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Abstract Realistic regional climate simulations are

important in understanding the mechanisms of summer

rainfall in the southeastern United States (SE US) and in

making seasonal predictions. In this study, skills of SE US

summer rainfall simulation at a 15-km resolution are eval-

uated using the weather research and forecasting (WRF)

model driven by climate forecast system reanalysis data.

Influences of parameterization schemes and model resolu-

tion on the rainfall are investigated. It is shown that the

WRF simulations for SE US summer rainfall are most

sensitive to cumulus schemes, moderately sensitive to

planetary boundary layer schemes, and less sensitive to

microphysics schemes. Among five WRF cumulus schemes

analyzed in this study, the Zhang–McFarlane scheme out-

performs the other four. Further analysis suggests that the

superior performance of the Zhang–McFarlane scheme is

attributable primarily to its capability of representing rain-

fall-triggering processes over the SE US, especially the

positive relationship between convective available potential

energy and rainfall. In addition, simulated rainfall using the

Zhang–McFarlane scheme at the 15-km resolution is com-

pared with that at a 3-km convection-permitting resolution

without cumulus scheme to test whether the increased

horizontal resolution can further improve the SE US rainfall

simulation. Results indicate that the simulations at the 3-km

resolution do not show obvious advantages over those at the

15-km resolution with the Zhang–McFarlane scheme. In

conclusion, our study suggests that in order to obtain a

satisfactory simulation of SE US summer rainfall, choosing

a cumulus scheme that can realistically represent the con-

vective rainfall triggering mechanism may be more effec-

tive than solely increasing model resolution.

Keywords Southeastern United States � Summer

rainfall � Weather research and forecasting (WRF) model �
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1 Introduction

The southeastern United States (SE US) is one of the fastest-

developing regions in the nation. With its growing popula-

tion and economy, warm-season precipitation plays an

increasinglymore important role inmany aspects of regional

sustainability, including hydrology, ecology, and agriculture

(e.g., Riha et al. 1996; Manuel 2008; Martinez et al. 2009).

Thus, accurate regional climate simulations for the SE US

are important to its summer rainfall predictions.

Such a need, however, is hampered by the lack of sat-

isfactory climate simulations over the SE US using either

general circulation models (GCMs) or regional climate

models (RCMs). Limitations of GCMs in simulating SE

US summer rainfall are due mainly to their relatively

coarse resolution (*200 km) and unrealistic model phys-

ics (Taylor et al. 2012). Thus, these models are unable to

provide reliable details of SE US climate systems at spatial

scales of\200 km (Pielke 2002; Mearns et al. 2003; Castro

et al. 2005; Feser et al. 2011; Li et al. 2013b).

The complexity of summer rainfall in the SE US orig-

inates from the interweaving of land–sea distribution,
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complex terrain, diversified vegetation, land use/land cover

change, as well as other factors and processes such as sea

surface temperature. Over the coastal regions, summer

rainfall is influenced by land–sea breezes and hurricane

landfallings (Knight and Davis 2007), and the Appalachian

Mountains often induce orographically uplifted rainfall. In

addition, the passage of frontal systems also contributes to

SE US summer rainfall (Kunkel et al. 2012). Differences in

the factors that control rainfall in different subregions of

the SE US make the summer rainfall highly heterogeneous

(e.g., Stooksbury and Michaels 1991; Baigorria et al. 2007;

Li et al. 2013a). These spatially heterogeneous features

cannot be well represented by GCMs due to their coarse

resolution and oversimplified physics (Taylor et al. 2012).

Thus, dynamical downscaling with RCMs that have

sophisticated structure and physics could be an effective

way to better represent SE US summer rainfall systems

(e.g., Giorgi and Mearns 1999; Leung et al. 2003; Castro

et al. 2005; Mearns et al. 2012).

However, the SE US is a region where satisfactory RCM

simulation skill has not yet been achieved (e.g., Lo et al.

