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Abstract—In this paper we describe a novel HMM-based
system for off-line handwriting recognition. We adapt successful
techniques from the domains of large vocabulary speech recog-
nition and image object recognition: moment-based image nor-
malization, writer adaptation, discriminative feature extraction
and training, and open-vocabulary recognition. We evaluate those
methods and examine their cumulative effect on the recognition
performance. The final system outperforms current state-of-the-
art approaches on two standard evaluation corpora for English
and French handwriting.

I. INTRODUCTION

The methods used in today’s state-of-the-art large vocabu-
lary handwriting recognition systems can be divided into two
groups. The first group comprises algorithms that have their
roots in image processing and have been designed to explicitly
deal with challenges introduced by handwritten documents.
Those challenges include: differences in image contrast, cur-
sive writing resulting in text being slanted, and variations in
size and shape of characters. The second group represents gen-
eral learning methods that have been successfully adopted from
other domains, most notably from speech recognition; and are
only loosely related to dealing with handwritten documents.
Because the word and character segmentation is a nontrivial
problem, most of the today’s state-of-the-art systems utilize
approaches that infer it implicitly; mainly HMM models or
recurrent neural networks. The ability to adapt to a text coming
from writers not seen in training is an another requirement put
on the modern systems. Moreover the systems have to deal
with large vocabularies containing hundreds of thousands of
words composed of dozens of different characters.

In this paper we present a novel and robust system for off-
line handwriting recognition. We introduce the relevant algo-
rithms and measure the successive improvement in recognition
performance. Sections II-A and II-B describe a moment-based
scheme for preprocessing and feature extraction. We explain
the refinements over the method published in [1]. Sections II-C
and II-D introduce all maximum-likelihood–based components
of the system: model length estimation and writer adaptation.
We investigate how these methods work together with the
moment-based preprocessing. Furthermore section II-E gives
an overlook on discriminative feature extraction using neural
networks, and discriminative training of HMM models. We
observe how various combinations of discriminative learning
work together with the writer adaptation method. Finally
section II-F describes the principle behind the open-vocabulary
recognition. In section III-B we report results on two standard

evaluation corpora for English (IAM) and French (RIMES)
handwriting. Section III-C contains a comparison to the best
published results. Our systems outperforms other approaches
and scores 13.3% and 13.7% word error rate on the evaluation
set of the IAM and RIMES corpora respectively.

II. SYSTEM DESCRIPTION

A. Preprocessing

The information about the segmentation of text pages into
text lines is provided in the corpora we use. The preprocessing
starts with normalizing the contrast of gray-scale images. We
use an algorithm that maps 70% of the lightest pixels to white
and 5% of the darkest pixels to black. The rest of the pixels is
normalized linearly. Then we correct the slant of images with a
median of angle values estimated by three different deslanting
algorithms [2][3][4]. The algorithms work by shearing the
image with an angle from a certain range and evaluating
those transformations with different objective functions. After
deslanting we extract frames with an overlapping sliding
window of width 30 pixels and shift 3 pixels. The height of the
sliding windows is equal to the size of the original image. A
horizontal cosine window is applied to each frame to smooth
the image on its borders.

We compute the 1st- and 2nd-order moments for each
frame independently. The 1st-order moments represent the
center of gravity which is used to shift the content of the
frame to the center of the image. The 2nd-order moments
correspond to the weighted standard deviation of the distance
between pixels in the frame and the center of gravity. They
are used to compute the scaling factors. Figure 1 illustrates

(a) (b) (c)

Fig. 1: Original image (a) and the results of 1st-order (b) and
2nd-order (c) normalization.
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the normalization procedure on a selected frame. The moments
are computed not from the gray-scale image itself, but from
the gradient of that image, which is approximated by the
magnitude of the vertical and horizontal Sobel operators. Each
frame is normalized in such a way that the resulting moments
of all frames are equal after the normalization. The resulting
dimensions of the frame are 8 × 32 pixels. The aspect ratio
is not kept during normalization because the vertical and
horizontal moments are computed and normalized separately.
For the definition of moments and normalization formulas
please refer to [1].

