
American Journal of Epidemiology
Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2010.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial
License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Vol. 171, No. 10

DOI: 10.1093/aje/kwq026

Advance Access publication:

April 25, 2010

Practice of Epidemiology

Improvements in Ability to Detect Undiagnosed Diabetes by Using Information on
Family History Among Adults in the United States

Quanhe Yang*, Tiebin Liu, Rodolfo Valdez, Ramal Moonesinghe, and Muin J. Khoury

* Correspondence to Dr. Quanhe Yang, National Office of Public Health Genomics, Centers for Disease Control and Prevention,

1600 Clifton Road, Northeast, MS E61, Atlanta, GA 30333 (e-mail: qay0@cdc.gov).

Initially submitted September 16, 2009; accepted for publication January 14, 2010.

Family history is an independent risk factor for diabetes, but it is not clear howmuch adding family history to other
known risk factors would improve detection of undiagnosed diabetes in a population. Using the National Health and
Nutrition Examination Survey for 1999�2004, the authors compared logistic regression models with established
risk factors (model 1) with a model (model 2) that also included familial risk of diabetes (average, moderate, and
high). Adjusted odds ratios for undiagnosed diabetes, using average familial risk as referent, were 1.7 (95%
confidence interval (CI): 1.2, 2.5) and 3.8 (95% CI: 2.2, 6.3) for those with moderate and high familial risk, re-
spectively. Model 2 was superior to model 1 in detecting undiagnosed diabetes, as reflected by several significant
improvements, including weighted C statistics of 0.826 versus 0.842 (bootstrap P ¼ 0.001) and integrated dis-
crimination improvement of 0.012 (95%CI: 0.004, 0.030). With a risk threshold of 7.3% (sensitivity of 40% based on
model 1), adding family history would identify an additional 620,000 (95% CI: 221,100, 1,020,000) cases without
a significant change in false-positive fraction. Study findings suggest that adding family history of diabetes can
provide significant improvements in detecting undiagnosed diabetes in the US population. Further research is
needed to validate the authors’ findings.

decision analysis; logistic regression; mass screening; model fitting; nutrition surveys; risk

Abbreviations: AIC, Akaike Information Criterion; CDC, Centers for Disease Control and Prevention; CI, confidence interval;
NHANES, National Health and Nutrition Examination Survey; ROC, receiver-operating characteristic.

Family history is a consistent risk factor for many chronic
diseases of public health significance (1) and, in the past few
years, it has increasingly been discussed as a tool for pre-
venting common diseases and for promoting health (2–4). In
2005, the US Surgeon General launched a public health
campaign to enhance the public’s awareness of the impor-
tance of family history (http://www.hhs.gov/familyhistory/),
and the Centers for Disease Control and Prevention (CDC)
has initiated a public health research initiative on this topic.
The CDC’s initiative is focused primarily on several com-
mon chronic diseases, including diabetes, stroke, heart dis-
ease, and cancers (http://www.cdc.gov/genomics/famhistory
/index.htm). Yet, in spite of the increased interest in family
history as a public health tool, the clinical validity and utility
of this readily obtained risk factor have not been systemat-
ically evaluated.

In the present study, we assessed the improvements in
detecting undiagnosed diabetes among US adults that might
be obtained by using information on family history. Among
an estimated 24 million individuals with diabetes in the
United States in 2007 (based on fasting plasma glucose),
28% (6.6 million) were undiagnosed (5). One of the ratio-
nales for asking undiagnosed people about their family his-
tory is that a number of diabetes risk models/tools have
included family history of diabetes as a risk factor, with
an estimated relative risk 2–6 times that of people without
family history (6–15). Furthermore, other studies suggest
that family history might be an effective screening tool for
identifying both diabetes and undiagnosed diabetes (1, 3,
14, 16–18). Even so, none of these studies has formally
evaluated the improvements in detecting undiagnosed dia-
betes by using family history. This is important in part
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because both empirical and theoretical analyses have sug-
gested that a significant and independent risk factor for
a disease does not necessarily increase the ability of detect-
ing the disease or to enhance the discrimination ability be-
tween people with and without disease (19).