2008; Walker and Diffenbaugh 2009; Mearns et al. 2012;

Bowden et al. 2013). Previous studies have found that the

RCMs participating in the North American Regional Cli-

mate Change Assessment Program (NARCCAP) show bias

in warm-season precipitation over the SE US. In particular,

the Weather Research and Forecasting (WRF) model in

NARCCAP simulates a dry bias (about 40 %) in summer

rainfall, whereas the Regional Climate Model version 3

(RegCM3) and the fifth-generation Pennsylvania State

University—National Center for Atmospheric Research

(NCAR) Mesoscale Model (MM5) simulations indicate a

wet bias (Mearns et al. 2012). The biases of these RCMs in

downscaled summer rainfall limit their ability to predict the

future summer climate in the SE US. Thus, exploring RCM

simulation skills of SE US summer rainfall and under-

standing the underlying physical mechanisms are important

to fulfilling the community’s need for reliable regional

climate information.

The RCM simulation skills in regional climate usually

depend on the initial conditions (ICs), lateral boundary

conditions (LBCs), level of constraint toward driving data,

physical parameterizations, and model resolutions (e.g.,

Christensen et al. 2007; Lo et al. 2008; Foley 2010;

Rummukainen 2010; Feser et al. 2011). The sensitivity of

SE US summer rainfall to the configuration of LBCs has

been emphasized in previous studies (e.g., Seth and Giorgi

1998; Xue et al. 2007). Differences in the configuration of

LBCs can influence the simulated upper tropospheric jet,

large-scale moisture transport pattern, and relative humid-

ity field (Xue et al. 2007), which dynamically and ther-

modynamically affect SE US summer rainfall (Wang et al.

2010; Li et al. 2013a). Generally, previous RCM

experiments have suggested that bias in SE US rainfall

simulation caused by LBCs could be largely reduced by

configuring the southern boundary of the domain north of

the tropics (Liang et al. 2001; Xue et al. 2007).

This study aims to understand the RCM simulation skills

of SE US summer rainfall associated with the other two

factors: physical parameterization scheme and model res-

olution. Analyzed from the climate perspective, the specific

scientific questions addressed in this study are: (1) How

sensitive are SE US summer rainfall simulations to dif-

ferent physical parameterization schemes, and what com-

bination of physical parameterization schemes can

optimize simulations of SE US summer rainfall? (2)

Through what physical mechanisms do the physical

parameterization schemes influence SE US summer rainfall

simulation skills? (3) Since the subgrid-scale parameteri-

zation schemes usually cause uncertainties in rainfall

simulations, could an increase in model spatial resolution

help reduce such uncertainties and improve simulations of

SE US summer rainfall? The answers to these questions are

sought by performing sensitivity tests and using a process-

based evaluation technique.

The remainder of this paper is organized as follows. In

Sect. 2, we describe rainfall observations, the driving

reanalysis data, the configuration of the WRF model, and

the data analysis method. The influence of parameterization

schemes on SE US summer rainfall simulations and their

physical mechanisms are presented in Sect. 3. A discussion

of the resolution dependence of WRF simulations appears

in Sect. 4. In the last section, conclusions are given.

2 Data, methods, and model

2.1 Rainfall observations and driving reanalysis data

In this study, rainfall observations are obtained from the

Climate Prediction Center (CPC) unified daily precipitation

archive (Higgins et al. 2000). The CPC is gridded observa-

tion data with a spatial resolution of 0.25 degree (*25-km).

The SE US is defined as the terrestrial domain over 23.5�N–

36.5�N; 91�W–76�W (Wang et al. 2010; Li et al. 2011). The

reliability of CPC precipitation data over the SEUS has been

verified by Li et al. (2013a). The summer season is defined as

June–July–August (JJA); the seasonalmean thus refers to the

daily precipitation averaged over JJA.

Climate forecast system reanalysis (CFSR) data (Saha

et al. 2010) is adopted in this study to provide initial and

boundary conditions for the simulations. The CFSR is a

global reanalysis dataset, with a horizontal resolution of

0.5� 9 0.5� and 38 pressure levels. The dataset is available

with a 6-h increment. In our analysis, simulations driven by

CFSR data are compared with those driven by the North
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American Regional Reanalysis (NARR, Mesinger et al.

2006), the National Centers for Environmental Prediction

(NCEP)–Department of Energy (DOE) Reanalysis 2

(NCEP-R2, Kanamitsu et al. 2002) and the European

Centre for Medium-Range Weather Forecasts Interim

reanalysis (ERI) products (Dee et al. 2011) and find that the

choice of reanalysis forcing data does not influence sum-

mer rainfall simulations over the SE US in a discernible

way (not shown).

