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Abstract: This article aims to improve one of the newest energy transition measures—the World

Economic Forum WEF Energy Transition Index (ETI) and find its driving forces. This paper proposes

a new approach to correct the ETI structure, i.e., sensitivity analysis, which allows assessing the

accuracy of variable weights. Moreover, the novelty of the paper is the use the spatial error models

to estimate determinants of the energy transition on different continents. The results show that

ETI is unbalanced and includes many variables of marginal importance for the shape of the final

ranking. The variables with the highest weights in ETI did not turn out to be its most important

determinants, which means that they differentiate the analysed countries well; nonetheless, they

do not have sufficient properties of approximating the values of the ETI components. The most

important components of ETI (with the highest information load) belong to the CO2 emissions per

capita, the innovative business environment, household electricity prices, or renewable capacity

buildout. Moreover, we identified the clustering of both ETI and its two main pillars in Europe, which

is not observed in America and Asia. The identified positive spatial effects showing that European

countries need much deeper cooperation to reach a successful energy transition.

Keywords: energy transition index; energy transition; composite indicators; sensitivity analysis;

spatial error model

1. Introduction

‘Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less’ Maria Skłodowska-Curie.

Energy is a crucial input in each production process and a key source of economic
growth. In the economic literature, a well-known and empirically confirmed feedback
hypothesis shows that energy consumption and economic growth have a bidirectional
relationship, i.e., energy consumption leads to economic growth, and economic growth
leads to a rise in energy consumption [1–3]. The latest analyses also indicate the positive
impact of renewable energy on economic growth and vice versa, both in developed and
developing countries [4,5]. As the average annual growth rate in the world economy in
the last decade was around 3.5% (excluding the pandemic period), an increasing energy
demand is observed, regardless of energy source [6]. Additionally, the world’s population
is projected to grow by around two billion over the next two decades, and the standard of
living is increasing significantly in India and China. Due to the above, energy generation is
expected to rise by 49 per cent by 2040 [7]. The shrinking of natural resources and world
energy production based on fossil fuels (84.2% in 2019) make the energy transition process
one of the most significant challenges faced by the global economy [8].

In this article, we explore the energy transition process. The global energy system is
currently undergoing a transformation, driven by technological innovation and geopolitical
developments. It is accompanied by the global dimensions of energy trade and the urgency
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of climate change, which makes the current energy transition crucial for the economic
growth of many economies. The term ‘energy transition’ refers to the shift in energy
generation and consumption methods, i.e., generating energy in ways that reduce CO2

emissions and overall energy consumption, primarily through improved efficiency. In the
literature, we can find many definitions of energy transition [9–12], but simultaneously
we observe the consensus on looking at this phenomenon more broadly, considering its
socioeconomic and political aspects [13]. We understand the energy transition in a broad
sense, as Strunz [14] proposes, as a shift from a fossil-nuclear-powered energy system to
one powered by renewable energy sources, including shifts across related technological,
political, and economic structures. The importance of energy transition for many economies
is proven by the inclusion of access to affordable and clean energy as one of the 17 global
goals that make up the 2030 Agenda for Sustainable Development [15]. It forces economists
to face the difficult task of identifying the factors, which support the energy transition and
finding a proper measurement for the phenomenon [16].

The above approach to defining the energy transition focuses on the process taking
place at the macro level, as the energy transition involves significant shifts in several
sectors. However, we should be aware of this approach, i.e., it ignores the different impacts
on specific stakeholders. The energy transition is a process that has both positive and
negative impacts on different communities [17–19]. Policymakers and other proponents of
new energy sources often experience positive effects of these changes in energy markets.
However, consumers are negatively affected by price effects, and some employees are
negatively affected by work disruptions [20].

Our paper concentrates on the measurement of the energy transition and improve-
ments in this area. Almost all approaches to energy transition assessment are related
to a composite index. It usually combines a wide range of energy indicators, which are
valuable tools for decision-makers, helping them see the big picture and identify areas for
improvement. Unfortunately, many energy transition indices are related to a particular
aspect of this phenomenon, i.e., the Sustainable Energy Development Index [21] related to
sustainability, the Energy Security Index [22] and the Multidimensional Energy Poverty
Index [23] to accessibility, and the World Energy Council Energy Trilemma Index [24] to
energy security. Based on the broad definition of the energy transition, we concentrate
on the Energy Transition Index (ETI), a relatively new index created by the World Eco-
nomic Forum. A distinctive feature of this index is its multifaceted nature, i.e., it combines
many aspects of energy transition from two large dimensions: energy system performance
(accessibility, security, sustainability) and a variety of indicators of transition readiness.
Additionally, the ETI considers aspects related to economic growth and development, so
it helps policymakers identify areas where the policy could be improved to speed up the
energy transition.

Our article is part of the discussions on the development and integration of different
approaches to measure energy transition and to develop a universal index. The novelty
of this paper is an attempt to propose an improvement of the most comprehensive index,
which we consider the EIT, rather than creating a new one. It is the first attempt in empirical
literature to the best of our knowledge. The Energy Transition Index is a weighted average
of 40 indicators; thus, using sensitivity-based techniques, we want to determine if the
weights of individual variables accurately represent each factor’s purported importance.
We also examine the architecture of the index for coherence or consistency. In addition,
it will aid in determining whether the index is capable of detecting differences in energy
transition between countries. Finally, our analysis will propose a new ETI composition,
which will better reflect the changes in the energy transformation of economies.

