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Improvements in Remote Cardio-Pulmonary

Measurement Using a Five Band Digital Camera
Daniel McDuff, Student Member, IEEE, Sarah Gontarek, and Rosalind W. Picard, Fellow, IEEE

Abstract—Remote measurement of the blood volume pulse via
photoplethysmography (PPG) using digital cameras and ambient
light has great potential for healthcare and affective computing.
However, traditional RGB cameras have limited frequency res-
olution. We present results of PPG measurements from a novel
five band camera and show that alternate frequency bands, in
particular an orange band, allowed physiological measurements
much more highly correlated with an FDA approved contact PPG
sensor. In a study with participants (n=10) at rest and under
stress, correlations of over 0.92 (p<0.01) were obtained for heart
rate, breathing rate and heart rate variability measurements.
In addition, the remotely measured HRV spectrograms closely
matched those from the contact approach. The best results were
obtained using a combination of cyan, green and orange (CGO)
bands; incorporating red and blue channel observations did not
improve performance. In short, RGB is not optimal for this
problem: CGO is better. Incorporating alternative color channel
sensors should not increase the cost of such cameras dramatically.

Index Terms—heart rate variability (HRV), blood volume pulse
(BVP), photoplethysmography (PPG), remote sensing.

I. INTRODUCTION

REMOTE detection of physiological parameters holds

great potential for healthcare and affective computing.

Applications that would benefit from non-contact measurement

of heart rate (HR) and heart rate variability (HRV) include:

infant monitoring [1], detection of cardiac diseases [2] and

stress monitoring [3]. The current gold standard methods of

measuring HR and HRV involve obtrusive devices attached to

the body, in some cases requiring sticky gels and/or uncom-

fortable electrodes.

Heart rate variability spectrograms are a useful non-invasive

measure of phenomena such as the cardiac regulatory system

response [4], anxiety [5], sleep patterns [6] or cognitive

stress [7]. Mental arithmetic tasks can increase low frequency

components and low frequency/high frequency ratios in power

spectral analysis of the heart rate variability [7]. We use a

mental arithmetic task to cause changes in HRV and show

that these can be measured accurately using a digital camera.

Photoplethysmography (PPG) is a low-cost and non-invasive

technique for measuring the cardiovascular blood volume

pulse (BVP) through variations in transmitted or reflected

light [8]. Traditionally a dedicated light source and specialized

sensor (e.g. IR light) are used to measure the PPG signal.
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However, recent work has demonstrated the measurement of

the pulse signal using ambient light [9]. Furthermore, it is

possible to accurately measure cardio-pulmonary parameters

(heart rate, breathing rate (BR) and high and low frequency

components of the HRV) using ambient light and a low-cost

camera [10]. However, it was not shown whether detailed

information about the HRV spectrogram (HRVS) and subtle

changes over time could be measured using this approach.

In addition, participants were seated close to (∼0.5m) the

camera. We present results that show we can recover, with

high accuracy, both physiological parameters and HRV spec-

trograms from videos of the face taken using a digital camera

placed 3m from the participant. This increased range opens

up more potential applications in which remote PPG could

be practically used. In addition, this new method shows

performance improvements over the state of the art. As in

our prior work the method works in ambient light, does not

require a dedicated light source, and works well regardless of

skin color.

Most digital single-lens reflex (DSLR) cameras capture

three color channels (RGB) with 16-bits/channel. We use a

novel DSLR sensor that has the capability to capture five

color channels (16-bits/channel): red, green, blue, cyan and

orange (RGBCO). Each pixel on the camera sensor measures

one color. The sensor we use has pixels for detecting light

in the orange and cyan frequency bands as well as pixels for

detecting light in the red, green and blue bands. Therefore,

we are able to measure more specific frequency information.

Previous work has shown the green channel in a traditional

RGB camera to capture the strongest BVP signal [9]. We

performed experiments with different combinations of color

channels and show that the set of channels including the

orange band signals perform much better than the green signal

alone and much better than the set of RGB signals.