2.2 Selection of sample simulation periods

The focus of this study is the dynamical downscaling skills

of WRF to simulate SE US summer rainfall from a climate

perspective. Previous studies have suggested that WRF

simulation results vary among weather events (Bukovsky

and Karoly 2009). Thus, the simulation period should be

determined objectively to avoid the uncertainties intro-

duced by specific weather events.

In this study, our simulations are focused on a one-

summer period in which the precipitation pattern for the SE

US mimics its climatology during 1948–2010. To identify

such a summer period, we calculate the pattern correlation

coefficient (PCC) and root mean square error (RMSE)

between the precipitation pattern of each summer and its

climatology during 1948–2010. An optimization algorithm

is then applied to select the sample rainfall case for the

WRF simulation. In this algorithm, the PCC (RMSE) cal-

culated for each summer is ranked from high to low (low to

high). The final rank for each summer period is calculated

by combining the PCC and RMSE ranks. The period with

the highest combined rank is then selected as the sample

case for the WRF sensitivity experiment.

The averaged rainfall during any specific period with a

running window of l days is expressed as x, and the 1948–

2010 JJA rainfall climatology is expressed as y. The PCC

and RMSE are defined in Eqs. (1) and (2), respectively. In

both equations, N is the number of grid points over the SE

US domain. The PCC and RMSE are calculated with var-

ious running window lengths (l): 7-, 11-, 15-, 21-, and 31-

day.

PCC lð Þ ¼
PN

i¼1 xðlÞi � x lð Þ
� �

yi � yð Þ
h i

PN
i¼1 x lð Þi�x lð Þ

� �2
� �1

2
PN

i¼1 yi � yð Þ2
h i1

2

ð1Þ

RMSE lð Þ ¼ 1

N

X

N

i¼1

x lð Þi�yi
� �2

" #1
2

ð2Þ

Figure 1a shows the averaged PCC versus the running

window length. As the window length increases, the PCC

increases, indicating that rainfall with increased temporal

scales better resembles the climatological pattern. Statisti-

cally, this result suggests that rainfall averaged over a short

period (\10 days) may not well represent a climatological

pattern. Thus, good simulation of a specific rainfall event

by WRF is not sufficient to ascertain its ability to simulate

rainfall climatology, which is consistent with Bukovsky

and Karoly (2009). The increased PCC, however, gradually

saturates as the running window increases to 15 days

(Fig. 1a). From the 7-day to the 15-day running windows,

the averaged PCC increases from 0.68 to 0.77, whereas as

the window continues to increase to 31 days, the PCC

increases only slightly, by 0.04 (Fig. 1a). The PCC results

suggest that the 15-day window should be sufficient to

obtain a reasonable climate simulation over the SE US;

thus we chose a cut-off window of 15 days. A 15-day

rainfall case would be selected for WRF simulation using

the aforementioned optimization algorithm.

Over 1948–2010, we finally select the period of Aug.

01–Aug. 15, 2009 (Fig. 1b), for the sensitivity simulation

period with the highest combined rank. All sensitivity

experiments are performed using this sample period. The

robustness of the conclusions from the sensitivity experi-

ments is confirmed using a 10-summer (2001–2010) sim-

ulation. It is noteworthy that the optimization algorithm is

(a) 

(b) 

Fig. 1 a Maximum likelihood estimation of pattern correlation

coefficients between running averaged precipitation and CPC SE

US summer precipitation climatology (blue bars). The x-axis is the

length of the running window, and the y-axis is the pattern correlation

coefficients; b SE US precipitation averaged over Aug. 01–Aug. 15,

2009 (shaded, unit: mm day-1)
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designed to select a best representative case of rainfall

climatology, rather than that of an extreme event such as a

drought or flooding event. Thus, the conclusions in this

study apply mainly to the WRF simulation of mean rainfall

over the SE US for summer. Different metrics are needed

to evaluate extreme rainfall events, which is beyond the

scope of this study.

2.3 Model descriptions and experiment setups

The RCM used in this study is the WRF model with the

Advanced Research WRF (ARW) dynamic core version

3.4 (Skamarock et al. 2008). The WRF is a nonhydrostatic,

terrain-following, eta-coordinate mesoscale modeling sys-

tem that has been widely used for operational forecasting

and regional climate applications (e.g., Mearns et al. 2012).