Additionally, we think that the energy transition process cannot be fully understood
without considering its spatial implications. The existing measures of energy transfor-
mation do not take them into account, although the first attempts at conceptualising the
spatial dimensions of energy transitions are observed [25–28]. In the literature, there are
few studies on the effects of economic growth and the use of renewable energy and natural
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gas on CO2 emissions that take into account the spatial effects in their modeling [29,30].
The novelty of our paper will be to check whether the spatial effects are important in the
model explaining the ETI volatility. To fill the gap, we study the spatial dependences of the
Energy Transition Index using measures of global spatial autocorrelation. Furthermore, we
employ spatial error models (SEMs) to analyse the drivers of energy transition indicators,
which turned out to be characterised by spatial dependence.

It turned out that the weights proposed by the WEF do not fully reflect the real
importance of the individual components of the ETI. They are especially overestimated
for: RISE (Regulatory indicators for sustainable energy) access, quality of transportation
infrastructure, or share of global fossil-fuel reserves, which means that those variables
could, in principle, be removed from the index without causing significant differences
in the final ranking. On the other hand, the weights for CO2 per capita and per TPES
(total primary energy supply (kg/GJ))or renewable capacity buildout turned out to have
underestimated weights. Moreover, the energy transition phenomenon is characterised by
spatial clustering in Europe, while in the other analysed continents, it was rather random.

The contribution of our paper is to describe the ETI methodology with two main
dimensions and 23 individual indicators to show how countries can track their progress
in energy transmission and benchmark themselves against other economies. In addition,
we discuss the ETI robustness assessment as a necessary step in future ETI reconstruc-
tion/modification and propose the optimization procedure of the weights that allows
improving the accuracy of the variables. Finally, we would like to draw attention to an
overlooked aspect in the economic literature, i.e., the energy transition is a spatial process
and without considering this aspect, we cannot achieve an effective energy transition.

The paper is organised as follows. Section 2 provides an overview of the Energy
Transition Index composition and methodology. Section 3 describes the methodology of the
present analysis, with a particular emphasis on sensitivity analysis and spatial modelling.
Section 4 contains the results, and the last section is a conclusion.

2. Energy Transition Index—Composition and Methodology

In 2013, the World Economic Forum (WEF) created the Energy Architecture Perfor-
mance Index (EAPI), which aimed to help decision-makers better understand energy
systems and assess the efficiency of energy architecture at the country level. Unfortunately,
EAPI failed to foster a better understanding of the drivers and bottlenecks in national
energy systems to make potential changes. This is why the WEF decided to introduce
a new measure, the Energy Transition Index (ETI), which aims to help policymakers and
companies navigate a successful energy transition path. The WEF offers a very compre-
hensive approach to measuring energy transition, assuming that the diverse components
inside the system and their interdependencies with features outside of the energy sector
contribute to the complexity of the energy transition [14].

The ETI is a composite index based on 40 indicators, which assesses 115 economies
on their energy systems’ current performance [14]. In 2018, these countries accounted
for more than 98 per cent of global GDP and carbon emissions from the global energy
system, approximately 90% of the worldwide population, and about 60% of people without
access to electricity [31]. To build a reliable index, the WEF follows several rules of the data
selection process, i.e., the index includes only output data instead of projections, data from
reputable institutions, the best measure available, the given constraints, and the data comes
from the same providers on an annual basis and includes sufficient global coverage [32].
Furthermore, each indicator before the aggregation process is arithmetically scaled between
the minimum and maximum threshold values and standardised on a scale of 0 to 100 for
aggregation (with a target value of 100 per cent) [14].

The ETI consists of two equally weighted indices: system performance and transition
readiness score (Figure 1).
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Figure 1. The Main Dimensions of the Energy Transition Index. Reproduced with Figure 1. The Main Dimensions of the Energy Transition Index. Reproduced with pemission from [14], World Economic

Forum, 2019.

The system performance score assessment uses 17 indicators showing how well
a country’s energy system supports three main objectives: economic development and
growth, energy access and security, and environmental sustainability. To score and rank the
performance of each country’s energy system chosen by the WEF, the individual indicators
are aggregated into three subscores, one for each of the imperatives (Figure 1).

Economic development and growth measures to what degree the energy system
contributes to, rather than hinders, economic development and growth. Environmental
sustainability refers to how well the energy infrastructure reduces negative environmental
externalities. Finally, access to energy and security measures the degree to which the
energy infrastructure jeopardises energy security and whether all population members
have enough access to energy. The system performance score is calculated by averaging
the three groups’ subscores.

In turn, the transition readiness score measures the readiness of a country to transi-
tion to secure, sustainable, affordable, and inclusive energy systems [14]. Assessment of
transition readiness is based on 23 indicators aggregated into six categories: capital and
investment; regulation and political commitment; institutions and governance; infrastruc-
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ture and innovative business environment; human capital and consumer participation; and
energy system structure (Figure 1).

Analysing the WEF methodology of the ETI, we pay special attention to the weighting
system. In the WEF reports, we did not find any substantive justification for the adopted
importance of the individual indicators. The WEF applies the method of equal weights to
ensure high international comparability of ETI. This weighting approach is used in some
popular indices, such as the Doing Business Ranking or the Human Development Index,
and is broadly discussed in the literature [33–35]. In our opinion, the arbitrary adoption
of such a weighting system is the ETI’s greatest weakness, so we want to determine
whether the weights of individual variables accurately reflect the supposed importance
of each factor.