Poh et al’s [10] method for recovering the BVP waveform

from video uses independent component analysis (ICA). In

its traditional form the number of source signals cannot

exceed the number of observations. Therefore, by allowing

for more observations (more color channels) we have greater

flexibility in the number of source signals that may be present.

Considering that there may be many sources of noise (e.g.

lighting changes, rigid head motion, facial expressions, camera

sensor noise) we test whether more observations will allow for

more accurate recovery of the BVP.

The contributions of this paper are: 1) to show that a five

band digital camera allows highly accurate measurement of

physiological parameters from a distance of 3m and outper-

forms the traditional three color bands (RGB), 2) to show that

alternative color bands (orange and cyan) between the red and
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blue bands are particularly useful in recovering the BVP and

3) to present the first examples of remotely measured HRV

spectrograms from individuals in both relaxed conditions and

under cognitive stress that captures sympathetic modulation.

The results presented suggest that subtle changes in the high

and low frequency components of the HRV can be measured

using this new approach.

II. RELATED WORK

Remote measurement of vital signs has been demonstrated

using a number of methods. HR and BR measurements have

been shown using laser doppler [11], microwave doppler [12],

milliwave doppler [13] and thermal imaging [14], [15] meth-

ods. Verkruysse et al. [9] showed that PPG measurements

could be made using ambient light in the visual spectrum. Poh

et al. [16] presented a practical method allowing the BVP to be

recovered using a low-cost webcam, which can then be used

to calculate HR, BR and high and low frequency components

of heart rate variability [10]. However, that work did not

show that it was possible to gain an accurate measurement

of HRV changes over time (e.g. showing accurate recovery

of HRV spectrograms) and all measurements were taken with

participants in a restful state (not under stress) at a distance

of 0.5m.

Motion [16] can impact the accuracy of PPG measurements

made using ambient light and a digital camera. However,

there are many applications in which remote measurement

of physiology could be very useful where there is little rigid

head motion and slowly changing ambient lighting. Motion

compensation is also possible in cases where motion artifacts

may be problematic [17]. A method of magnifying the PPG

signal in a video of the face allows the signal to be visual-

ized [18], although the filtering frequencies need to be set

manually. Balakrishnan et al. [19] presented a method for

recovering the BVP waveform from motion of the human

head allowing the heart rate to be detected even if no skin is

visible. However, their system was outperformed by camera-

based PPG measurements in some cases and is likely to be

susceptible to noise due to rigid head motions. A pilot study in

infant monitoring has demonstrated accurate measurement of

HR using remote PPG measurements from a camera in realistic

conditions [1], HRV measurements were not validated.

III. METHODS

A. Camera

The camera used to collect the video sequences for analysis

was a digital single-lens reflex (DSLR) camera. The lens used

was a standard Zuiko 50mm lens. The camera’s sensor has the

capability of capturing five color bands including the typical

three frequency band sensors (red, green and blue (RGB))

and also cyan and orange frequency band sensors (RGBCO).

Figure 1 shows the sensitivities for the five band camera. In

other respects it was a standard DSLR camera. Figure 2 shows

the five band camera sensor layout. The image shows the

arrangement of the colors in a 4x4 pattern that repeats across

the sensor. Each pixel on the sensor measures one color as
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Fig. 1. Five band camera light sensitivity profile. In addition to red, green
and blue light sensors this camera can measure orange and cyan bands.
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Fig. 2. Five band camera sensor layout. The image shows the arrangement
of the colors in a 4x4 pattern that repeats across the sensor. Each pixel on
the sensor measures one color as determined by its position.

determined by its position. Further details about the sensor

and demosaicking can be found in [21].

The raw image values captured by the camera can be

calculated using the following formulation:

m =
X

λ

e(λ)s(λ) (1)

Where e(λ) is the energy of light at a given wavelength λ

and s(λ) is the camera sensitivity profile for a certain color

channel. We compare the performance recovering physiologi-

cal parameters using all 31 possible combinations of the color

bands in Section IV. Custom image capture software was used

to record raw images of each frame of video. All the videos

were recorded with a frame rate of 30 frames per second (fps)

and a resolution of 960 x 720. The recording were in color

(80-bit image with five channels x 16 bits/channel).