B. Feature extraction

Every frame extracted with the sliding window is trans-
formed into a single feature vector. The gray-scale values
of all pixels in a frame are used as features and are further
reduced by PCA to 20 components. The number of principal
components of the PCA transformation has a small influence
on the recognition performance. Note that the moment-based
normalization procedure has a serious effect on the inter-class
distances. Objects of different size but similar shape are closer
to each other. This effect is magnified by the distortion caused
by the changed aspect-ratio. In order to overcome this inter-
class similarity we augment the feature vector by adding the
original moments:[
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]
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where py is the value m01/m00 computed over an entire text
line and gives a rough estimate of the vertical baseline. A
negative value of the second dimension of (1) suggests an
ascender, a positive one a descender. mpq is a geometric
moment of order p+q computed over pixels’ gray-scale values.
μpq is a geometric moment shifted by the center of gravity
and is called a central moment. In this way we map the class-
specific moment information, which was originally distributed
over the whole image, to specific components of the feature
vector. The final feature vector has 24 dimensions. For the pur-
pose of training and recognition one segment for the decoder
constitutes of a sequence of concatenated feature vectors that
have been extracted from a single page.

C. HMM structure

Every character is modelled by a Viterbi-trained left-to-
right HMM with loop and skip transitions. Those transitions
(treaded as penalties in negative log scale) are constant and
fixed across all models. The loop and skip penalties are equal
to 3, and the forward transition is not penalized. There is an
additional penalty in the decoder for exiting the HMM model,
which controls the number of insertions during recognition.
The HMM structure consist of segments, each segment consists
of 2 states sharing the same emission distribution. This topol-
ogy ensures that no emission distribution is omitted during
training. The number of segments per character varies and is
computed as follows from initial training alignment:

Sc = fP
Nx,c

Nc
(2)

where Sc is the estimated number of segments for character
c, Nx,c is the number of frames aligned to c, Nc is the number

Fig. 2: Illustration of the LSTM-RNN tandem HMM system. A
baseline HMM is applied in a forced alignment mode in order
to generate frame-wise labels. The LSTM-RNN is trained with
this labeling and the activations of a hidden layer are used as
features to train a new HMM system afterwards.

of occurrences of c in training, and fP is a scaling factor. The
technique of adjusting the number of HMM states per character
is called model length estimation (MLE) [5]. A comparison
of different methods for optimizing the number of states can
be found in [6]. The initial alignments are created during the
training of the system using a constant number of segments
equal to 6. We model the emission distributions of our HMM-
based system using Gaussian mixtures with 64 densities and
a globally-pooled diagonal covariance matrix.

D. Writer adaptation

A very common approach to writer adaptation for Gaus-
sian mixture HMM models is the maximum likelihood lin-
ear regression (MLLR). The method works by normalizing
means and eventually covariances of the mixture components
to compensate for writer variations. In the constrained case
(CMLLR) we force the mean transformations to be equal to the
covariance transformations. This method has been described
in detail in [7]. It is desirable to estimate transformation
matrices for all emission distributions, but because of lack
of training data the matrices are usually grouped into so
called regression classes [8]. Here however we pool over
all HMM states which results in one global transformation
matrix for each writer. Moreover we apply the transformation
in the feature-space instead of the parameter space, so no
changes in the decoder implementation are needed. The frame-
to-state alignments required for training of the matrices are
obtained from a previous training iteration. We compute one
transformation matrix for every writer in both training and
recognition.

The recognition is performed in two passes. In the first pass
we obtain transcriptions for the test set using a system that has
been trained on non-transformed features. We use those tran-
scriptions to create frame-to-state alignments and to compute
transformation matrices. Because the writer information is not
available in the test set, we assume that every text page comes
from a separate writer. In the second pass we perform the final
recognition using the transformed features.

E. Discriminative training

Discriminative HMM training and discriminative feature
extraction methods have shown to improve system perfor-
mance of HMM-based recognition systems [9]. In our system
we perform a discriminative feature extraction using a neural-
network–based tandem approach [10]. In particular we use the
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TABLE I: Evaluation of the preprocessing algorithms on the
IAM development set.

Method WER [%] CER [%]
No preprocessing 34.6 22.8
Contrast, deslanting 21.3 10.9
Moments 19.9 10.6
Contrast, deslanting, moments 14.6 5.5

TABLE II: Evaluation of the modeling techniques on the IAM
development set.

Method WER [%] CER [%]
Standard 14.6 5.5
MLE 14.1 5.0
MLE, CMLLR 13.1 4.4

Long-Short-Term-Memory recurrent neural network (LSTM-
RNN) [11] which was successfully applied to several sequence
learning problems including handwriting recognition [12]. The
LSTM-RNN is trained on the frame level. The labeling of
the frames is obtained by applying the HMM-based system
described in the previous sections to the training data in
a forced alignment mode. The overall training procedure is
depicted in Figure 2.