Receiver-operating characteristic (ROC) curves and the
associated C statistics are commonly used to summarize
the diagnostic accuracy of risk models and to assess the
improvements made to such models that are gained from
adding other risk factors (20). Some studies, however, have
criticized ROC curves for lacking the ability to display the
risk in a particular population and to assess the reclassifi-
cation of individuals into different risk groups (e.g., higher
risk, lower risk) (19, 21). Recently, researchers have de-
veloped several alternative methods to assess the improve-
ments made by a new marker or risk factor in risk models
(22–25). Predictiveness curves, for example, display the
distribution of risk in the population and also assess the
classification ability of additional risk factors (24). Alter-
natively, the net reclassification improvement and inte-
grated discrimination improvement integrate sensitivity,
specificity, and the information from reclassification tables
to assess improvements in risk models that include new
risk factors (23). A third method involves net benefit
curves, which might help to determine whether it would
be cost-effective to include an additional risk factor in the
risk model (25). We applied both conventional and recently
developed methods to assess the improvements made from
using family history to detect cases of undiagnosed diabe-
tes among adults. Our source of data was the National
Health and Nutrition Examination Survey (NHANES) for
1999–2004.

MATERIALS AND METHODS

NHANES is a series of stratified, multistage probability
surveys designed to obtain information on the health and
nutritional status of the civilian, noninstitutionalized US
population. From 1999, NHANES data have been collected
continuously, with every 2 years serving as 1 analytical
cycle. The data are collected by the National Center for
Health Statistics, CDC, via household interviews and phys-
ical examinations and are intended to provide estimates
that are representative of the US population. Detailed in-
formation is available elsewhere (http://www.cdc.gov/nchs/
nhanes.htm). The present study included 3 cycles (1999–
2000, 2001–2002, and 2003–2004) of samples of adults
aged �20 years who were examined in the morning after
overnight fasting (between 8 and 23 hours) and did not have
diagnosed diabetes. When analyzing combined data sets, we
found that the sampling weights must be recalculated to
produce unbiased estimates, because weights for the
1999–2000 cycle were based on population data prior to
the 2000 US Census, and weights for the other cycles were
based on the 2000 US Census. Detailed NHANES analytic
and reporting guidelines that provide algorithms to recalcu-
late the sampling weights can be found at the following
website: (http://www.cdc.gov/NCHS/data/nhanes/nhanes_
03_04/nhanes_analytic_guidelines_dec_2005.pdf).

Undiagnosed diabetes and family history of diabetes

We excluded pregnant women and persons with diag-
nosed diabetes, with unknown diabetes status, and with
missing values for some of the covariates. Participants with
a fasting plasma glucose level of�126 mg/dL (7.0 mmol/L)
who reported no previous diagnosis of diabetes were defined
as cases of undiagnosed diabetes (26).

We classified all participants into 3 mutually exclusive
groups of familial risk on the basis of their family history
of diabetes among first- and second-degree relatives: 1) high
(at least 2 first-degree relatives or 1 first-degree and at least 2
second-degree relatives from the same lineage); 2)moderate
(just 1 first-degree and 1 second-degree relative with diabe-
tes, or only 1 first-degree relative with diabetes, or at least 2
second-degree relatives with diabetes from the same mater-
nal or paternal line); or 3) average (no family history of
diabetes or, at most, 1 second-degree relative with diabetes)
(15). We use the term ‘‘family history of diabetes’’ to mean
all 3 groups (high, moderate, and average). Limited
information on family history of diabetes in NHANES
1999–2004 does not allow further detailed analysis.

Risk models

We used logistic regression models to calculate the pre-
dicted risk for undiagnosed diabetes. To select the appropri-
ate models, we started with the list of those risk factors
suggested by the American Diabetes Association that were
available in NHANES 1999–2004 (27); these risk factors
included age, race/ethnicity (non-Hispanic white, non-
Hispanic black, Mexican American, others), body mass in-
dex, physical activity (inactive, irregularly active, regularly
active), hypertension (�140/90 mm Hg or on therapy for
hypertension), a high density lipoprotein cholesterol level
of �35 mg/dL (0.90 mmol/L) and/or a triglyceride level
of �250 mg/dL (2.82 mmol/L), history of cardiovascular
disease, and family history of diabetes. We used the back-
wards selection approach, including all suggested risk fac-
tors in the multiple logistic regression models with a¼ 0.10
to select the final models (28, 29). These final models in-
cluded age, gender, body mass index, hypertension, low
high-density lipoprotein cholesterol and/or elevated triglyc-
erides, and family history of diabetes. We found no evidence
of multicollinearity among the selected risk factors (30). We
tested interactions between family history and other risk
factors by including the product terms in the risk models
based on the Satterthwaite-adjusted F test. There is no ev-
idence of significant interaction. We also included age as
a nonlinear term, the logarithm of high density lipoprotein
cholesterol as a continuous variable, and the interaction
between body mass index and high density lipoprotein cho-
lesterol in the model. The full model does not offer signif-
icant improvements over the main effect models (results not
shown). For simplicity, we used the main effects models.
Similar sets of risk factors have been used and validated by
other studies using the NHANES data (15, 31, 32). For
assessments of the improvements in detecting undiagnosed
diabetes by using family history of diabetes, we calculated 2
risk models: one that had the selected risk factors excluding
family history of diabetes (model 1) and the other with the
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selected risk factors plus family history of diabetes (model
2, nested model).