3. Materials and Methods

In this paper, the 2019 ETI sub-component data published by the WEF [36] were used
for empirical analysis, both in the sensitivity analysis and the spatial modelling. In addition,
the study also uses data from the World Bank on the general condition of the economies
under investigation. The sensitivity-based analysis was prepared in Matlab based on the
CIAO package [37], while the spatial studies were carried out in the Geoda and ArcGIS
pro software.

3.1. Sensitivity-Based Approach

The previous section describes the structure of the Energy Transition Index. Similar
to most composite indicators, there are suspicions that this one also has drawbacks. In
many cases, the problem concerns an overly trivial approach to the weights assigned to
particular diagnostic variables [37–43]. We start our investigation by challenging the ETI’s
discriminatory properties by applying a consistency analysis based on a sensitivity analysis
(SA). In our opinion, one of the best tools for assessing the consistency of any composite
indicator is a sensitivity-based approach, which makes it possible to determine whether
the assigned weights reflect the significance of each component. The coherence of the
measure with its methodology is tested by considering variances and correlations among
diagnostic variables. The Energy Transition Index is an additive weighted average of
n-normalised variables xi:

yj =
d

∑
i=1

wixji, j = 1, 2, . . . , d; i = 1, 2, . . . , n, (1)

where: yj—the value of the composite indicator for the j-th item (country), xji—the nor-
malised value of the i-th variable in the j-th item, and wi—the weight assigned to the i-th
variable (∑n

i=1 wi = 1 and wi > 0).
Thus, the impact of xi on y may be isolated and determined by the statistical measure

of global variance-based sensitivity—the first-order sensitivity index [44–48]:

Si ≡ η2
i =

Vxi
(Ex∼i(y|xi))

V(y)
, (2)

where: Si—the first-order sensitivity measure, x∼i—the vector containing all variables
except xi, Ex∼i(y|xi)—the expected value of y at a given value of xi with the exception
taken over x∼i, and V(y)—the unconditional variance of y. In our study, Ex∼i(y|xi), is
estimated via a non-linear regression fit using penalized splines—a technique used in
so-called scatterplot smoothing [49]. This measure can be used as a measure of importance
as it helps to define ‘the expected fractional reduction in variance of the composite indicator
that would be obtained if that variable could be fixed’ [47]. By comparing the Si values for
the variables a and b with the weights assigned to these variables, it can be determined
whether the index reflects the assumptions of its architects. The Si measure provides
information about the non-compliance with the assumptions of a composite indicator
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when: (i) Sa 6= Sb while the index designers argue that the variables a and b have equal
importance (if, for example, the index designer assumes that variables a and b should have
weights 0.1 and Sa = 0.6 while Sb = 0.35; that means the weights given to the variables
do not reflect their actual importance); (ii) Sb > Sa while the index designers argue that
variable a is more important than variable b; (iii) Sa = 0, meaning that variable a and the
final rank are not associated at all (the variable can be considered ‘silent’ as it has virtually
no effect on the final values of the composite indicator); (iv) Sa = 1, meaning that there is
a perfect knowledge of final rank knowing just the distribution of variable a; and (v) Si < 0
indicating conceptual problems with the indicator. It is, therefore, an excellent tool to spot
the discrepancies between the initial assumptions and the final product—in this case, the
ranking based on the ETI value. Another advantage of Si as a measure of goodness of CI is
the possibility of its decomposition into a correlated and non-correlated part:

Si = Su
i + Sc

i (3)

where: Si—the first-order sensitivity measure, Su
i —the uncorrelated contribution, which

is the unique variability that can only be explained by xi, and Sc
i —the correlated contri-

bution, which is the variability caused by all variables associated with xi. Therefore, it
is possible to indicate to what extent the significance of the given variable results from
the information transferred by it and the extent to which it results from a correlation with
other diagnostic variables Sc

i ≈ Si. If a variable has high Sc
a value and a low Su

s value, it
means that it does not contribute additional information on its own, but only duplicates the
information provided by other variables. In such case, variable a can be eliminated from
the set of diagnostic variables, allowing for the reduction in the set of the input variables,
simplifying the calculations and reducing the cost and time of data acquisition. Knowing
Si, the uncorrelated part Su

i can be easily estimated by performing the multivariate linear
regression of xi on x∼i and finding the residuals [48]:

ẑi = xi − x̂i = xi −

(
β0 +

d

∑
l 6=i

β̂l xi

)
(4)

where: ẑi—the residuals of a regression of xi on x∼i, β0—the y-intercept from multivariate
linear regression, β̂l—the coefficient from multivariate linear regression. Next, the non-
linear regression of y to fitted ẑi values are used to estimate Su

i :

Su
i =

∑
n
j=1

(
ŷ
(∼i)
j − y(∼i)

)2

∑
n
j=1

(
yj − y

)2
(5)

where Su
i —the uncorrelated contribution, ŷ

(∼i)
j —the non-linear regression fitted values,

y(∼i)—the average value of ŷ
(∼i)
j , yj—the composite indicator value in the j-th item, and

y—the average value of yj. With knowledge of the uncorrelated contribution, it is possible
to compute the correlated part Sc

i :
Sc

i = Si − Su
i (6)

If both the uncorrelated (5) and correlated (6) contributions are known, it is possible
to apply the following optimisation algorithm to adjust the weights:

S̃i =
Si

∑
n
i=1 Si

(7)
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where: S̃i—the normalised correlation ratio of xi. This is done because it makes the
correlation ratio directly comparable with the weights of the composite indicator. Thus,
optimal weights can be computed as:

wopt = argminw ∑
d

i=1

(
S̃∗

i − S̃i(w)
)2

, (8)

where: S̃∗
i —the target normalised correlation ratio, i.e., a situation in which initial weights

reflect the intended importance of each indicator S̃∗
i = wi, w—the set of weights w = {wi}

d
i=1.

