 GPa) [39]. 

Figure 4. Representative load-displacement (P-h) nano-indentation curves (Pmax = 0.3 mN) 

of: (a) samples Ti NT and Ti-A; (b) TNZ NT and TNZ-C; (c), (d) SEM images at different 

magnifications of the indent for sample TNZ-C. 

 

As expected, the hardness relative to Ti grade 2 (hexagonal close-packed α-phase) was higher than 

for Ti13Nb13Zr (body-centered cubic β-phase) (Table 3). This is due to the fact that the hexagonal cell 

is more anisotropic, and so less easily deformed in certain directions (reduced number of slip 
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directions for dislocation motion). On the other hand, the more regular cubic structure possesses fewer 

constraints. As a result, the hexagonal structures (Ti samples) exhibited a higher hardness than the 

cubic ones (TNZ samples). 

Comparing the H values of the bare substrates with the HT-treated ones, several conclusions can be 

drawn. The hardness was almost unchanged for the sample Ti-A with respect to the non-treated Ti  

(Ti-NT). Conversely, samples Ti-B and TNZ-D (which are the thinnest ones, corresponding to anatase 

with the smallest crystallite sizes) showed higher H values than the bulk metallic substrates. The 

reason for this could be two-fold: first, oxide materials are typically harder than metallic ones, due to 

their ceramic nature; additionally, grain-boundary strengthening, explained by the Hall-Petch 

relationship, could also play a crucial role in the observations [38]. In terms of dislocation motion, a 

material could be made infinitely strong if the grains are made infinitely small, so that the grain 

boundaries increase in number and hinder the propagation of dislocations, which become accumulated 

at the grain boundaries, thereby increasing the hardness. 

Sample TNZ-C behaves differently. In this case, both H and Er are much lower than for the  

non-coated TNZ (Table 3) and also much lower than for the bulk anatase. This has to be ascribed to 

the occurrence of porosity (p), as observed by FEG-SEM (Figure 1c) [39,40]. In principle, taking into 

account the thickness of the coating, nano-indentation data on the sample TNZ-C are more reliable 

(Figure 4b). Actually, the smoothness/linearity of the curves suggests that the loading-unloading process 

did not cause cracking [41]. However, due to the relatively large TiO2 particle size, interparticle voids 

inevitably occur within the coating, thus lowering H and Er due to the resulting inherent porosity. The 

porosity in this sample can be estimated using Equation (3). If one takes the porosity value evaluated 

from the corrosion for sample TNZ-C (p = 27%), Equation (3) gives a value for the bulk Young’s 

modulus of 183.5 GPa, which falls well within the range of values for bulk anatase. Hence, the 

porosity assessments from the nano-indentation and corrosion measurements are consistent for this 

sample. For the other TiO2 coatings, which are very thin (Table 3), the porosity assessment from the 

nano-indentation curves does not make much sense since the Er values are definitely influenced by the 

mechanical properties of the underlying metallic substrate. Namely, the reduction of Er with respect to 

the bulk anatase can be both due to the influence of porosity and the lower Young’s modulus of the 

metallic alloy as compared to the bulk TiO2. 

3. Experimental Section 

Commercially pure titanium (CP Ti grade 2, ASTM F67, Pro-titanium, Baoji, China) and 

commercial Ti-β-alloy containing niobium and zirconium (Ti13Nb13Zr, ASTM F1713-08, Xi’an Saite 

Metal Materials Development Co., Xi’an, China) in the form of discs with a diameter of 15 mm, 

thickness of 2 mm, and grooves of width 0.03 mm after machining were used as the starting material 

for the hydrothermal synthesis. The substrates were cleaned twice in de-ionized water and once in 

absolute ethanol (EtOH, Carlo Erba, Milan, Italy) for 10 min each in an ultrasound bath (Sonorex, 

Bandelin Electronic, Berlin, Germany). The growth of the TiO2 anatase nanostructured films was 

performed by hydrothermal synthesis, using aqueous suspensions containing different titanium ions 

sources: one set of samples was prepared from aqueous suspensions of titanium dioxide anatase 

powder (μm-TiO2, 0.5 μm, Sigma-Aldrich Chemie GmbH, Munich, Germany) in different 
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concentrations, and, eventually, ammonium citrate (AC, Kemika, Zagreb, Croatia) was added. Another 

series was synthetized according to a simple sol-gel route, where titanium(IV) isopropoxide [Ti(iOPr)4, 

Acros Organics, Geel, Belgium] was used as a TiO2 precursor in water. Moreover, the starting slightly 

acidic pH was adjusted for some suspensions by the addition of sodium hydroxide (NaOH, Kemika, 

Zagreb, Croatia) and/or tetramethylammonium hydroxide (TMAH, Sigma-Aldrich Chemie GmbH, 

Munich, Germany), reaching a pH of around 10. Teflon vessels, half-filled with the suspensions and 

containing also the bare substrates, were placed in steel autoclaves and heated up to 24 h at 200 °C 

(APT. line, Binder GmbH, Tuttlingen, Germany). After cooling to room temperature the samples were 

cleaned like before the HT treatment and dried in air. The samples’ preparation conditions are 

summarized in Table 1. The surfaces of the non-treated titanium (Ti NT) and Ti13Nb13Zr (TNZ NT) 

alloys were polished to a mirror-like finish before the corrosion and nano-indentation experiments and 

used as references. No surface polishing was applied to the HT-treated samples. 