Statistical analysis

The adjusted and weighted prevalence and odds ratios and
95% confidence intervals for undiagnosed diabetes were
obtained by logistic regression models by using the pre-
dicted margins by the 3 categories of family history of di-
abetes (33). The prevalence and odds ratios were adjusted by
the risk factors selected for the final model. We estimated
the mean and standard error for continuous variables, pro-
portions for categorical variables, and their 95% confidence
intervals by levels of family history of diabetes. We tested
for significant differences in the mean and prevalence across
levels of family history of diabetes based on Satterthwaite-
adjusted F statistics and on the v2 test, respectively. All tests
were 2 tailed at the a ¼ 0.05 level of significance.

Assessment of risk models and improvements from
using family history in detection of undiagnosed
diabetes

For the global measure of models’ fit, we used the Akaike
Information Criterion (AIC) estimated from the logistic re-
gression models; a difference in AIC between 2 models
of >2 was interpreted as a significant improvement for the
model with the smaller AIC (34). For models’ calibration,
we calculated Hosmer-Lemeshow goodness-of-fit statistics
on the basis of deciles of risk (29). For the discrimination
abilities of family history of diabetes, we constructed the
weighted ROC curves and calculated the C statistics (35). To
test for the significance of differences between AIC values,
between weighted ROC curves, and between C statistics of
different risk models, we used the rescaling bootstrap
method of Cheng et al. (36) and Rao et al. (37) that takes
into account the complex survey design by changing the
sampling weights for each resample. We generated 1,000
rescaled bootstrap weights, calculated the distribution for
the 2.5 and 97.5 percentiles, and reported these values as
the 95% confidence intervals of the differences between
different risk models (38).

The predictiveness curve described earlier is an integrated
plot of predicted risks from logistic regression models
formed by the percentiles of risk in the population (24).
From the predictiveness curves, one could read off the
predicted probability of an event for any corresponding
true-positive fraction (sensitivity) or false-positive fraction
(1 � specificity). We constructed the weighted predictive-
ness curves. For the summary measure of weighted predic-
tiveness curves, we calculated the proportion-explained
variations (R2) for each risk model and used the rescaling
bootstrap method to make the inference about significant
differences between the different R2 variations (37). The
difference between R2 variations is equivalent to the inte-
grated discrimination improvement index proposed by
Pencina et al. (23) and Pepe et al. (39) that measures the
ability of the additional risk factor to increase the predicted
probability among those who had the event and to decrease
the predicted probability among those who were event
free (23).

For risk prediction, it is important to examine if the model
with the additional risk factor can more accurately stratify
individuals into higher or lower risk categories (risk reclas-
sification) (21). Some recently developed risk reclassifica-
tion measures require use of recognized risk thresholds
(22, 23), but at present no researchers or clinicians have
proposed any risk classification schemes (risk thresholds)
for clinical use in identifying higher- or lower-risk patients
for diabetes. Nor have they proposed follow-up tests such
as glucose testing for people at higher or lower risk to
identify those who really have diabetes. Accordingly, we
used logistic regression model 1 to determine the predicted
probability of events that corresponded approximately to
20%, 40%, 60%, and 80% of undiagnosed diabetes (di-
chotomous cutpoints at quintiles of sensitivity) and used
these probability thresholds to identify the true-positive
fraction and false-positive fraction from the predictiveness
curves. We also calculated the net reclassification improve-
ment index, positive predictive values, and negative pre-
dictive values for each dichotomous risk threshold for
model 1 and model 2, respectively. The net reclassification
improvement index is a special case of integrated discrim-
ination improvement with the recognized risk thresholds
(23). We used the rescaled bootstrap method with 1,000
samples to estimate the 95% confidence intervals of inte-
grated discrimination improvement and net reclassification
improvement (39).