To study the SE US summer rainfall, the model domain

is centered at 30�N, 88�W. The lateral boundary is com-

posed of a 1-point specified zone and a 4-point relaxation

zone to smooth potential pseudo-disturbances caused by

numerical calculation1 (Fig. 2). The horizontal coordinates

use the Lambert conformal conic projection with standard

parallels at 30�N and 60�N. The model consists of 38

vertical layers, and the top level is set to 50 hPa.

The physical parameterization schemes used in this

study include the Dudhia shortwave radiation (Dudhia

1989), Rapid Radiative Transfer Model (RRTM) longwave

radiation (Mlawer et al. 1997), and Noah land surface

model (Chen and Dudhia 2001). In our experiment, the

microphysics, planetary boundary layer physics, and

cumulus schemes vary between different simulations to test

the sensitivity of SE US rainfall to the choice of these

parameterization schemes. For the control experiment, the

Thompson microphysics scheme (Thompson et al. 2008),

the Betts–Miller–Janjic (BMJ) cumulus scheme (Janjic

1994, 2000), and the Bougeault–Lacarrère (BouLac)

planetary boundary layer physics scheme (Bougeault and

Lacarrere 1989) are first selected and additional justifica-

tion is given in Sect. 3.2. For the sensitivity experiments,

the WRF model is initialized on Jul. 27, 2009, and run

through Aug. 15, 2009. The first 5 days are discarded as

spin-up.2

3 Results

3.1 Determination of model resolution

In our analysis, the model resolution is determined by

performing a 2-dimensional discrete cosine transform

(DCT) on the summer rainfall climatology over the SE US.

The DCT algorithm decomposes the rainfall data into

several harmonic waves (Duhamel and Vetterli 1990).

Power spectrum distribution versus wave number (wave-

length) can provide information about the characteristic

spatial scales of rainfall systems over the SE US (Denis

et al. 2002; Bielli and Roca 2010). This information is

utilized in this study to configure the spatial resolution of

the WRF simulation.

Figure 3 shows the spatial power spectrum of SE US

summer rainfall corresponding to the meridional and zonal

wave numbers3 as calculated using the DCT algorithm

(Denis et al. 2002). Over the SE US, a large portion of the

power spectrum energy for summer precipitation is con-

centrated within wave numbers \40 (i.e., spatial scales

greater than 100 km, or approximately mesoscale). As the

spatial scale decreases, the power spectrum energy

decreases as well (Fig. 3a). Over the entire domain, rainfall

systems with a spatial scale of 60 km have\1 % of the

power spectrum energy of 1,000-km systems (Fig. 3b). At

the same time, the rainfall power spectrum approximates a

white spectrum, indicating that rainfall systems with spatial

scales\60 km are relatively stochastic (Fig. 3b).

According to the power spectrum behavior of SE US

summer rainfall, 60 km is characterized as a cut-off

wavelength. Usually, resolving a rainfall system with a

60-km spatial scale requires a model horizontal resolution

of about 15 km (Pielke 2002; Feser et al. 2011). Thus, in

Fig. 2 The southeastern US domain used in the WRF simulations

1 When computing the skill scores of rainfall simulations, we only

consider the rainfall over the terrestrial SE US.

2 The 5-day spin-up time is determined based on our 15-day test

simulation with various spin-up periods ranging from 0 day to

10 days. The rainfall bias over the SE US domain is calculated and it

is found that rainfall bias sharply decreases when spin-up time

increases to 3 days and is stabilized afterward. Thus, spin-up period

longer than 3 days is needed to ensure the numerical stability of the

simulation results. We choose a 5-day period to further ensure the

adequacy of the spin-up time.
3 The wave number in the DCT algorithm can be converted to

wavelength by the relationship, where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ n2
p

is the spatial

wave number (m and n are the zonal and meridional wave numbers,

respectively), and L is the length of the analysis domain (Denis et al.

2002).
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this study, the WRF simulation is configured at a 15-km

horizontal resolution.

3.2 Influence of physical parameterization

on simulation skills

In this study, we focus on three categories of physical

parameterization schemes, that is, microphysics, planetary

boundary layer, and cumulus schemes, which are directly

related to rainfall processes (e.g., Kunkel et al. 2002; Wisse

and Vilà-Guerau de Arellano 2004; Morrison et al. 2009).

The eleven microphysics, eight planetary boundary layer,

and five cumulus schemes available in WRF ARW 3.4 are

investigated. The first set of experiment is to test the sen-

sitivity of WRF simulations to different microphysics

schemes, where the planetary boundary layer physics uses

the BouLac scheme, and the cumulus scheme uses the BMJ

scheme throughout our whole experiments.