In our experiments we trained a bidirectional LSTM-RNN
with two hidden layers containing 100 and 200 hidden nodes
respectively resulting in roughly 850k weights. The network
was trained with Backpropagation-Through-Time [13]. Con-
vergence was detected using a validation set consisting of
roughly 20% of the training data. After convergence, the
network was applied to all frames and the activation pattern of
the first hidden layer was extracted. Through the bidirectional
network topology a 200-dimensional feature vector was pro-
duced in this way, which was further normalized and reduced
by PCA to 20 components. The resulting neural-network–
based features were used to train a new HMM system using
the same HMM topology as described in the previous section.

Although the extracted features already contain discrimina-
tive information about the classes it has been shown in [9] that
discriminative HMM training with those features can improve
recognition performance. In our experiments we used the
modified minimum phone error criterion (M-MPE) [14][15].
Convergence of the iterative training procedure was detected
by evaluating the system on the development set of the IAM
database. In our experiments the training was very robust and
the objective function reached its minimum after 50 iterations.

F. Language modeling

The recognition of Out-of-vocabulary words requires going
beyond the standard word-level language models and being
able to transcribe sub-word units, most desirably single char-
acters. There have been numerous approaches to this problem
with character-level and mixed language models [16][17][18].
In our system we use a combination of two language models
[19]. Additionally to a standard word-level language model
we use a separate n-gram character-level language model
for out-of-vocabulary word detection and recognition. The

TABLE III: Evaluation of the discriminative training proce-
dures on the IAM development set.

Method WER [%] CER [%]
Maximum likelihood 13.1 4.4
M-MPE 12.2 4.7
LSTM-RNN 12.2 3.6
LSTM-RNN, M-MPE 11.9 3.2

TABLE IV: Evaluation of the open-vocabulary recognition on
the IAM development set.

Method WER [%] CER [%]
Maximum likelihood, OOV 10.7 3.8
LSTM-RNN, OOV 10.1 3.4
LSTM-RNN, M-MPE, OOV 9.5 2.7

probabilities assigned by those two models are combined
into one Bayes decision rule. This approach clearly separates
the word representation from character representation. The
contexts of those two language models are separated so words
and characters do not interfere with each other. The language
models can also have different orders and can be created using
different discounting methods. Moreover a very important
word lexical constraint is retained as opposed to pure character-
level language models.

III. EXPERIMENTS

A. Databases and language models

The IAM database [20] consist of images of handwritten
English text sentences. There are 747 paragraphs of text for
training, 116 for development, and 336 for evaluation. A writer
appearing in one set does not appear in any of the other sets.
There are 283 different writers in the training set. The language
models have been built upon the combined LOB [21], Brown
[22], and Wellington [23] corpora. We have excluded the
sentences appearing in the IAM development and evaluation
sets for the purpose of training the language models. As word-
level language model (LM) we use a standard 3-gram model
with modified Kneser-Ney discounting built upon the training
text source containing one sentence per line. The vocabulary
consists of 50k most frequent words from the training set,
which leads to a 4% OOV rate on the development set. The
perplexity of the LM is 420. Our 10-gram character-level LM
has been built upon a list of OOV words extracted from the
training set. The character inventory contains 77 characters
plus silence and noise. Because we recognize whole paragraphs
of text, which contain multiple sentences, the LM has to be
able to hypothesize the sentence boundary.

The RIMES Database [24] comes from the ICDAR 2011
block-recognition competition and consists of images of hand-
written French text sentences. There are 1500 paragraphs for
training and 100 for evaluation. We have built the word-level
4-gram LM upon the annotations of the training set. The
perplexity of the LM is 26. There are 672 different writers in
the training set. We have not applied the character-level LM
because of insufficient amount of training data. The character
inventory contains 96 characters plus silence.
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TABLE V: Evaluation of the modeling techniques on RIMES.

Method WER [%] CER [%]
Standard 16.5 5.9
MLE 15.9 5.6
MLE, CMLLR 15.7 5.5

TABLE VI: Evaluation of the discriminative training proce-
dures on RIMES.

