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Abstract 

 
Offline handwriting recognition of free-flowing 

Arabic text is a challenging task due to the plethora of 
factors that contribute to the variability in the data. In 
this paper, we address some of these sources of 
variability, and present experimental results on a large 
corpus of handwritten documents. Specific techniques 
such as the application of context-dependent Hidden 
Markov Models (HMMs) for the cursive Arabic script, 
unsupervised adaptation to account for the stylistic 
variations across scribes, and image pre-processing to 
remove ruled-lines are explored. In particular, we 
proposed a novel integration of structural features in 
the HMM framework which exclusively results in a 9% 
relative improvement in performance. Overall, we 
demonstrate a relative reduction of 17% in word error 
rate over our baseline Arabic handwriting recognition 
system. 
 
 
1. Introduction 
 

Commercial off-the-shelf (COTS) OCR software 
can accurately recognize clean machine-printed text 
with simple layouts. However, the recognition of 
handwritten text continues to be a challenging research 
problem due to the various sources of variability in the 
data. Different people have different styles of writing 
which results in inconsistent shapes for the same 
glyphs. In fact, random variations in shapes are 
encountered across different instances of glyphs 
written by the same scribe. Furthermore, the readability 
of handwritten text is adversely affected by sloppy 
writing, even for humans. Some of the artifacts of 
sloppy writing are slanted characters, non-linear 
baseline across words and presence of scratches and 
fragments in the text. In addition to the above 
challenges, the recognition of Arabic text poses its own 
set of problems due to the inherent connectedness of 
the script. Character segmentation for Arabic is hard 

because of the cursive nature of the script. There are 
also several characters in Arabic that are distinguished 
only in the placement and number of dots and strokes. 
All of these factors make the recognition of free-style 
handwritten Arabic text an inherently difficult 
problem. 

In this paper, we address some of these challenges, 
and present techniques that result in improved 
performance of BBN’s Hidden Markov Model (HMM) 
based optical handwriting recognition (OHR) system 
on Arabic handwritten text. The advantage of an HMM 
based approach [1, 2] is that it does not require a pre-
segmentation of the characters unlike other 
segmentation-based approaches [3]. Research in off-
line Arabic handwriting recognition has previously 
focused on constrained databases like IFN/ENIT [4] 
which is a closed vocabulary corpus of images of 
isolated Tunisian town/village names. In this paper, for 
the first time, we show results on a large vocabulary 
free-flowing Arabic handwriting collection. We give 
an overview of this corpus in Section 2. In Section 3, 
we present the configuration of the OHR system. A 
novel integration of structural features (that capture 
characteristics such as loops, writing, etc in the script) 
within the HMM framework is proposed in Section 4. 
We also present results using unsupervised adaptation 
and image-preprocessing to detect and remove ruled-
lines in Section 5 and 6 respectively.  
 
2. Corpus Description 
 

We use handwritten data collected by the Linguistic 
Data Consortium in our experiments. The data consists 
of scanned images of handwritten Arabic text of 
newswire articles, web log posts and newsgroup posts, 
as well as their corresponding ground truth 
annotations. The scribes were chosen from different 
demographic backgrounds. Varied writing conditions 
such as the type of writing instrument (pen or pencil), 
type of paper (ruled or un-ruled), and writing speed 
(careful, normal and fast) were introduced. The images 
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were scanned through a high quality scanner, at a 
resolution of 600 dpi. The ground truth annotations 
included the co-ordinates of bounding boxes around 
individual words and the corresponding tokenized 
transcriptions. 

 Table 1. Description of dev and test sets 

Set Scribe Set #Images #Scribes #Words 

Dev 
Not In Training 109 6 9.6K 

In Training 109 6 9.6K 

Test 
Not in Training 112 6 10K 

In Training 112 6 10K 
 
A total of 8250 pages by 58 different scribes were 

used for training. Additionally, a set of 442 images 
generated from a disjoint set of documents was used 
for validation purposes, which was split into 
development and test sets. Each of these sets 
comprised of the same documents written by scribes in 
the training set, and by new scribes who were never 
seen in training. There is no overlap of either 
documents or scribes between the development and test 
sets. The details of these sets are shown in Table 1. 
Figure 1 shows examples of two images from the 
corpus which to the best of our knowledge is largest 
collection of free-flowing Arabic handwritten 
documents with annotations. Note that the data exhibits 
several characteristics that make text recognition hard 
such as overlapping line/word boundaries, non-linear 
baseline within lines/words, slanted characters, 
scratches and poor legibility. 