B. Contact Sensors

For comparison of the camera measurements with a contact

sensor, BVP, respiration and electrodermal activity (EDA) sig-

nals were measured using FDA-approved sensors (Flexcomp

Infiniti by Thought Technologies, Inc.). BVP was calculated

via the PPG signal from the index finger tip on the left hand.

EDA was measured with finger sensors on the middle and

ring fingers of both hands and respiration was measured using

a chest strap. For the validation and analysis here we only

consider the BVP and respiration measurements.

C. Experiments

This study was approved by the Institutional Review Board

of the Massachusetts Institute of Technology (COUHES).

All experiments were conducted indoors and with a varying

amount of ambient light, provided by a changing combination
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Fig. 3. Overview of the automated method used to recover the HRV spectrogram from videos of a human face. 1) Facial landmarks are detected using [20]
and the face region of interest (ROI) segmented (excluding the region around the eyes), 2) spatial averages of each color channel in the ROI over time are
calculated, 3) source signals, calculated via ICA, are filtered, 4) the channel with the estimated strongest BVP signal are selected and inverted if necessary,
5) BVP signal is interpolated to 256Hz, peaks detected, and IBIs calculated, 6) spectrogram are calculated with a moving window (window length 60s, step
size 1s).

of sunlight through a nearby window and indoor illumination.

Participants were seated and the data were recorded on a laptop

(Toshiba laptop running Windows 7).

Our experiments featured 10 participants of both genders

(seven females), different ages (18-30) and multiple skin

colors (Asian, Caucasian, Hispanic). Two participants were

wearing glasses and one had facial hair. During the experiment

participants were seated approximately 3m from the camera

and asked to face the camera while their video was recorded.

Figure 4 shows the setup used to record the data. Two-

minute recordings of the participants were taken; the contact

measurements and video sequences were time aligned by

starting the recordings simultaneously.

Measurements at rest: In the first experiment participants

were told to sit still, look toward the camera, and relax.

The synchronized video and physiological recordings were

taken for two minutes. For one of the sessions the contact

finger PPG measurements were noisy due to motion artifacts;

this session was not used for the comparison of the contact

and remote methods. Although the camera method is also

susceptible to motion artifacts this highlights some of the

challenges associated with contact measurements, especially

for tasks where people need to move their hands (e.g. typing).

Measurements under cognitive stress: In the second

experiment participants were asked to perform a mental arith-

metic test (MAT) silently. Starting with the number 4000 they

were required to subtract 7 then subtract 7 again and so on, as

quickly as possible. The synchronized video and physiological

recording were taken for two minutes. The participants started

the task immediately after the recordings were started. In order

to increase the cognitive stress induced we told the participants

that they were competing against the other people to reach the

lowest number after two minutes. The participants consistently

reported this task to be more stressful.

D. Recovery of Physiology from Camera

We propose a new fully-automated method for recovering

the HRV spectrogram from the recorded videos by making

alterations to the method presented in [16]. The alterations

improve the resulting measurements and are described below.

Figure 3 provides an overview of the method. The videos were

exported in an uncompressed format. The physiological and

video recordings were analyzed offline using custom software

written in MATLAB (The Mathworks, Inc.).
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Fig. 4. Experimental set-up. Contact measurements of the blood volume pulse
and electrodermal activity were collected using finger sensors and respiration
was measured using a chest strap. A camera, placed 3m from the participant,
was used to capture videos images at 30fps, 960x720 resolution.

The LEAR [20] facial landmark detector was used to

find the x- and y- coordinates of facial landmarks on the

participant’s face in each frame of the video. As shown in

Figure 3 step 1 we selected the full width between the outer

eye corners (w) and a height twice the width (w above the eye

corners to w below the eye corners) as a box encompassing

the region of interest (ROI). We excluded a section around the

eyes (the full width of the box and 25% of the height around

the eye corners) to remove motion artifacts due to blinking and

eye movements. This adjustment improved correlations with

the contact sensor measurements. The mean number of pixels

within the ROI was 125,000 pixels (st. dev. = 19,100 pixels).