A field-emission-gun scanning electron microscope (FEG-SEM, Zeiss SUPRA 35VP, Carl Zeiss 

SMT, Germany and JEOL JSM 7600F, Tokyo, Japan) equipped with an energy-dispersive X-ray 

spectrometer (EDX) was used to observe the crystal morphology and to provide a rough estimate of 

the crystal dimensions. The chemical composition was estimated with the EDX, while the coating 

thickness was indirectly calculated from the profiles obtained using an Auger electron spectrometer 

(AES, PHI SAM 545 spectrometer). For the electron excitation a primary electron beam of 3 keV and 

1 μA, with a diameter of 40 μm, was used. During the depth profiling the samples were etched by two 

symmetrically inclined Ar ion beams of 1 keV. The etching rate was measured on a reference Ni/Cr 

multilayer of known thickness and it was found to be 2.0 nm/min. The concentration of the elements 

was calculated from the corresponding signals in the AES spectra using the relative sensitivity factors 

provided by the instrument producer [42]. The surface mean roughness (Sa) and the root-mean-square 

roughness (Sq) were examined with an atomic force microscope (AFM, DiDimension 3100, Veeco 

Instruments Inc., Santa Barbara, CA, USA) on 1 × 1 μm
2
 areas. 

Potentiodynamic polarization curves were recorded using a three-electrode cell configuration, with 

a platinum sheet as the counter electrode and a calomel reference electrode [SCE, +0.244 vs. normal 

hydrogen electrode (NHE)]. The samples were wrapped together with the electrode connection and 

then inserted, one by one, into the cell containing fresh Hank’s balanced salt solution (HBSS,  

Sigma-Aldrich). The solution was de-aerated with Argon flux and kept at 37.5 °C. The open-circuit 

potential (EOCP) versus time was recorded for 1800 s; after this period the system was considered 

stable. An autolab potentiostat instrument (PGSTAT 302N, Metrohm Autolab, Utrecht, Netherlands) 

was used for recording the potentiodynamic curves. In a typical experiment, the potential was swept 

from (EOCP −0.5) V to (EOCP +1.5) V at a scan rate of 0.5 mV/s. A Tafel plot extrapolation was carried 

out to calculate both the corrosion potential (Ecorr) and the corrosion-current density (Jcorr) values. For 

each sample, measurements were repeated at least twice. The corrosion rate (CR) was calculated as: 

   
          

 
 (1) 

where K is a constant that defines the units of the corrosion rate [3.272 mm/(A cm year)], EW is the 

equivalent weight (11.98 g/eq for Ti alloys) and d is the density (4.51 g/cm
3
 for CP Ti and 5.01 g/cm

3
 

for Ti13Nb13Zr [43]). 
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The mechanical properties of the thicker coatings were evaluated by nano-indentation (UMIS, 

Fischer-Cripps Laboratories, Forestville, Australia) using a Berkovich pyramid-shaped diamond tip 

and operating in the load control mode (30 s loading/20 s load holding/30 s unloading). The maximum 

applied force was 0.3 mN in order to minimize the influence of the underlying substrate. The thermal 

drift and compliance were automatically corrected by the software. The hardness (H) and the reduced 

Young’s modulus (Er) were evaluated using the method of Oliver and Pharr [44]; the presented results 

correspond to an average of a minimum of 50 indents. 

Furthermore, surface porosity fraction was estimated by both potentiodynamic polarization and  

nano-indentation measurements. In the first case the porosity (p) can be calculated using the  

following equation: 

  
    

  
  

  
      

  
 
 (2) 

where RP,S and RP are the polarization resistances of the bare substrate and the coating/substrate pair, 

respectively, ΔEcorr is the potential difference between them, and βa is the anodic Tafel coefficient of 

the substrate. 

In addition, Ramakrishan and Arunachalam’s approach was used for the porosity calculations from 

the nano-indentation measurements, based on the theory that the Young’s modulus is influenced by the 

interaction between the bulk solid material and the surface pores [45]. Thus, the porosity fraction can 

be extrapolated from the following equation: 

       

     
 

      

        
 (3) 

where Eporous is the Young’s modulus of the porous material, Ebulk is the Young’s modulus of dense 

anatase and ν is the Poisson’s ratio of the bulk material (anatase in our case), which corresponds to 

0.28, using literature data [46]. The Young’s modulus of the bulk anatase depends on the 

crystallographic direction, but it has been reported to range between 100 and 280 GPa [37,46]. 

4. Conclusions 

This study concerned the electrochemical properties in Hank’s solution of polycrystalline  

anatase-TiO2 coatings prepared by hydrothermal treatment on two different alloys used for  

bone implants, i.e., CP Ti grade 2 and Ti13Nb13Zr (TNZ). Tafel-plot extrapolations from the 

potentiodynamic curves showed a significant enhancement in the corrosion potentials for the anatase 

coatings, in comparison with the bare Ti and TNZ substrates (~0.10 V and ~0.30 V towards positive 

potentials, respectively). Moreover, the HT-Ti also exhibited lower corrosion-current densities and 

corrosion rates, indicating a longer implant lifetime. These results were correlated with the effects of 

the crystal morphology, coating thickness and porosity. Moreover, a general increase in the surface 

hardness and the Young’s modulus was observed for the coatings, due to the harder nature of the 

ceramic anatase, as compared to the Ti-based metallic alloys. However, the small thickness of the 

coatings made the measurements using the nano-indentation technique particularly challenging. To 

sum up, hydrothermally grown anatase coatings conferred improved corrosion resistance on the bare 

substrates, thanks to an appropriate morphology, coating thickness and porosity. Such coatings are 



Materials 2014, 7 192 

 

 

expected to act as an efficient protective interlayer between the implant and the surrounding tissues 

and, consequently, a prolongation of the device’s lifetime in vivo is expected. 
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