 

                                                                                                                   
Figure 1: Examples of Images from Corpus 

 
3. Configuration of Baseline OHR System 

 
In this section, we describe the configuration of the 

BBN Byblos OHR system which is based on the work 
presented in [5]. The Byblos OHR system models 
handwritten text as the output of Hidden Markov 
Model (HMM) based character models. In the 
following, we provide a detailed description of feature 
extraction, training, and recognition.   

Feature Extraction: Feature extraction is the first step 
in both training and recognition. In order to convert the 
2-dimensional images into a 1-dimensional sequence 
of features needed to build HMMs, we typically 
determine the location of the top and bottom 
boundaries of the lines of text, and then compute the 
feature vector for each of these lines. If the lines are 
regularly spaced as in machine-printed data, HMM-
based or connected component based line-finding 
algorithms [6] achieve near-perfect accuracy. 
However, in free-flowing handwritten data, adjacent 
lines of text often overlap. Also, handwritten text 
exhibits significant variations in baseline within a text 
line. This is an issue for feature extraction since the 
width of the frame is set proportional to the height of 
the line. All of the above factors make text line 
finding/separation for handwritten text a difficult 
problem. Since line finding is not central to the 
purposes of this paper, for our experiments, we used 
the rectangular bounding boxes on the individual word 
images to obtain a piece-wise linear approximation of 
the envelope for the text line. Features were computed 
from the piece-wise linear envelope around the line 
image. The left and right boundaries of the word were 
not used for feature extraction. The line image was 
segmented into a sequence of thin, overlapping vertical 
windows called frames. A total of 33 of the following 
script-independent features were extracted from each 
frame: Percentiles of intensity values, Angle, 
Correlation, and Energy. Linear Discriminant Analysis 
(LDA) was then applied to reduce the dimension of the 
feature space from 33 to 15. This set of transformed 
features is called PACE and is described in detail in 
[1].   
Training: We used a 14-state, left-to-right HMM to 
model each individual character. Each state of the 
HMM has an output probability distribution over the 
features modeled as a Gaussian mixture. The 
maximum likelihood estimate of the parameters of the 
HMM are obtained by iteratively aligning the sequence 
of feature vectors with the sequence of character 
models using the Expectation Maximization algorithm.  

In handwritten Arabic text, the shape of the 
character glyph often varies depending on the 
characters that precede and follow it. Such context-
dependence of glyphs is typical of cursive connected 
scripts, but can vary even more widely because of a 
writer’s personal style. Context-dependent HMMs 
offer a robust, data driven approach for modeling 
contextual information. In [7] we showed the 
superiority of context-dependent models over context-
independent models for machine-printed Arabic text. 
We trained Position-dependent tied mixture (PDTM) 
HMM models, where a separate set of Gaussians is 
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estimated for each state of all the context-dependent 
HMMs associated with a particular character. In total 
254K Gaussians were trained for 176 unique characters 
(including Arabic characters, numerals, punctuations 
and English characters).   
Recognition: The BBN Byblos recognition engine 
performs a two-pass search using glyph HMMs and the 
language model. A trigram language model trained on 
90 million words of Arabic newswire data was used for 
recognition. The decoding lexicon consisted of 92,000 
of the most frequent words in our Arabic text corpus. 
The out of vocabulary (OOV) rate of the test set 
measured against the 92K lexicon is 7.5%. The 
forward pass is a fast match beam search using the 
HMMs and an approximate bi-gram language model.  
The output of the forward pass consists of the most 
likely word-ends per frame.  The backward pass 
operates on the set of choices from the forward pass to 
restrict the search space and an approximate trigram 
language model to produce an N-best list of 
hypotheses. The N-best list is then re-ranked using a 
combination of the acoustic scores, and a language 
model score. The weights for re-ranking were tuned on 
the development set.   