This represents less than 25% of the frame. The minimum

facial ROI used across all videos was 95,000 pixels.

A spatial average of the color channel (red, green, blue,

orange and cyan or a subset thereof) pixel values within the

resulting ROI were calculated for each frame to form the

raw signals x1(t), x2(t), ..., xN (t) respectively, where N is

the number of color channels (between one and five). The

raw traces were detrended using a technique based on a

smoothness priors approach [22]. The smoothness parameter,

λ, was set to 2000. This allowed only very low-frequency

components of the signal to be removed, not damaging the

high frequency information. The resulting signals were nor-

malized by subtracting the mean and dividing by the standard

deviation. We then apply ICA to recover source signals from

the observations, maximizing the non-Gaussianity within the

sources. Using a conventional ICA algorithm the number of

recoverable sources cannot exceed the number of observations;
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thus, we assumed N underlying source signals, represented

by s1(t), s2(t), ..., sN (t). We use the JADE implementation

of ICA [23]. Each of the source signals was band-pass

filtered using a Hamming window filter with low- and high-

frequency cut-offs at 45 beats-per-minute (bpm) (0.75Hz) and

180 bpm (3Hz) respectively. These cut-off frequencies reflect

conservative lower and upper limits in heart rate.

ICA has two properties that make automated analysis chal-

lenging. Firstly, the source signals are returned in a random

order and therefore it is not always the same source which has

the strongest BVP waveform. Secondly, the source signals can

be scaled arbitrarily (and subsequently flipped if scaled by a

number < 0). A flipped BVP signal is problematic when it

comes to peak detection as the calculated inter-beat intervals

(IBI) are typically much less accurate. The following steps are

designed to find the optimal source signal and invert it if the

BVP component within the source has been flipped.

The appropriate source signal was selected by calculating

the normalized fast Fourier transform (FFT) of each source

and choosing the source signal with the greatest frequency

peak within the range 45 - 180 bpm (the same limits as the

bandpass filter 3dB points above). The FFTs were normalized

to give a total power across all frequencies equal to one. This

is similar to the method used by Poh et al. [10]. We verified

this approach by manually choosing the optimal source signal

for the five band signal case and the FFT method agreed on all

occasions. Figure 5a shows examples of source signals and the

power spectra of each source. Clearly, the power spectrum with

the highest peak corresponds to the signal with the strongest

BVP; all other source signals have flatter spectra.

As mentioned above, when using ICA the BVP waveform

may be inverted. In order to automatically predict whether

the selected source signal has an inverted BVP waveform

we calculate the mean absolute peak (µpeakamp) and trough

(µtroughamp) amplitudes (the source signals are returned with

zero mean). For an inverted BVP signal the mean trough

amplitude is likely to be greater than the mean peak amplitude

due to the shape of the BVP waveform. Therefore, if µpeakamp

< µtroughamp the selected source would be inverted (multiplied

by -1). Figure 5 shows examples of a non-inverted and an

inverted BVP signal. Poh et al. [10] did not propose any

technique for detecting inverted BVP signals. In Section IV we

show that this addition improves the accuracy of the resulting

physiological parameters.

The estimated BVP signal was interpolated with a cubic

spline function at a sampling frequency of 256Hz. Peak

detection was performed using a custom algorithm with a

moving time window of length 0.25s. Within the moving

window, if the signal maximum was greater than that in the

previous window the next window would be considered. If

the maximum within the window was less than that in the

previous window then the previous maximum was selected as a

peak and the process would repeat. We tested different window

sizes and found that a window of 0.25s gave the results that

were most closely correlated with the visually verified contact

sensor measurements, results are shown in Table II. Figure 6

shows a 30 second comparison of the PPG waveforms from

the contact sensor and the remote method for one individual.
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Fig. 5. a) ICA returns the source signals in a random order. Source signal
selection is solved by choosing the signal with peak of greatest power in the
normalized FFT spectrum (between 40 and 180 bpm). In the above example
this would mean selecting the second source signal. b) ICA returns source
signals with arbitrary scaling. Problems due to inverted signals are solved by
finding the mean absolute peak and trough heights and inverting the signal if
µpeakamp < µtroughamp.