The optimisation process was carried out using the Nelder–Mead simplex method [50].
The optimal weights were selected so that they sum up to one and are non-negative:

∑
n
i=1 wopti = 1 and wopti > 0. Adjusting the weights is one of the possible solutions

to weight inadequacy to the constructors’ assumptions. As an alternative, one can also
consider changing the aggregation method (e.g., from arithmetic to geometric mean) or
changing the components in sub-pillars and then repeat the entire procedure. Therefore, it
seems that the most convenient solution is to perform the weight optimization task.

Figure 2 illustrates the steps of the analysis carried out at this stage of the investigation.

𝑆ሚ௜—the 𝑥௜
𝑤௢௣௧ = argmin௪ ∑ ቀ𝑆ሚ௜∗ − 𝑆ሚ௜(𝑤)ቁଶ ,ௗ௜ୀଵ𝑆ሚ௜∗ 𝑆ሚ௜∗ = 𝑤௜ 𝑤𝑤 = ሼ𝑤௜ሽ௜ୀଵௗ

∑ 𝑤௢௣௧௜ = 1௡௜ୀଵ 𝑤௢௣௧௜ > 0

Figure 2. Composite indicator’s compliance testing procedure.

3.2. Spatial Modelling

The second part of the study was devoted to analysing the spatial distribution of the
ETI and its determinants; there is a suspicion that the discussed variables may tend toward
spatial clustering. The central premise for this approach is Tobler’s first law of geography,
claiming that ‘Everything is related to everything else, but near things are more related than
distant things’ [51]. Moreover, when using geographical items in the analysis, assuming, in
advance, their independence is a mistake because interconnections between neighbouring
objects may occur [52]. In addition, the diversification of economic phenomena in an
established group of regions is highly affected by the spatial conditions [53]. Finally,
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according to Griffith [54], it is better to use the most straightforward weight matrix than
assume independence in advance.

In the first step of our analysis, we determined the Global Moran I statistics to check
whether spatial autocorrelation applies to the analysed variable [55,56]:

I =
n

∑i ∑j wij
·
∑

n
i=1 ∑

n
j=1(xi − x)

(
xj − x

)

∑
n
i=1(xi − x)2

(i = 1, . . . , n; j = 1, . . . , n) (9)

where: I—the value of Moran’s I statistics, n—the number of observations (countries),
wij—the spatial weight matrix, xi, xj—the value of the analysed variable in i-th and j-th
item, and x—the average value of the analysed variable.

In our analysis, wij is a first-order queen contiguity matrix, meaning that items are
considered as neighbouring when they share a border:

wij =





1, bnd(i) ∩ bnd(j) 6= ∅

0, bnd(i) ∩ bnd(j) = ∅

0, i = j

(10)

The matrix size is equal to the number of analysed items (in our case, countries) and
expresses the neighbour structure between the observations:

wij =




w11 w12 . . . w1n

w21 w22 . . . w2n
...

...
...

...
wn1 wn2 · · · wnn


 (11)

The spatial weight (11) was row-standardised according to the following formula [56]:

wij(s) =
wij

∑j wij
. (12)

First, the multiple regression model without spatial effect was estimated using ordi-
nary least square estimation:

Then, we checked whether the Moran’s I statistic in residuals of the standard regres-
sion model indicates the existence of spatial autocorrelation. If so, we checked using the
Lagrange Multiplier test for lag LM(lag) and error LM(error) models (both classic and
robust versions) [57] to indicate the type of spatial autocorrelation [58]:

The null hypothesis in LM(lag) test is as follows H0 : ρ = 0 (no spatial dependence),
and the test statistics is given by:

LM(lag) =

(
e′wy

e′en−1

)2
1

H
, (13)

where: e—error, w—the weight matrix, y—the dependent variable, e′en−1—error variance.
The null hypothesis in the LM(error) test is as follows H0 : λ = 0 (no spatial depen-

dence), and the test statistics are given by:

LM(error) =

(
e′we

e′en−1

)2
1

tr[w′w + w2]
(14)

where: e—error, w—the weight matrix, e′en−1—error variance, tr—the matrix trace operator.
The Spatial Error Model (SEM) should be chosen when: (i) LM(error) is significant,

and LM(lag) is not, (ii) if the robust version of LM(error) is significant and robust LM(lag)
is not, (iii) in the case that both robust tests are significant, the lower p-value indicates the
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appropriate model, thus: p[LM(error)] < p[LM(lag)]. The spatial lag model (SAR) should
be chosen in the converse cases.

In the SAR model, the dependent variable in the i-th item is affected by the indepen-
dent variables in both i-th and j-th objects [59]:

yi = ρ
n

∑
j=1

wijyj +
Q

∑
q=1

Xiqβq + εi (15)

where: yi—the dependent variable in the i-th item, ρ—the spatial autoregression parameter,
wij—the spatial weight matrix, Xiq—the independent variable matrix, βq—the egression

parameters, εi—the residuals ε ∼ N
(
0, σ2 I

)
.

While in the case of the SEM model, the error terms across different spatial units are
correlated. The most common specification is a first-order process given by [59]:

yi =
Q

∑
q=1

Xiqβq + εi (16)

where:
εi = λwijε j + ui (17)

and where: λ—the autoregressive parameter, ui—the random error term u ∼ N
(
0, σ2 I

)
.