To help to determine whether including a risk factor in
a risk model might be cost-effective, we used decision curve
analysis (25). Briefly, decision curve analysis estimates the
net benefit of a model by taking the difference between the
number of true positives and the number of false positives
weighted by the odds of the selected threshold probability of
risk for a range of threshold probabilities (25, 40). The net
benefit of a model compared with the reference net benefit or
compared with another model might be interpreted as the net
increase in the proportion of cases identified. The reference
was calculated by assuming that all people were tested for
the events, and testing no one was set to a net benefit of zero.
For any given threshold probability cutpoint, the risk models
with the higher net benefit are the preferred model (41). We
calculated and plotted the weighted net benefit curves for the
reference model (testing all), model 1, and model 2, respec-
tively. We used the quintile cutpoints of the predicted prob-
abilities to compare the net benefits curves of model 1 and
model 2 and calculated the differences in the net benefit
between the 2 models for the each cutpoint and 95% confi-
dence interval of difference between the 2 models using the
rescaled bootstrap method. Unless otherwise specified, data
were analyzed by using SAS, version 9.2, software (SAS
Institute, Inc., Cary, North Carolina) and SUDAAN, release
9.0, software (Research Triangle Institute, Research Trian-
gle Park, North Carolina) to account for the complex sam-
pling design of NHANES 1999–2004 (42).

RESULTS

NHANES 1999–2004 surveyed 5,551 adults aged �20
years without diagnosed diabetes whowere asked for a blood
sample after fasting overnight. The 498 persons excluded
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included 324 pregnant women, 1 person with unknown di-
abetes status, and 173 people with missing covariates. Of the
final sample (n ¼ 5,053), 73.6% were non-Hispanic white;
10.5%, non-Hispanic black; 7.2%, Mexican American; and
8.8%, other race/ethnicity.

The prevalence of undiagnosed diabetes, adjusted odds
ratios, and characteristics of the people by level of familial
risk of diabetes are summarized in Table 1. The prevalence
increased significantly with level of familial risk from 2.2%
(95% confidence interval (CI): 1.7, 2.6) to 7.2% (95% CI:
4.2, 10.1) (P ¼ 0.001). The adjusted odds ratio increased
from 1.7 (95% CI: 1.2, 2.5) to 3.8 (95% CI: 2.2, 6.3) for

moderate and high familial risk, respectively. Familial risk
of diabetes was significantly associated with all the selected
covariates except for physical activity.

Assessing improvements in the detection of
undiagnosed diabetes by using family history

Table 2 includes several statistical measures of overall fit,
discrimination ability, and reclassification of risk for models
1 and 2. Compared with model 1, model 2 represented
significant improvements in 3 statistical measures in detect-
ing undiagnosed diabetes: a lower AIC, a significant

Table 1. Characteristics of Participants by Family History of Diabetes, National Health and Nutrition Examination Survey, 1999–2004

Characteristic
Sample,

no.

Familial Risk of Diabetes

P ValueaAverage
(n 5 3,526)

95% CI
Moderate
(n 5 1,150)

95% CI
High

(n 5 377)
95% CI

Prevalence of undiagnosed
diabetes, %

200 2.2 1.7, 2.6 3.6 2.5, 4.7 7.2 4.2, 10.1 0.001

Adjusted odds ratiob 1.0 1.7 1.2, 2.5 3.8 2.2, 6.3 <0.001

Mean age, years (SE) 5,053 44.7 (0.43) 46.5 (0.75) 47.3 (0.87) 0.002

Gender, %

Male 2,556 49.9 48.5, 51.4 48.5 45.3, 51.8 41.6 35.0, 48.5

Female 2,497 50.1 48.6, 51.5 51.5 48.2, 54.7 58.4 51.5, 65.0 0.046

Race/ethnicity, %

Non-Hispanic white 2,682 74.8 71.2, 78.1 72.6 67.6, 77.0 63.5 55.3, 70.9

Non-Hispanic black 907 9.8 7.9, 12.0 11.1 8.6, 14.2 16.3 11.9, 21.8

Mexican American 1,131 6.6 5.2, 8.3 8.4 5.9, 11.7 10.3 7.3, 14.4

Other (including other Hispanic) 333 8.9 6.6, 11.9 8.0 5.4, 11.5 9.9 6.0, 15.9 <0.001