The visually verified peaks are shown on the contact waveform

and the automatically detected peaks are shown on the remote

waveform. Notice how when using a window size of 0.35s the

beats at 50.3s and 71s are missed but with a window size of

0.25s they are not.

To avoid artifacts (such as motion or ectopic beats) which

can impact the HRV analysis, the resulting IBIs were filtered

using the non causal of variable threshold (NC-VT) algo-

rithm [24] with a tolerance of 30% (Poh et al. [10] found 30%

tolerance to be effective). Finally, inter-beat intervals were

filtered using a low pass filter with cut-off frequency 0.4Hz. In

this analysis we were interested in measuring the high (0.15-

0.4Hz) and low frequency (0.04-0.15Hz) components of the

HRV power spectra and therefore we filtered with a cut-off at

0.4Hz. We construct the HRV spectrograms by calculating the

power spectral density from the IBIs for sequential windows.

For each window the power spectral density (PSD) of the inter-

beat intervals was calculated using the Lomb periodogram. In

this analysis we use a moving window of one minute and the

sessions were two minutes in length, the step size was one

second. We chose these parameters as we wanted to have a

large enough window to measure high and low frequency com-

ponents of the IBIs (between 0.04-0.4Hz) accurately within

each window but also to capture the temporal dynamics in
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Fig. 6. Comparison of 30 second PPG waveforms from the contact sensor and the remote method. Top) Contact sensor waveform with visually verified
peaks (blue). Bottom) Remote measurement waveform with peaks located using a time window of 0.25s (green) and 0.35s (red) (peak locations offset for
comparison). Notice the beats at 50.3s and 71s are missed by the peak detection algorithm with window size 0.35s but not with window size 0.25s.
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Fig. 7. Scatter plots comparing the measurements of (a) heart rate (HR), (b) breathing rate (BR), (c) HRV LF component, (d) HRV HF component, (e) HRV
LF/HF ratio for the contact sensor (finger BVP for HR and HRV and chest strap for BR) and the non-contact method described in Section III using the GCO
band observations. High agreement was observed across all measures. In all cases p < 0.01. n.u. = normalized units. Comparisons made across 19 sessions.

the spectrograms - there was a trade-off in the choice of the

window size between frequency and temporal resolution.

E. Recovery of Physiology from Contact Sensors

To calculate the HRV spectrogram using the PPG mea-

surements from the contact finger sensor we use the same

parameters as above. PPG peak detection was performed

with a moving time window of length 0.25 seconds. For

comparison with the remote measurements the accuracy of the

peak detection was then confirmed using visual inspection, any

missed peaks or false detections were corrected. Spectrograms

were computed by calculating the power spectral density from

the IBIs for a moving window of length one minute, step size

one second, over each two-minute session.

F. Quantification of Physiological Parameters

For a quantitative comparison between the contact sensor

and the camera method, and also comparing to results in

our previous work, we calculate the HR, BR and HRV low

frequency and high frequency components. HR was calculated

as 60/IBI , where IBI is the mean of the inter-beat intervals.

BR can be estimated from the high frequency component

of the HRV [25]. We determine the BR from the frequency

peak (fHFpeak), center frequency of the highest peak between

0.15 and 0.4Hz, of the HRV power spectrum. For the contact

measurements the BR was calculated from the frequency of the

dominant peak fresppeak in the PSD of the recorded respiratory

waveform as 60/fresppeak. The low frequency (LF) and high

frequency (HF) powers of the HRV were calculated as the

area under the PSD curve corresponding to 0.04-0.15 and 0.15-

0.4Hz respectively. These were quantified in normalized units

in order to minimize the impact of a difference in total power.