Table 2. Summary of results on test set with 
baseline OHR system 

Decoding Set %WER 
Scribes in Training 43.8 
Scribes not in Training 28.6 
Overall 36.2 

 
Table 2 shows the performance in terms of word 

error rate (WER) on the test set. For WER 
computation, all punctuations and digits were stripped 
from both the recognition results and the reference 
transcripts. Contrary to intuition, the %WER of the 
scribes in training is significantly worse than those 
never seen in training. Analysis showed that this is an 
artifact of the scribe selection in the test set. Outliers in 
each set (a scribe with unusually high %WER in the 
“Scribes in Training” set, as well as a scribe with 
unusually low %WER in the “Scribes not in Training” 
set) contribute to the counter-intuitive results in Table 
2.  Experiments on a different test set held out from the 
training data showed the performance on scribes not 
seen in training to be 31% relative worse than those 
that were represented in training. 

 
4. Structural Features 
 

In the Arabic script, many letters share common 
primary shapes and differ only in the number and 
position of the dots and strokes. Structural features 

capture intuitive aspects of writing such as loops, 
branch-points, endpoints, and dots. One such family of 
features are the GSC (Gradient, Structure and 
Concavity) [8] features. GSC features are symbolic, 
multi-resolution features that combine three different 
attributes of the shape of a character – the gradient 
representing the local orientation of strokes; structural 
features that extend the gradient to longer distances 
and provide information about stroke trajectories; and 
concavity that captures stroke relationships at long 
distances. While GSC features have successfully been 
used in recognition of isolated digits and handwritten 
words in the past [9] using segmentation-based 
approaches, they have never been used in the HMM 
framework. In this section, we describe a novel 
integration of these structural features in BBN’s 
HMM-based text recognition framework.  

For computing the GSC features, first a gradient 
map is constructed from the normalized image by 
estimating gradient value and direction at each pixel.  
Next, Gradient features are obtained by counting the 
pixels which have almost the same gradient. The 
structure features enumerate complex patterns of the 
contour. To compute the concavity features, pixels 
which lie in certain special regions such as holes and 
strokes are detected. The image is then divided into 
bins and the number of such pixels in each bin is 
counted.   

 Frame 
window w f 

Tightening 
window wt

Adjusted 
frame 

window wa

Axial 
 

Figure 2. Illustration of frame tightening for 
feature computation 

The width of the sliding window used to compute 
the GSC features is wider than that used for 
percentiles. Since the baseline of a word image may 
fluctuate within portions of the same word, we also 
algorithmically tightened the upper and lower 
boundaries of the sliding window. This ensures that the 
features are normalized and minimizes the variation of 
the feature space. Figure 2 shows thematically the 
tightening of the frame. We define the width of the 
frame (wf) as wf.width = wf.height/12, where wf.height 
is the height of the word image. A tightened window 
wt is obtained by expanding wf to both the left and 
right sides so that wt.width = 5wf.width. The upper and 
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lower boundaries of wf are redefined by the bounding 
box of black pixels within wt. We thus obtain an 
adjusted window wa. The region within wf which is 
outside of wa does not have any black pixels. The GSC 
features are computed from the adjusted frame window 
wa. The tightened window wa is divided evenly into 12 
overlapping vertical bins, and 4 sets of GSC features 
are computed for each bin. A total of 48 of each of the 
GSC features are computed for each frame. As 
described in section 3, we use an LDA to reduce the 
dimension of the feature vector to 15. This number was 
empirically determined.  

We tried different combinations of the PACE and 
individual GSC features with and without frame 
tightening.  Frame tightening consistently showed 
improved performance. The combination of Gradient 
and Concavity features with the PACE features yielded 
the biggest gain - a 9% relative reduction in WER as 
show in Table 3.  

Table 3. Summary of improvements on test set 
with structural features 

Features %WER 
PACE  36.2 
+ Gradient & Concavity  33.0 

 
5. Unsupervised Adaptation 
 

Adaptation has been widely used to combat the 
variability in speech in automatic speech recognition 
and to adapt to fonts and degradations in text 
recognition of machine-printed documents. In 
handwritten text variability occurs due to inter-scribe 
differences in writing style, font and slant.  