Body mass index category, %

<18.5 kg/m2 71 2.1 1.6, 2.9 1.0 0.5, 2.1 1.0 0.3, 3.2

18.5–24.9 kg/m2 1,628 37.4 35.1, 39.8 27.7 24.2, 31.5 26.9 21.2, 33.6

25–29.9 kg/m2 1,843 34.7 32.3, 37.2 35.9 32.4, 39.5 35.1 27.7, 43.2

�30 kg/m2 1,511 25.8 23.7, 27.9 35.4 32.4, 38.5 37.0 30.5, 44.0 <0.001

Physical activity (n ¼ 4,889), %

Inactive 2,023 33.4 31.0, 35.8 36.2 32.8, 39.7 39.5 33.7, 45.7

Irregularly active 1,649 38.5 36.5, 40.6 36.3 32.0, 40.9 36.8 30.5, 43.5

Regularly active 1,240 28.1 25.8, 30.5 27.5 23.6, 31.8 23.7 18.6, 29.7 0.136

Hypertension, %

Yes 2,010 31.2 29.2, 33.4 38.0 34.8, 41.3 40.0 33.9, 46.3

No 3,043 68.8 66.6, 70.8 62.0 58.7, 65.2 60.0 53.7, 66.1 <0.001

Lipid, %

HDL-C of �35 mg/dL or
triglycerides of �250 mg/dL

851 15.4 14.0, 16.9 20.8 17.6, 24.5 21.2 15.7, 27.9

Other 4,202 84.6 83.1, 86.0 79.2 75.5, 82.4 78.8 72.1, 84.3 0.011

History of heart disease, %

Yes 371 4.9 4.1, 5.7 5.9 4.4, 7.9 10.5 7.2, 15.0

No 4,654 95.1 94.3, 95.9 94.1 92.1, 95.6 89.5 85.0, 92.8 0.005

Overall 5,053 71.9 69.9, 73.7 21.8 20.0, 23.8 6.3 5.5, 7.2 <0.001

Abbreviations: CI, confidence interval; HDL-C, high density lipoprotein cholesterol; SE, standard error.
a For prevalence and odds ratios of undiagnosed diabetes, P values were for the trend across the categories of family history of diabetes based

on the Satterthwaite-adjusted F test; for categorical variables, P values were based on the v2 test; all tests were 2 tailed.
b Adjusted for age, gender, bodymass index, hypertension, a HDL-C level of�35mg/dL (0.90mmol/L) and/or a triglyceride level of�250mg/dL,

and family history of diabetes.
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improvement in the weighted C statistic, and a significant
improvement in reclassification as measured by integrated
discrimination improvement. Models 1 and 2 demonstrated
similar levels of calibration (goodness-of-fit tests), suggest-
ing the adequate fit of both models.

Figure 1A plots the weighted predictiveness curves, and
Figure 1B shows the weighted true-positive fraction and
false-positive fraction by risk percentiles in the population.
These graphs show that using family history of diabetes, in
addition to the selected risk factors, reclassified the people
with undiagnosed diabetes to the higher predicted risk and the
diabetes-free people to the lower predicted risk. Appendix
Table 1 presents a detailed analysis of the selected risk thresh-
olds. In a comparison of model 2 with model 1, for a higher
risk threshold (e.g., at 7.3%, or approximately the 89th per-
centile of risk distribution in the population) (Figure 1), the
weighted true-positive fraction (Appendix Table 1) increased
from 40.0% (95% CI: 29.4, 51.5) in model 1 to 49.4% (95%
CI: 37.9, 60.9) in model 2. The weighted positive predictive
value rose from 11.0% (95%CI: 8.5, 14.4) to 14.2% (95%CI:
10.9, 18.2), and the net reclassification improvement in model
2 was 10.1% (95% CI: 1.0, 18.1; P ¼ 0.009). The weighted
false-positive fraction and the negative predictive value re-
mained largely unchanged at this risk threshold. At this level
of risk, model 2 would identify approximately 620,000 (95%
CI: 221,100, 1,020,000) more cases of undiagnosed diabetes
in the population than would model 1 (2.64 million vs. 3.26
million). As the risk thresholds lowered, model 2 was asso-
ciated with a decreased false-positive fraction and little
change in negative predictive value compared with model
1. However, these changes were not significant enough to
have a significant improvement in risk reclassification indi-
cated by net reclassification improvement.