The LF component is modulated by baroreflex activity and

contains both sympathetic and parasympathetic activity [26].

The HF component reflects parasympathetic influence on the

heart and is connected to respiratory sinus arrhythmia (RSA).

An estimate of sympathetic modulation (the sympatho/vagal

balance) can be made by considering the ratio LF/HF.

IV. RESULTS

Using the analysis described in Section III we calculated

physiological parameters from the BVP waveforms extracted

from the camera signals and the contact sensor.

Comparison of Color Channels: In order to compare the

results to those that would be recorded with most conventional

digital cameras and to analyze the impact of each color band

on the performance we repeated the analysis described in

Section III using: 1) each signal band alone, 2) all pairs of

bands, 3) all combinations of three bands, 4) all combinations

of four bands and 5) all five band (RGBCO) channel signals.

Table I shows the correlation between the camera measures

and the contact finger measures for all the cases on the

left side. For the comparisons peaks detected in the contact

measurements were confirmed visually. On the right side we

show the color channel combinations ordered with respect

to ascending mean HR, BR, LF, HF and LF/HF correlation

(r). The GCO combination had the greatest mean correlation
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TABLE I
COMPARISON OF THE CORRELATIONS BETWEEN THE CONTACT FINGER

SENSOR MEASUREMENTS AND CAMERA MEASUREMENTS FOR ALL

COMBINATIONS OF THE CAMERA COLOR CHANNEL SIGNALS. FOR ALL

CORRELATIONS p < 0.01. ON THE RIGHT ARE THE CHANNEL

COMBINATIONS ORDERED FROM LOWEST MEAN CORRELATION TO

HIGHEST MEAN CORRELATION. THE GCO CHANNEL COMBINATION

PERFORMED BEST. COMPARISONS MADE ACROSS 19 SESSIONS.

HR BR LF HF LF/HF

R 0.99 0.95 0.60 0.60 0.57
G 0.99 0.91 0.63 0.63 0.63
B 0.99 0.93 0.68 0.68 0.70
C 0.85 0.44 0.64 0.64 0.64
O 0.83 -0.02 0.43 0.43 0.34

RG 0.97 0.66 0.72 0.72 0.74
RB 0.95 0.89 0.47 0.47 0.47
RC 0.99 0.67 0.69 0.69 0.73
RO 1.00 0.93 0.88 0.88 0.89
GB 0.89 0.75 0.44 0.44 0.44
GC 0.99 0.83 0.82 0.82 0.82
GO 1.00 0.98 0.88 0.88 0.88
BC 0.99 0.68 0.61 0.61 0.65
BO 1.00 0.92 0.87 0.87 0.87
CO 0.99 0.67 0.40 0.40 0.48

RGB 0.85 0.67 0.45 0.45 0.46
RGC 0.99 0.75 0.67 0.67 0.71
RGO 1.00 0.92 0.83 0.83 0.86
RBC 0.99 0.69 0.71 0.71 0.68
RBO 1.00 0.92 0.83 0.83 0.83
RCO 1.00 0.90 0.91 0.91 0.89
GBC 0.99 0.77 0.80 0.80 0.78
GBO 1.00 0.93 0.84 0.84 0.83
GCO 1.00 0.93 0.93 0.93 0.93
BCO 0.99 0.84 0.69 0.69 0.77

RGBC 0.99 0.89 0.72 0.72 0.68
RGBO 1.00 0.81 0.79 0.79 0.81
RGCO 1.00 0.90 0.87 0.87 0.86
RBCO 1.00 0.90 0.81 0.81 0.77
GBCO 1.00 0.72 0.83 0.83 0.80

RGBCO 1.00 0.74 0.81 0.81 0.79

Lowest r

O

RGB

CO

GB

C

RB

BC

R

RC

RBC

G

RGC

RG

BCO

B

RGBC

GBC

RGBCO

GBCO

RGBO

GC

RBCO

RBO

GBO

RGO

RGCO

BO

RO

RCO

GO

GCO

Highest r

TABLE II
COMPARISON OF THE CORRELATIONS BETWEEN THE CONTACT FINGER

SENSOR MEASUREMENTS AND CAMERA MEASUREMENTS FOR THE GCO
CHANNEL COMBINATION - WITH DIFFERENT PEAK DETECTION WINDOW

SIZES. WIN. SIZE: 0.25S SHOWS THE HIGHEST CORRELATION.