Table 4. Summary of improvements on test set 
with unsupervised adaptation 

Adaptation 
 

%WER 
Overall 

 
Scribes in 
Training 

Scribes not 
in Training 

None 33.0 39.6 26.4 
Page-wise 31.5 37.8 25.1 

 
We used text recognition output (top-best 

hypothesis from the re-ranked n-best list) of each page 
to adapt the means of the Gaussians of the HMMs 
using Maximum Likelihood Linear Regression 
(MLLR) estimation [10].  A maximum of 10 
regression classes were used for transformation.  The 
adapted model was then used to re-decode the same 
page. As shown in Table 4, unsupervised adaptation 
resulted in a 4.5% relative reduction in WER. As one 
would expect, adaptation improves results for scribes 
not in training more than for scribes in training.  

 
6. Ruled-Line Detection and Removal 
 

The performance of the text recognition system was 
found to be considerably worse on pages with 
horizontal rules compared to pages without such rules 
(Table 5). This is due to the sensitivity of the majority 
of the features discussed in Sections 3 and 4 on 
variations of the pixels in the frame. Therefore, we pre-
processed the images to detect and remove such lines 
using an algorithm described in this section.  
Ruled-line detection: The ruled-line detection 
program works by finding the local maxima from the 
horizontal projection profile of the intensity of the 
input image. The input image is initially divided into 
10 equal vertical strips. Ruled-lines are detected at 
each strip as follows. 
• The projection profile of the intensity is normalized 

by dividing it by the width of the strip. The 
normalized projection profile is denoted by PROJ(Y).  

• A smoothing template is applied to the projection 
profile. The smoothed value PROJ_SMOOTHED(Y) at 
a certain Y is the average of all the values within a 
window of W pixels wide, centered at Y. Different 
values of W (set to 2dpi/300 and 4dpi/300) are used 
to detect lines of different widths.  

• We search the smoothed projection profile for pixels 
Y* such that PROJ_SMOOTHED(Y*) > 0.5  and the 
local maxima is within the radius of 12dpi/300  

• For each Y* detected, we search 
within 300/3* dpiYY ⋅<−  of the strip for black 
pixels and mark them as “ruled-line pixels”  

 

 
(a) Ruled-line detection     (b) Classification of ruled-line pixels 

Figure 3. Classification of ruled-line pixels as 
black or white 

Ruled-line removal: The detected ruled-lines are 
classified as “black” or “white” heuristically. If a non 
ruled-line pixel is black and adjacent to a ruled-line 
pixel, then the pixels starting from the one immediately 
connected to the non ruled-line pixel to the one at the 
center of the ruled-line are classified as “black”. The 
rest of the pixels are classified as “white”. An 
illustration is shown in Figure 3. 
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It was found that the line-removal algorithm results 
in the removal of some pixels in the glyphs that are 
connected to the line leading to disconnected character 
segments in the image as shown in Figure 4. However, 
since the feature extraction algorithm does not rely on 
connected component analysis, the creation of 
disconnected components does not significantly affect 
system performance. 

 
Figure 4.  Example of line-removal 

Line removal was run on all pages annotated as 
ruled in the training set. These processed images were 
used in combination with the un-ruled images to train 
the glyph models. On the test set images, we ran the 
fully automatic ruled-line detection and removal 
algorithm.  The precision and recall of the ruled-line 
detection algorithm were 100% and 98.2% respectively 
on the test set indicating that there were very few 
ruled-line detection errors. In Table 5, we summarize 
the %WER on images with and without ruled-lines 
separately. Ruled-line removal results in a large gain 
on the set with page lines. However, the gain on the 
overall set is 4.8% since only 25% of the test images 
consist of ruled lines. 

Table 5.  Summary of improvements on test 
set with line removal algorithm  

Ruled Line 
Removal 

%WER 
Overall Ruled  Un-ruled 

None 31.5 36.2 29.9 
Applied 30.0 31.5 29.5 

 
8. Conclusions and Future Work 
 

In this paper, we presented BBN’s Arabic offline 
handwriting recognition system. Several diverse 
techniques that addressed the inherent variability of 
handwritten text as well as the nuances of the Arabic 
script were presented. Overall, we demonstrated a 17% 
relative reduction in word error rate over the baseline 
system. In the future, we propose to further improve 
performance by exploring discriminative features and 

models, writer-adaptive training, and baseline detection 
and correction techniques. 
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