Decision curves analysis

Figure 2 presents the weighted net benefit curves derived
for testing all people versus testing strategies based on

model 1 and model 2. Model 2 appeared to offer greater
net benefit across most risk thresholds, especially from the
predicted risk of around 5% to 15%. Both of the model-
based net benefits were higher than testing all (the reference
testing strategy). Appendix Table 2 presents the detailed
analysis of net benefits for 4 selected risk thresholds. Com-
paring model 2 with model 1, for example, at a 7.3% risk
threshold (40% sensitivity based on model 1), the difference
of net benefit equals 0.32 per 100 people (95% CI: 0.06,
0.58), indicating that 3 extra cases of undiagnosed diabetes
would be detected per 1,000 subjects based on model 2. The
differences in net benefits between the 2 models diminished
at either higher or lower risk thresholds, especially at the
lower risk thresholds.

DISCUSSION

This study confirms that family history of diabetes is an
independent risk factor for undiagnosed diabetes, a finding
that is consistent with those of many other studies (6–15,
43). Recent National Institutes of Health state-of-the-
science statements on family history recognized the impor-
tant role of family history in the practice of medicine,
motivation of positive lifestyle changes, and influence of
clinical interventions (44). Our study assessed the improve-
ments in detecting undiagnosed diabetes that would come
from including family history in risk assessment and pop-
ulation screening. Our findings suggest that using a risk
model with family history of diabetes offers significant im-
provements over a model with common risk factors in de-
tecting undiagnosed diabetes, especially among populations
at higher risk. For example, by using a risk threshold of
7.3% (the median predicted risk ¼ 1.3% in the population),
approximately 11% of the population had a predicted
risk �7.3% based on model 1. With model 2 we had a net
reclassification improvement of 10.1% (95% CI: 1.0, 18.1;
P ¼ 0.009) that was mainly due to the increase in

Table 2. Comparison of 2 Models’ Fit, Discrimination Ability, and Risk Reclassification, National

Health and Nutrition Examination Survey, 1999–2004

Statistical Measures of
Undiagnosed Diabetes

Models Difference
(Model 1 2
Model 2)

95% CIaWithout Family
History (Model 1)b

With Family
History (Model 2)c

AICd 590 579 10.9 1.4, 24.3

Goodness-of-fit teste 12.6 (0.126) 7.0 (0.534)

Weighted C statistics 0.826 0.842 0.016 0.005, 0.031

R2/IDI 0.055 0.067 0.012f 0.004, 0.030

Abbreviations: AIC, Akaike Information Criterion; CI, confidence interval; IDI, integrated dis-

crimination improvement.
a The 2.5 and 97.5 percentile distributions of 1,000 rescaled bootstrap samples of the differ-

ences between the different risk models.
b Model 1 was adjusted for age, gender, body mass index, hypertension, and a high density

lipoprotein cholesterol level of�35 mg/dL (0.90 mmol/L) and/or a triglyceride level of�250 mg/dL.
c Model 2 included, in addition to the risk factors in model 1, family history of diabetes.
d The means and differences of AIC were generated from 1,000 rescaled bootstrap samples for

the different risk models.
e Hosmer-Lemeshow goodness-of-fit test; the numbers are v2, with P values in parentheses.
f The difference between the R2 of the 2 risk models equals the IDI.
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true-positive fraction from 40.0% (95% CI: 29.4, 51.5) in
model 1 to 49.4% (95% CI: 37.9, 60.9) in model 2, a 24%
increase in the number of undiagnosed diabetes cases
identified. In other words, using model 2 at a risk threshold
of 7.3%, one would identify approximately 3.26 million
cases instead of 2.64 million cases of undiagnosed diabetes
of an estimated 6.6 million total cases without an increase in
false-positive fraction.

Some researchers have argued that the statistical mea-
sures of risk models for performance in prediction and re-
classification have limited value for evaluation of the
clinical utility of the additional risk factor/marker because
they do not consider cost-effectiveness (25, 41, 45). How-
ever, the traditional cost-effectiveness analysis of diagnostic
tests has involved collecting additional data on alternative

treatments that could involve substantial cost and sometimes
might be difficult to collect (46, 47). The decision curve
analysis, which does not require collecting additional data
on cost and effectiveness, offers a simple approach to ex-
amining the clinical consequences of alternative testing
strategies and to comparing the different risk models in
terms of net benefits over a range of predicted probabilities
for an event (25). The focus of the net benefit curves is not
on any particular point estimate, but rather on the entire
range of threshold probabilities in a way that one net benefit
curve is greater or lesser than the other alternatives (25, 48).
Our findings indicate that the net benefit curves derived
from model 2 (versus model 1) were greater over nearly
the whole range of risk thresholds, especially from 5% to
15% predicted risks, indicating the net benefit of detecting
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Figure 1. Weighted predictiveness curves (A) and true-positive fraction (TPF) and false-positive fraction (FPF, 1 � specificity) (B) for model with
selected risk factors (model 1) and model with selected risk factors plus family history of diabetes (model 2), National Health and Nutrition
Examination Survey, 1999–2004. The horizontal dashed line in A indicates the prevalence of undiagnosed diabetes in the population (2.9%).
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extra cases of undiagnosed diabetes based on model 2.
Given the fact that little cost might be involved in collecting
information on family history of diabetes, the evaluation of
added value of using family history should mainly focus on
the magnitude of the benefit rather than on cost-
effectiveness.