To assess the sensitivity of the WRF simulation to

physical parameterizations, the Taylor diagram is used

(Fig. 4). The Taylor diagram combines the PCC and the

ratio of the simulated rainfall standard deviations over

those observed (Taylor 2001) and has been widely used to

evaluate climate models (e.g., AchutaRao and Sperber

2006; Gleckler et al. 2008). In the Taylor diagram, the

distance between the simulated rainfall and observations

reflects the model simulation skills (Taylor 2001).

Figure 4 indicates that the WRF simulation skill does

not change significantly in response to the different

microphysics schemes, as shown in Fig. 4a where the PCC

clusters around 0.50 and the ratio of the spatial standard

deviation is within a range of 0.63–1.02. These results

imply that the microphysics parameterizations embedded

in WRF may be sufficient to represent the microphysical

processes in SE US summer rainfall systems.

In the following experiments, we use the Lin micro-

physics scheme (Lin et al. 1983), which demands the least

computing resources and has the relatively high PCC and

close to unity standard deviation ratio. At the same time,

the BMJ cumulus scheme is used for the iterations of

planetary boundary layer experiments. The set of experi-

ments with different planetary boundary layer schemes

shows a larger spread in the simulation results than that for

microphysics (Fig. 4a, b). This spread comes mainly from

the increased range in spatial standard deviations, whereas

the PCC is concentrated at around 0.50 (Fig. 4b). Among

the tested schemes, the simulation with the MYNN-3

planetary boundary layer physics scheme (Nakanishi and

Niino 2006) generates a PCC of 0.55 and the ratio of the

spatial standard deviation is 0.87 (Fig. 4b). Synthetically,

the simulation by MYNN-3 scheme is the closest to

observations (Fig. 4b). Thus, MYNN-34 is adopted in the

following sensitivity experiments in which only the

cumulus scheme changes.

When the cumulus schemes are varied, the simulation

results show an even wider spread (Fig. 4c) than those for

the planetary boundary layer physics experiments

(Fig. 4b), suggesting that the WRF simulation of SE US

summer rainfall is highly sensitive to the cumulus schemes

included in the model. In Fig. 4c, the ratios of the spatial

standard deviation of SE US summer rainfall show a large

range among the cumulus schemes. The Kain–Fritsch (K–

F) scheme (Kain 2004) produces the largest deviation (3.8

times larger than the observations), while the Zhang–

McFarlane scheme (Zhang and McFarlane 1995) produces

the deviation value closest to the observations. Overall, the

sensitivity experiments reflect the importance of the

cumulus schemes in rainfall simulation over the SE US,

which has also been emphasized in previous studies (e.g.,

Jankov et al. 2005; Bukovsky and Karoly 2009).

(a) 

(b) 

Fig. 3 a Spatial power spectrum (shaded, unit: mm2 day-2) of SE

US summer precipitation climatology as calculated from discrete

cosine transform (DCT); the color scale has been log-scaled; b power

spectrum versus spatial wavelength: the x-axis in the bottom (top) is

the number of wave per kilometer (wavelength). The red dashed line

denotes wavelength = 60 km, where power spectrum decreases to

1 % of that with the largest wavelength

4 The MYNN-3 scheme is not compatible with the Zhang–McFarlane

scheme; thus the UW planetary boundary layer physics scheme is

used in the simulation with the Zhang–McFarlane scheme.
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The above analysis suggests that the cumulus schemes

affect the WRF simulation skills mainly for SE US summer

rainfall. Furthermore, observed evidence shows that SE US

summer rainfall, especially its spatial heterogeneity, is

controlled largely by convective systems (Konrad 1997;

Baigorria et al. 2007; Kunkel et al. 2012), indicating that

realistically representing convective processes in cumulus

parameterization schemes is important for an accurate

simulation of SE US summer rainfall. Thus, an analysis of

how cumulus schemes influence SE US summer rainfall

simulation is imperative to improving rainfall simulation

skills. It can also provide insights into the physical mech-

anisms of rainfall over the SE US.