Table 1 presents variables used in statistical modelling.

Table 1. Variables used in the investigation.

Variable Description

ETI The logarithm of the Energy Transition Index value
HEP The logarithm of household electricity prices (PPP USDc/kWh)
CO2 The logarithm of CO2 emissions per capita (tonnes per capita)
RCB The logarithm of renewable capacity buildout (% of installed capacity)
JLCI The logarithm of share of renewable energy jobs as part of countries total workforce
POP The logarithm of population size
UR The logarithm of urban population as % of the total population
EM The logarithm of employment in manufacturing as % of total employment

4. Results

4.1. Optimisation of ETI Weights

At the first step of our analysis, we investigated the correlation between ETI and its
six subindices (Figure 3).

It appears that most of the subindices are positively correlated (deep red) with each
other, but the correlation with the final ETI does not exist (white background). Moreover,
the ESS subindex (Energy System Structure) is negatively correlated with all others (deep
blue). Perhaps it results from the fact that two variables included in this subindex (share of
global fossil-fuel reserves and share of electricity from coal generation) are desitmulants,
i.e. the lower the value, the better from the point of view of the analysed phenomenon.
Thus, the presence of a negative correlation between the subindices and a weak correlation
with the final CI may be a symptom of ETI construction drawbacks. Moreover, a strong
correlation between the remaining subindices may indicate that the significance of the given
variable results from its correlation with others, not from the information load contained
in it, which means that information provided by a given variable can be inferred from
another variable [60].

D
o

w
n

lo
a

d
e

d
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Energies 2021, 14, 3802 10 of 22

𝑆௜ 𝑆௜௨ 𝑆௜௖

𝑺𝒊 𝑺𝒊𝒄

Figure 3. Correlation between the ETI and its subindices.

We applied a top-down approach—starting from checking the coherence of the ETI’s
subindices and ending up with individual variables within each subindex. Figure 4
presents the estimated values of the first-order sensitivity measures for System Performance
(an analogous analysis was performed for all subindices and ETI).
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Figure 4. Penalised spline estimates of Si (entire bar) broken down into Su
i (blue bar) and Sc

i

(green or yellow bar)* or ETI’s System Performance. EGD—Economic Development and Growth,

ES—Environmental Sustainability, EAS—Energy Access and Security.

When analysing the data contained in Figure 4, it can be seen that similar estimates
were obtained with both the linear (green bar) and non-linear estimator (yellow bar).
A slightly more significant discrepancy occurred in the case of ES (Environmental Sustain-
ability). ES is also the only subindex in which the value of the entire Si measure is equal
to the value of its correlated part Sc

i , i.e. ES itself does not carry additional information
on the development of System Performance. In other cases, the share of the uncorre-
lated part is 50% for EDG and 74% for EAS. The lack of negative values, which indicates
a conceptual problem with the analysed indicator, is a positive phenomenon [49]. A high
proportion of the correlated parts in some subindices leads to the assumption that ETI is
volatile, as the correlation between subindices commands the influence—not their assigned
weights. Therefore, we applied the optimisation procedure expressed by Formula (9),
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which allowed us to obtain weights that show the real influence of a given variable on
ETI and its components. Some of the results are presented in Table 2; all are available in
additional materials.

Table 2. Original and optimised weight for chosen ETI components.

Dimension Original Weight Optimal Weight Direction

System performance 0.50 0.5249 Underestimated
Environmental
sustainability

0.33 0.3612 Underestimated

Particular matter
concentration

0.25 0.0833 Overestimated

Energy intensity 0.25 0.0260 Overestimated
CO2 emission per capita 0.25 0.5075 Underestimated
CO2 emission per TPES 0.25 0.3779 Underestimated

When analysing the contents of Table 2, it can be noted that the actual influence of
the selected variables in many cases does not correspond to the weights given by the WEF.
This is particularly noticeable in the case of particular matter concentration and energy
intensity, whose influence is greatly overestimated when, in practice, the meaning of the
former is slightly more than 0.02, and the latter is only 0.02. Therefore, it can be assumed
that the energy intensity variable is ‘silent’ and removing it will not significantly affect
the formation of the final ETI ranking but will only improve and simplify the calculation
process. However, it should be stressed that being ‘silent’ does not mean that a given
variable is irrelevant in the context of the country’s energy transition. It only means that
in the way that the ETI was constructed, this variable is either blurred or overwhelmed
by other variables. To highlight such a variable, it would be necessary to change the
aggregation formula or completely rebuild the composite indicator. However, in the
present shape of the CI, it is practically unnoticeable.

Figures 5 and 6 present the distribution of the original and optimised values of
the ETI. As can be seen, there is no significant difference between them. Of course, the
order of magnitude and the values taken by the measure have changed because it results
from applying different weights. Nevertheless, the pattern of countries has not changed
significantly, i.e., countries with low original ETI values (bright green in Figure 5) are
also countries with low modified ETI values (bright green in Figure 6). The situation is
similar for the countries with the highest ETI values (dark green in Figures 5 and 6). Thus,
despite changes in the value of the measure itself, the hierarchy of countries according
to its value is converged. This is also confirmed by the value of Kendall’s tau coefficient
τ = 0.79 (p < 0.0004) calculated for the ranking of countries. The value of the Kendall
tau coefficient indicates a significant similarity, i.e., there have been some changes in the
linear order of the country, but the possible shifts in the ranking are not substantial. Table 3
presents the top five and bottom five countries in terms of the original and modified ETI
values. When analyzing the data contained in this table, it can be noticed that essentially
the same countries occupy places in both rankings. Even if there are some differences, they
are within countries with a similar level of development of energy markets. This means
that the structural changes caused by adjusting the weights to their actual significance do
not contribute to considerable changes in the linear orderings of countries due to their
energy transition achievements.
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Figure 5. Distribution of original Energy Transition Index values.