The limitations to our study include, first, that NHANES
is a cross-sectional survey, and it cannot be used to predict
the risk of developing diabetes. Accordingly, we focused our
analysis on the improvements in detecting undiagnosed di-
abetes that might be realized by incorporating family history
of diabetes in a model. Second, NHANES 1999–2004 mea-
sured fasting glucose but did not assess glucose tolerance,
and thus it might have underestimated the prevalence of
diabetes. However, the American Diabetes Association has
recommended that, for epidemiologic studies and estimates
of diabetes prevalence, a fasting plasma glucose level of
�126 mg/dL (7.0 mmol/L) should be used (49). Third, di-
abetes was self-reported in NHANES 1999–2004, and re-
porting bias by different groups might exist. Studies
indicated that the proportion of undiagnosed diabetes was
higher in men, Mexican Americans, and the uninsured com-
pared with women, non-Hispanic whites, and the insured,
suggesting some reporting bias of diagnosed diabetes (50).
The prevalence of undiagnosed diabetes might be overrep-
resented in certain groups in NHANES 1999–2004. Fourth,
the family risk of diabetes was significantly related to sex
and race/ethnicity (31, 51, 52). Women tend to have a better
knowledge of the presence of the disease among their rela-
tives, and the large families, for example, non-Hispanic
blacks and Mexican Americans compared with non-
Hispanic whites, are likely to have a greater possibility of
relatives with diabetes than the smaller families, especially
among populations where the disease prevalence is high. To
examine the possible effect of sex, ethnicity, or racial dif-

ferences in the familial risk of diabetes on the detection of
undiagnosed diabetes, we conducted stratified analysis by
sex and race/ethnicity; the results suggested that the im-
provements in detecting undiagnosed diabetes by using fam-
ily history of diabetes are consistent across sex and race/
ethnicity strata (Appendix Table 3). Fifth, there are no gen-
erally recognized risk thresholds for undiagnosed diabetes;
we arbitrarily used the quintile cutpoints of predicted risk
that included 20%, 40% 60%, or 80% of undiagnosed di-
abetes cases based on risk model 1. Some statistical mea-
sures of how well a model performs in prediction, such as
net reclassification improvement, might be sensitive to the
risk thresholds used (23). Sixth, using the same data to fit
a risk model and to assess its performance could lead to
overfitting. We conducted 5-fold cross-validation and ob-
tained an average weighted area under curve ¼ 0.84 for
the final model with family history, and external validation
using the NHANES III (1988–1994) data set obtained
a weighted area under curve ¼ 0.89, indicating adequate
performance of our risk models.

The major strengths of our study include the availability
of fasting glucose measurements from a nationally represen-
tative sample of the US adult population and the large num-
ber of potential risk factors for undiagnosed diabetes to
investigate.

Our findings suggest that family history of diabetes pro-
vides significant improvements in the detection of additional
cases of undiagnosed diabetes, especially among people
with higher predicted risk. It also provides greater net ben-
efits than a risk model without family history when applied
to the US population. Unlike other biomarkers, for example,
prostate-specific antigen for prostate cancer or C-reactive
protein for cardiovascular diseases, or genetic testing, ob-
taining information on family history of diabetes costs little,
and no adverse effect is associated with the process. With
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increased awareness and education, family history could be
a useful part of a public health tool designed for the de-
tection and control of diabetes in populations.
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Appendix Table 2. Weighted Net Benefit and Differences in Net Benefit for Testing All People for Undiagnosed Diabetes or According to Risk

Models With or Without Family History Using Selected Thresholds of Predicted Probabilities of Undiagnosed Diabetes, National Health and