Method WER [%] CER [%]
Maximum likelihood 15.7 5.5
LSTM-RNN 13.9 4.8
LSTM-RNN, M-MPE 13.7 4.6

B. Experimental results

Error rates are calculated using the Levenshtein distance
between references and hypotheses. We evaluate the methods
summarized in this paper on the development set of the IAM
database. As evaluation metrics for our experiments we use
the word error rate (WER) and character error rate (CER).

Table I summarizes the effect of the preprocessing methods
described in Section II-A. Contrast normalization and deslant-
ing are essential preprocessing steps improving the baseline
system by 10.6% WER absolutely. Alternatively a system with
only moment-based size normalization achieves an absolute
improvement of 12% WER. Applying all the preprocessing
steps together further improves the system by 5.3% WER. It
is important to note that robust preprocessing is crucial for
obtaining state-of-the-art results. A detailed comparison can
be found in section III-C.

Table II summarizes the effect of modeling techniques
explained in sections II-C and II-D. Estimating a different
number of HMM states per character (MLE) reduces the
WER further from 14.6% to 14.1%. The writer adaptation
with CMLLR brings another reduction of the WER to 13.1%.
This Maximum-likelihood trained system serves as a baseline
for the discriminative feature extraction and training methods
described in Section II-E.

The LSTM-RNN tandem system evaluates to a WER of
12.2% which could further be reduced to 11.9% WER with
the discriminative HMM training using the M-MPE criterion.
Applying the M-MPE training to the writer-adapted features
evaluates to an WER 12.2%. The difference in WER be-
tween the LSTM-RNN tandem system and the system without
LSTM-RNN training is only 0.3%. However, it is worth
mentioning that the CER is reduced by 0.8% through the
LSTM-RNN training. The discriminative training procedures
are compared in Table III.

Table IV summarizes the results of the open-vocabulary
recognition with different systems evaluated before. In case of
our discriminative-trained system we obtain an improvement
from 11.9% to 9.5%. We manage to recognize 32% of the OOV
words correctly. The recognition accuracy of the in-vocabulary
words also improves. The statistics are calculated using the
Levenshtein alignment. On the evaluation set our final system
reaches the word error rate of 13.3%.

TABLE VII: Comparison with results reported by other groups
on the IAM development and evaluation sets.

Systems Voc. WER [%] CER [%]

Dev. Eval Dev. Eval
Our system 50k 9.5 13.3 2.7 5.1
España et al. [25] 50k 19.0 22.4 - 9.8
Toselli et al. [26] 9k - 25.8 - -
Graves et al. [12] 20k - 25.9 - 18.2
Bertolami et al. [27] 20k 26.8 32.8 - -

TABLE VIII: Comparison with results reported by other
groups on RIMES evaluation set from the ICDAR 2011
competition.

Systems WER [%] CER [%]
Our system 13.7 4.6
A2IA [28] 15.2 7.2
Telecom ParisTech [29] 31.2 -

We trained the same system on the RIMES database.
The advancements coming from the preprocessing and the
model length estimation procedure were comparable to those
experienced on the IAM database. However the improvement
coming from writer adaptation was negligible, as seen on table
V. The discriminative training procedures showed a similar
performance to the one demonstrated on the IAM database, as
seen on table VI. The final result of our system on the RIMES
database is 13.7% word error rate.

C. Comparison with the state-of-the-art

Table VII shows the comparison of the results on the
IAM database. We achieve a word error rate of 13.3% on the
evaluation set, which is the best result published so far. In [25]
neural networks were used to perform particular preprocessing
steps and finally another neural network was used to estimate
the state posterior probabilities. Toselli [26] used an HMM
model with features composed of gray values and gradients.
In [12] the authors used an LSTM recurrent neural network
with a CTC output layer. In [27] a voting strategy was applied
to a set of HMM models. Table VIII shows the comparison of
the results on the RIMES database, where Menasri [28] used a
combination of an HMM model and recurrent neural networks.
We achieve a word error rate of 13.7% on the evaluation set,
which is the best result published so far. Missing numbers in
tables VII and VIII were not included in the referenced papers.

IV. CONCLUSIONS

We have shown that certain preprocessing, adaptation, and
discriminative learning methods presented in this paper bring
a cumulative improvement of the recognition results. Those
methods can be successfully combined and used to build a
state-of-the-art HMM-based system. On the IAM and RIMES
evaluation sets our system outperforms other approaches and
scores 13.3% and 13.7% word error rate respectively.
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