 

Figure 6. Distribution of optimised Energy Transition Index values.

Table 3. Top and bottom five countries according to original and optimised ETI.

Top Countries Bottom Countries

Original ETI Optimised ETI Original ETI Optimised ETI

Sweden Sweden Mozambique Benin
Switzerland Finland Venezuela Mozambique

Norway Switzerland Zimbabwe Botswana
Finland Norway South Africa Zimbabwe

Denmark United States Haiti Haiti

The sensitivity-based analysis also allowed us to select diagnostic variables for econo-
metric models. Table 4 lists five variables of the highest and the lowest importance.
Knowing the optimal weights, we consulted the new (optimised) ETI version. In addition,
the critical variables (i.e., with the highest weights) were used in the econometric modelling
of energy transition components.
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Table 4. The most and least significant variables of the Energy Transition Index.

Most Significant Least Significant

CO2 per capita RISE access score
Household electricity prices Quality of transportation infrastructure

CO2 per TPES Energy Intensity
Renewable capacity buildout Share of global fossil-fuel reserves
Jobs in low-carbon industries Transparency

4.2. Spatial Models

Econometric modelling began with checking whether spatial relationships can be
found in the dependent variables. The analysis was carried out separately for each conti-
nent; however, due to the insufficient number of observations and their large dispersion on
the African continent, African countries were not included (ETI publishes data for approx.
40% of African countries).

Figure 7 presents the distribution of Moran I statistics for original ETI conducted for
European countries, and Figure 8 shows the cluster map in Europe.

Figure 7. Moran’s I distribution for ETI in Europe.

When analysing its contents, it can be noticed that the values of the Moran I statistics
are positive and statistically significant, which proves that European countries are clustered;
in the case of Asia, such clustering did not take place (Figures 9 and 10), and the ETI values
are distributed randomly. An analogous analysis was performed for the ETI subindices
(System Performance and Transition Readiness) for each continent, using both the original
and optimised versions.
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Figure 8. ETI cluster map in Europe.

Figure 9. Moran’s I distribution for ETI in North and South America.
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Figure 10. ETI cluster map in North and South America.

In each case, it transpired that clustering occurs in European countries. It was not
observed in Asia and only once (in the case of SP) in America. It may, therefore, prove
that the effects of a jointly conducted climate policy are noticeable in Europe. Given that,
in most cases, the Moran I statistics were statistically significant, the models indicating
the factors influencing the Energy Transition Index, System Performance, and Transition
Readiness (in both new and old versions) were estimated, using as diagnostic variables
those with the highest weights according to the sensitivity-based analysis and additional
variables indicating the degree of development of analysed countries (Table 5).

Table 5. Estimation results for ETI (new and optimised) for different continents.

Variable
Original ETI Optimal ETI

America Asia Europe America Asia Europe

λ - - 0.659 (0.0001) - - 0.769

HEP 0.088 (0.086) 0.014 (0.478) −0.015 (0.655) 0.013 (0.741) 0.020 (0.220) −0.045 (0.087)

CO2 0.047 (0.241) 0.001 (0.981) −0.055 (0.106) 0.109 (0.003) 0.086 (0.009) 0.014 (0.601)

RCB −0.149 (0.798) −0.324 (0.442) 0.331 (0.456) 0.234 (0.610) −0.489 (0.114) 0.028 (0.933)

JLCI 4.337 (0.148) 5.665 (0.153) 2.217 (0.055) 3.318 (0.159) 4.321 (0.161) 2.477 (0.006)

POP −0.013 (0.626) −0.005 (0.767) −0.003 (0.808) 0.013 (0.541) 0.016 (0.261) 0.005 (0.632)

UR 0.280 (0.148) 0.058 (0.532) 0.065 (0.524) 0.131 (0.379) −0.033 (0.649) 0.100 (0.218)

EM 0.269 (0.040) −0.135 (0.178) −0.110 (0.170) 0.028 (0.767) −0.101 (0.191) −0.005 (0.930)

R2 0.602 0.258 0.642 0.742 0.621 0.781
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Table 5. Cont.

Variable
Original ETI Optimal ETI

America Asia Europe America Asia Europe

Moran’s I (error) (0.118) (0.617) (0.044) (0.128) (0.491) (0.012)

LM (lag) (0.226) (0.182) (0.117) (0.882) (0.483) (0.056)

LM (lag) robust (0.270) (0.180) (0.089) (0.857) (0.369) (0.566)

LM (error) (0.345) (0.896) (0.073) (0.369) (0.388) (0.002)

LM (error) robust (0.422) (0.805) (0.047) (0.366) (0.303) (0.011)

Constant calculated but not reported; p-value is given in parentheses.

If the Moran statistics did not show spatial autocorrelation in the residues, the OLS
multiple regression models were used; otherwise, the LM tests indicated the validity of
SEM models; the SAR model was not pointed out in any case. The results of the estimates
are presented in Tables 5–7. In addition, for the Energy Transition Index in Europe and
America, the distribution of residuals from the model are shown in Figures 11 and 12.

Table 6. Estimation results for system performance (new and optimised) for different continents.