Nutrition Examination Survey, 1999–2004

Predicted
Probability
of Events, %

True-Positive
Fraction, %

95% CI Models Net Benefit, % 95% CIa
Differences Between

Testing All vs. Model 1
and Model 1 vs. Model 2

95% CIa

12.0 20.0 13.8, 29.6 Testing allb �10.30 �10.86, 9.85

Model 1c 0.16 �0.09, 0.39 10.5 9.99, 11.00

Model 2d 0.32 0.03, 0.58 0.16 0.03, 0.33

7.3 40.0 29.4, 51.5 Testing allb �4.70 �5.23, 4.27

Model 1c 0.44 0.10, 0.74 5.14 4.61, 5.65

Model 2d 0.76 0.37, 1.13 0.32 0.06, 0.58

5.4 60.0 50.8, 69.5 Testing allb �2.61 �3.13, 2.19

Model 1c 0.91 0.52, 1.21 3.52 3.11, 3.90

Model 2d 0.96 0.55, 1.33 0.05 �0.12, 0.32

3.6 80.0 71.5, 86.8 Testing allb �0.69 �1.2, 0.28

Model 1c 1.41 1.00, 1.74 2.10 1.82, 2.37

Model 2d 1.36 0.92, 1.68 �0.03 �0.23, 0.14

Abbreviation: CI, confidence interval.
a Ninety-five percent confidence intervals of the difference in net benefit between testing all versus model 1 and model 1 versus model 2 were

estimated by using 1,000 rescaled bootstrap samples for complex surveys.
b Assuming that all people were tested for fasting glucose concentrations for diagnosis of diabetes.
c Model 1 included age, gender, body mass index, hypertension, and a high density lipoprotein cholesterol level of �35 mg/dL (0.90 mmol/L)

and/or a triglyceride level of �250 mg/dL.
d Model 2 included, in addition to the risk factors of model 1, family history of diabetes.

(Appendix continues on next page)

1088 Yang et al.

Am J Epidemiol 2010;171:1079–1089



Appendix Table 3. Comparison of Models’ Fit, Discrimination Ability, Risk Stratification, and Risk Reclassification Between Models With and

Without Family History of Diabetes for Detecting Undiagnosed Diabetes Stratified by Sex and Race/Ethnicity, National Health and Nutrition

Examination Survey, 1999–2004

Statistical Measures

Models
Differences

(Model 1 2 Model 2)
95% CIaWithout Family

History (Model 1)b
With Family

History (Model 2)c

Male

AICd 357.4 356.3 1.1 �3.6, 9.9

Goodness-of-fit teste 7.4 (0.289) 3.5 (0.743)

Weighted C statistics 0.837 0.848 0.011 0.001, 0.024

R2/IDI 0.0677 0.0734 0.006 �0.001, 0.031f

Female

AICd 247.3 239.2 8.1 �0.5, 18.9

Goodness-of-fit teste 5.1 (0.280) 2.0 (0.732)

Weighted C statistics 0.820 0.847 0.027 0.005, 0.054

R2/IDI 0.049 0.073 0.024 0.006, 0.065f

Non-Hispanic white

AICd 319.6 316.4 3.2 �2.6, 11.4

Goodness-of-fit teste 4.2 (0.124) 3.1 (0.213)

Weighted C statistics 0.848 0.863 0.015 0.003, 0.031

R2/IDI 0.063 0.073 0.010 0.001, 0.039f

Non-Hispanic black

AICd 131.9 128.3 3.6 �3.2, 15.5

Goodness-of-fit teste 3.2 (0.788) 6.3 (0.392)

Weighted C statistics 0.831 0.856 0.025 �0.006, 0.061

R2/IDI 0.072 0.113 0.041 0.010, 0.125f

Mexican American

AICd 125.7 118.5 7.3 �3.3, 22.2

Goodness-of-fit teste 3.1 (0.381) 4.6 (0.203)

Weighted C statistics 0.854 0.896 0.042 �0.003, 0.085

R2/IDI 0.064 0.125 0.061 0.010, 0.191f

Abbreviations: AIC, Akaike Information Criterion; CI, confidence interval; IDI, integrated discrimination improvement.
a The 2.5 and 97.5 percentile distributions of 1,000 rescaled bootstrap samples of the differences between the different risk models.
b Model 1 was adjusted for age, gender, body mass index, hypertension, and a high density lipoprotein cholesterol level of �35 mg/dL (0.90

mmol/L) and/or a triglyceride level of �250 mg/dL.
c Model 2 included, in addition to the risk factors in model 1, family history of diabetes.
d The means and differences of AIC were generated from 1,000 rescaled bootstrap samples for the different risk models.
e Hosmer-Lemeshow goodness-of-fit test; the numbers are v2, with P values in parentheses.
f The difference between the R2 of the 2 risk models equals the IDI.
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