Win. Size HR BR LF HF LF/HF

0.15s 0.95 0.92 0.68 0.68 0.61
0.20s 1.00 0.88 0.94 0.94 0.92
0.25s 1.00 0.93 0.93 0.93 0.93
0.30s 1.00 0.83 0.88 0.88 0.86
0.35s 0.96 0.63 0.83 0.83 0.83

across all measures. Interestingly, the O band alone had the

lowest mean correlation across all measures, but is present in

all of the 10 top-performing combinations.

Figure 7 shows the correlations between the non-contact and

contact measurements for the a) HR, b) Breathing Rate (BR),

c) HRV LF, d) HRV HF and e) HRV LF/HF measurements.

The camera values were computed using the GCO channels.

These results show high agreement between the remote method

and the finger PPG measures and are improved over those

presented by Poh et al. [10] despite the camera being much

further from the subject here (3m compared to 0.5m).

HRV Spectrograms: We calculated the HRV spectrograms

from the two minute sessions using a one minute sliding win-

dow with one second increments. This is the first example we

are aware of that shows the HRV spectrograms calculated from

TABLE III
COMPARISON OF THE CORRELATIONS BETWEEN THE CONTACT FINGER

SENSOR MEASUREMENTS AND CAMERA MEASUREMENTS FOR THE GCO
CHANNEL COMBINATION - WITH AND WITHOUT INVERSION CORRECTION

OF THE SELECTED SOURCE SIGNAL AFTER ICA. FOR ALL CORRELATIONS

p < 0.01.

HR BR LF HF LF/HF

without inversion correction 1.00 0.90 0.86 0.86 0.88
with inversion correction 1.00 0.93 0.93 0.93 0.93

non-contact video sequences. Figure 8 shows a comparison

of spectrograms recovered from the three band (RGB) and

three band (GCO) recordings next to those from the contact

finger measurements. On the left are examples from sessions

in which the participants were at rest and on the right are

examples in which the participants were under cognitive stress.

Impact of Inversion Correction Step: Table III shows

the impact of inverting the source signal output from ICA.

Without this step some of the source signals have an inverted

BVP and in these cases calculation of the IBIs is problematic.

Our new method of detecting and correcting for inversion

gives a closer estimation of the HRV spectra and subsequent

parameters when compared to the contact measures.

Performance in Rest and Stress Conditions: Figure 7

shows the correlations between the non-contact and contact

measurements for all the data. Here we compare the per-

formance of the algorithm for the rest and stress conditions

separately. In the rest condition the HR, BR, HRV LF, HF and

LF/HF correlations with the contact sensor were: 1.0, 0.90,

0.87, 0.87, 0.86 respectively. In the stress condition the HR,

BR, HRV LF, HF and LF/HF correlations with the contact

sensor were: 1.0, 0.91, 0.97, 0.97, 0.95 respectively. The

results show good performance in both conditions. Although

the correlations were slightly lower in the rest condition

perhaps due to the slower breathing rates which may be harder

to estimate within the time window.

V. DISCUSSION

Our results in Table I show high correlation between the

contact measures and the camera measures, despite the camera

being placed 3m from the participant. The best performing

combination of channels was GCO, which was only outper-

formed by other combinations for the BR correlation. The

orange band featured in the top ten combinations of channels:

This suggests it is capturing significant information. However,

other observations are also needed to help boost the signal to

noise ratio. The orange band is close to the green band and this

supports previous work that showed strong measurement of the

BVP in the green frequency range [9]. In order to improve

remote PPG measurements using digital cameras these results

suggest one should include color channel sensors closer to the

orange, green and cyan frequencies.