Variable
Original SP Optimal SP

America Asia Europe America Asia Europe

λ 0.617 (0.001) - 0.563 (0.0001) - - 0.572 (0.0001)

HEP 0.043 (0.232) 0.028 (0.288) −0.009 (0.812) −0.114 (0.083) 0.038 (0.146) −0.046 (0.276)

CO2 −0.024 (0.538) 0.026 (0.586) −0.081 (0.021) 0.063 (0.220) 0.199 (0.0001) 0.022 (0.600)

RCB −0.317 (0.502) −0.690 (0.186) −0.110 (0.814) −0.380 (0.611) −0.311 (0.548) −0.813 (0.140)

JLCI 2.226 (0.301) 3.537 (0.456) 1.293 (0.274) 1.971 (0.597) 0.100 (0.983) 0.279 (0.841)

POP −0.015 (0.520) −0.001 (0.985) 0.004 (0.751) −0.007 (0.847) 0.012 (0.572) 0.0126 (0.439)

UR 0.344 (0.030) 0.011 (0.924) 0.083 (0.433) 0.422 (0.093) −0.183 (0.116) 0.234 (0.061)

EM 0.356 (0.004) −0.214 (0.082) −0.144 (0.084) −0.060 (0.703) −0.194 (0.116) 0.017 (0.864)

R2 0.722 0.254 0.518 0.682 0.598 0.549

Moran’s I (error) (0.019) (0.133) (0.047) (0.371) (0.278) (0.004)

LM (lag) (0.378) (0.408) (0.207) (0.272) (0.722) (0.023)

LM (lag) robust (0.495) (0.364) (0.120) (0.275) (0.815) (0.187)

LM (error) (0.036) (0.331) (0.093) (0.811) (0.535) (0.008)

LM(error) robust (0.160) (0.298) (0.049) (0.837) (0.576) (0.060)

Constant calculated but not reported; p-value is given in parentheses.

Table 7. Estimation results for transition readiness (new and optimised) for different continents.

Variable
Original TR Optimal TR

America Asia Europe America Asia Europe

λ - - 0.670 (0.0001) - - 0.806 (0.0001)

HEP 0.170 (0.005) 0.001 (0.946) −0.019 (0.622) 0.101 (0.060) 0.013 0.011 (0.118)

CO2 0.105 (0.021) −0.033 (0.432) −0.022 (0.570) 0.136 (0.004) 0.038 (0.447) 0.424 (0.645)

RCB 0.058 (0.925) 0.112 (0.780) 0.847 (0.087) 0.312 (0.604) −0.531 (0.249) 3.611 (0.173)

JLCI 4.775 (0.139) 8.043 (0.059) 3.577 (0.006) 4.266 (0.166) 6.172 (0.136) 0.001 (0.0001)

POP −0.016 (0.578) −0.011 (0.554) −0.012 (0.443) 0.017 (0.526) 0.017 (0.065) 0.058 (0.911)
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Table 7. Cont.

Variable
Original TR Optimal TR

America Asia Europe America Asia Europe

UR 0.124 (0.538) 0.124 (0.209) 0.088 (0.421) 0.021 (0.912) 0.035 (0.256) −0.016 (0.453)

EM 0.189 (0.162) −0.040 (0.691) −0.072 (0.447) 0.095 (0.453) −0.060 (0.653) 0.011 (0.788)

R2 0.631 0.274 0.712 0.652 0.536 0.822

Moran’s I (error) (0.520) (0.680) (0.092) (0.347) (0.295) (0.073)

LM (lag) (0.117) (0.218) (0.571) (0.836) (0.516) (0.218)

LM (lag) robust (0.114) (0.220) (0.485) (0.654) (0.262) (0.354)

LM (error) (0.979) (0.519) (0.094) (0.776) (0.245) (0.001)

LM(error) robust (0.849) (0.634) (0.043) (0.626) (0.139) (0.001)

Constant calculated but not reported; p-value is given in parentheses.
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Figure 11. Moran’s I distribution for residuals for the ETI OLS model in Europe.
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Figure 12. Moran’s I distribution for residuals for the ETI OLS model in North and South America.

D
o

w
n

lo
a

d
e

d
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Energies 2021, 14, 3802 18 of 22

When analysing data contained in Table 5 concerning the development of ETI in its
original and new form, it can be noticed, as mentioned before, that the spillover effect
takes place only in the case of Europe; it is not detected on other continents. Moreover,
when it comes to the variables with the highest weights, HEP (household electricity prices)
for the original ETI in America and optimised in Europe and the JLCI in both models for
Europe are statistically significant at the level of 0.1. It should be emphasised, however,
that the HEP affects America and Europe differently. Perhaps this could be explained
by the fact that rising energy prices in American households will push for a faster tran-
sition to alternative energy sources, while the process is not so fast in Europe and hence
harms energy transition. In the case of Europe, increasing the share of employment in
the renewable energy sector (JLCI) contributes to improving the ETI value. While at first
glance, comparing Figures 11 and 12, one could think that the residuals from the model
are distributed similarly, and the Moran’s I statistics in the case of America are statistically
insignificant, indicating the lack of spatial dependencies in the development of ETI values.

In terms of System Performance, as for ETI, spatial dependencies are noticeable in
Europe. In the original synthetic SP measure in America, its optimised version does not
emphasise such a feature. In the case of System Performance, the explanatory abilities
were better for those variables relating to the general development of the economy, i.e.
the degree of urbanisation positively influences SP in America (both models) and Europe
(optimised version). Employment in the industry positively impacts the SP value in
America, while it is negative in Europe and Asia (original version). On the other hand, the
degree of urbanisation positively influences the optimised SP values on the American and
European continents.