Heart rate measurements were highly correlated across

almost all of the channels. This is because the dominant

frequency measurement is not highly susceptible to poor peak

detection on the BVP. However, the correlations of other

measures - which all rely on accurate BVP peak detection -

varied greatly. The benefit of the additional color bands stands

out as they allow for the recovery of a much cleaner BVP
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Fig. 8. Heart rate variability spectrograms calculated using: Top) RGB camera signals, middle) GCO camera signals and bottom) contact finger sensor.
Qualitatively the measurements from the GCO channels more closely match those from the contact sensor (reinforcing the quantitative comparisons in
Table I). On the left are sessions in which participants 5 and 10 were at rest and on the right are sessions in which participants 5 and 10 were under cognitive
stress. There are stronger low frequency components in the latter as we would expect less parasympathetic nervous system activity. The measurements for
participant 5, under cognitive stress, made using the camera suggest that the camera (using GCO bands) may have been more accurate than the finger sensors.

signal and therefore more accurate source signal selection,

scaling and peak detection.

Interestingly, the RGB combination of color channels, used

in today’s standard digital cameras, was one of the worst per-

forming combinations of channels. The measurements using

the GCO combination of color channels show high agreement

between the remote method and the finger PPG measures and

are greater than those presented by Poh et al. [10] despite the

camera being much further from the subject (3m compared to

0.5m) and our inclusion of variable lighting, different colors of

skin and subjects wearing glasses. The spectrogram calculated

from the five band observations is closer to that of the finger

measurements and in example P5 of Fig. 8 actually seems to

be more accurate than the finger measurements - perhaps due

to motion artifacts as a result of the fingers moving. However,

we cannot be certain that this is the case - we will investigate

the impact of motion more in future work.

We can see from the spectrograms that there is greater low

frequency power in the HRV spectra for those individuals

under cognitive stress, this is what we would expect due

to less parasympathetic activity. Across all participants the

mean HRV LF/HF ratio in the stress condition (0.81) was

significantly higher (p<0.005) than in the rest condition (0.51).

Eight of ten participants had a higher HRV LF/HF ratio during

the stress condition compared to the rest condition. Higher

EDA response was also observed in eight of ten participants

in the stress condition relative to the rest condition (seven

participants had higher HRV LF/HF ratio and higher EDA

response in the stress condition).

VI. CONCLUSIONS AND FUTURE WORK

We have presented physiological measurements (HR, BR,

HRV LF and HF components) from camera images of the

human face. Using a novel five band camera sensor we show

that an orange color channel helps boost the performance of

physiological measurement using a digital camera. A com-

bination of cyan, green and orange color channels was the

best performing. The RGB channel combination was one

of the poorest performing. The GCO channel combination

outperformed the RGB channels for all individuals showing

that the best performance occurred across a range of skin tones

and under varying ambient lighting conditions. We compared

the camera measurements with those from traditional contact

measurements. The agreement between the contact and camera

measurements was very high. The measurements were made

with a digital camera placed 3m from the face of the partici-

pant, a greater distance than in results presented previously.

We present the first examples of HRV spectrograms calcu-

lated from videos of the human face. Qualitative comparisons

between the spectrograms measured using the camera and the

contact sensors show close agreement.

There are certain limitations that should be noted when

considering these results. In these experiments the participants

were free to move; however, they were seated and did not

turn away from the camera. A real-time system would need

to address issues such as artifacts due to incorrect/missing

face tracking results, rigid head motions and dramatic ambient

light changes. We have tested the system against data from

10 individuals and demonstrated very strong performance.

However, for certain applications - such as infant monitoring

- testing would need to be performed on a representative

population. Future work will consider measurements as people

perform computer tasks and investigation of whether cognitive

stress can be predicted from remotely measured changes in

cardio-pulmonary activity. Comparisons between the measure-

ments made by the camera and electro-cardiogram (ECG)

measurements of HR and HRV components would also be a

useful extension. In this work all the analysis was performed

off-line. We leave a real-time implementation of the approach

to future work.
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