The last of the estimated models concerned the transition readiness aspect. Also, in this
case, the effect of spatial spillovers is visible only in Europe. Significant (positive) influence
is again observed in the percentage of people employed in the renewable energy sector
(JLCI), which can be explained by the intensively developing industry, which certainly
favours the broadly understood energy transition.

5. Discussion

The energy transition is one of the biggest challenges facing the global economy due
to the gradual depletion of fossil fuels and climate change. Changes in the energy sector
have implications for the entire economy. The energy transition process also involves
overcoming various challenges due to their complexity and uncertainty, especially in
the funding of green investments [61]. According to Falcone [62], the reliability and
transparency of the financial system and the management of systemic risk related to green
credit will play a crucial role in a successful energy process. In addition, the approach to
financing energy transition should be more hybridized, i.e., financial instruments should
focus on environmental issues and the inclusion of socioeconomic and governance-related
challenges. This kind of financial instrument, named green finance, enormously facilitates
and accelerates the energy transition [63].

We agree with other authors [1] that energy transition should be assessed in the
broader socioeconomic context. The energy policy should focus on a more holistic assess-
ment of the interactions between the energy transition and the broader economy. For this
reason, we focus our analysis on The Energy Transition Index, which takes into account
macroeconomic, institutional, social, and geopolitical factors that make it possible to mea-
sure an effective energy transition. Starting our analysis, we were in line with [33] that the
ETI allows, due to its complex nature, to better understand the past and current states of
energy transition worldwide.

Unfortunately, the conducted research shows that the ETI is unbalanced and includes
many variables of marginal importance for the shape of the final ranking. Many of them
concern the perception of the analysed countries in the international arena, i.e., trans-
parency, credit rating, or the rule of law. However, this group also includes such variables
as energy access regulation (RISE access score), energy per capita, or share of electricity
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from renewable generation. The most important (with the highest information load) are
CO2 emissions per capita, innovative business environment, household electricity prices,
or renewable capacity buildout. The research results complement the analysis of [64],
which draws attention to the other set of energy transition determinants: economic growth,
unemployment, and rising government debt.

Our analysis indicates the robustness evaluation should be a necessary step in ETI
construction or ETI changes. Greco et al. [33] previously stressed how far off the mark
a weighting scheme might be when assigned compared to its actual effect on the overall
index. Therefore, we strongly recommend using one of the three tools proposed by [48]
to gain better insight into the impact of the weights on the final synthetic index, i.e.,
estimating the effect of the weights applying Gaussian processes (or penalised splines),
isolating the correlation of the indicators in the index based on Pearson’s correlation ratio,
or finally, perfectly fitting the given weights to their actual importance in the final index.
Our results are consistent with [33], who link the usefulness of ETI in decision making to
the modification of variables or weights to relevance to local circumstances.

We also believe that one of the causes of ETI’s non-reliability is that it considers many
variables with different directions of impact (stimulants and destimulants), which, as
shown by the correlation analysis, indicates that there is a negative correlation between
individual elements. It is problematic, both from the technical and computational point
of view, and the political implications on the other hand. How can activities be properly
balanced if improvement in one area implies a deterioration of the situation in another?
The solution to this problem may be selecting diagnostic variables so that they have the
same effect on the analysed phenomenon. Because, in this case, even the normalisation
and unification of the direction of impact do not solve the negative correlation between
the pillars. In addition, the index can be simplified by excluding variables with a marginal
information load, which will reduce the time and cost of acquiring data and improve the
transparency of the index.

Moreover, in our study, we identified the clustering of both the ETI and its two main
pillars in Europe, which offers some policy implications. The results are in line with some
studies [65], which indicate that spillover effects in many socioeconomic phenomena can
be facilitated by spatial proximity and organisational, technological networks. Addition-
ally, the presence of a specific organisational community influences the design of certain
phenomena, notably the energy transition. Therefore, European countries should consider
their own conditions and the effects of neighbouring countries, such as CO2 emissions
per capita, innovative business environment, household electricity prices, or renewable
capacity buildout.

Our results are in line with policy priorities of the European Commission for climate
and energy in the period from 2020 to 2030 [66]. The identified positive spatial effects show
the European countries need much deeper cooperation to reach a successful energy transi-
tion, especially to drive the decarbonisation in line with the Paris Agreement, capitalise
on the economic and industrial prospects that this global transition offers, and develop
a common approach to energy stability.

We hope that our research contributes to further analyses of measuring the energy
transition. Therefore, it is advisable to review all major energy transition indicators and
improve them and identify the most important determinants of this phenomenon.

Our research plans are two-pronged. First, we intend to look in more detail at other
composite indicators of the energy transition [21–24,67] and verify them using a sensitivity-
based approach. Afterwards, based on the factors that played the most significant role in
each of the indicators, we want to create a novel composite indicator, ensuring that the
weights reflect the actual significance of the variables. Secondly, we want to develop an
applied research tool. At the moment, it is quite problematic for those who are not so
familiar with sensitivity analysis. Moreover, it does not clearly indicate when the weights
should be modified: Does a 5% difference between the actual weights and those assigned
by creators imply a change in weights? Is the level of discrepancy is acceptable? We want to
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conduct a series of simulations using the Monte Carlo method to prepare recommendations
on how to proceed in specific scenarios.
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