The simulated spatial patterns of SE US summer rainfall

using different cumulus schemes are compared with

observations in Fig. 5, where the simulated rainfall using

the K–F, Grell and Dévényi (2002), and Grell-3 (Grell and

Dévényi 2002) schemes is overestimated over the SE US

(Fig. 5a–c). In particular, all three schemes tend to simu-

late maximum rainfall over the coast of the Carolinas along

with a southwest-northeast-oriented rain belt sweeping the

eastern coast of the SE US (Fig. 5a–c). Such a rainfall

distribution is not seen in the observations (Fig. 1b).

Averaged over the terrestrial area of the SE US, the net wet

bias is *3 mm day-1 in the simulations using the Grell–

Dévényi or Grell-3 schemes (Fig. 5g, h), and

4.8 mm day-1 using the K–F scheme (Fig. 5f). Rainfall

simulated using the BMJ (Fig. 5d) and the Zhang–

McFarlane schemes (Fig. 5e) reasonably captures the

observed rainfall pattern although the BMJ scheme results

in a net dry bias compared to the observations. The

underestimation of rainfall with the BMJ scheme is most

evident over Florida and the Gulf Coast (Fig. 5i), with a

domain-averaged dry bias of 0.8 mm/day, exceeding one

standard deviation of the interannual variation in SE US

summer rainfall (Li et al. 2013a). Such a rainfall bias is

largely reduced in the Zhang–McFarlane scheme, with a

domain-averaged bias of \0.2 mm day-1 (Fig. 5j). In

addition, the Zhang–McFarlance scheme captures well the

magnitude and local maximum of the rainfall distribution

when compared to the observations (Fig. 5f).

Among the five cumulus schemes tested in this study,

the Zhang–McFarlane scheme outperforms the other four

in its simulated spatial distribution of rainfall (Fig. 5e, j),

domain-averaged rainfall, and the evaluation metrics that

are depicted by the Taylor diagrams (Fig. 4c). Thus, the

improved WRF simulations of SE US summer rainfall can

be generated by applying the Zhang–McFarlane scheme in

combination of Lin microphysics and UW planetary

boundary layer schemes.

(a) 

(b) 

(c) Fig. 4 Taylor diagrams

evaluating WRF simulation skill

of SE US summer precipitation

by using different

a microphysics (dots);

b planetary boundary layer

(asterisks); and c cumulus

(upward triangles) schemes.

The radius represents the ratio

between the WRF-simulated

and the observed spatial

standard deviation of rainfall.

The cosine of the angle equals

the rainfall pattern correlation

coefficients between the WRF

simulations and observations
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3.3 Performance of the Zhang–McFarlane and BMJ

scheme in a 10-year summer rainfall simulation

The sensitivity experiments suggest that the WRF simula-

tion of SE US summer rainfall is most sensitive to the

choice of cumulus schemes. To validate this result, two

10-year (2001–2010) simulations are performed. The

10-year simulation consists of 10 separate summer runs,

without applying any nudging skills. Only the Zhang–

McFarlane and BMJ schemes5 are considered and com-

pared, because both schemes simulate rainfall patterns that

are relatively closer to the observations based on the above

sensitivity experiments (Fig. 5). Furthermore, the Zhang–

McFarlane scheme outperforms all the other schemes,

while BMJ is the only scheme that simulates the dry bias

over the SE US (Fig. 5). Thus, the analysis of the rainfall

simulations with these two schemes provides us with an

understanding of the mechanisms that control the amount

of summer rainfall over the SE US.

Figure 6 compares the simulated and observed rainfall

during the 10-year period. The observed rainfall shows a

sharp spatial gradient along the coastal regions (Fig. 6a),

due mainly to land–sea heating contrasts during the sum-

mer (Wu et al. 2009) and the contribution of tropical

activities (Kunkel et al. 2012). Such a rainfall pattern is

generally captured by both schemes (Fig. 6b, c): the sim-

ulated summer rainfall is heavier over the coastal regions

and decreases inland.

The BMJ scheme, however, underestimates coastal

rainfall by 20 %, especially over Florida, where the dry

bias is more than 2 mm day-1 (Fig. 6b, d). In contrast, the

Zhang–McFarlane scheme not only captures the spatial

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 

Fig. 5 SE US summer

precipitation (shaded, unit:

mm day-1) during Aug. 1–Aug.

15, 2009, as simulated by WRF

with the a K–F; b Grell–

Dévényi; c Grell-3; d BMJ; and

e Zhang–McFarlane schemes. f–

j are the same as a–e, but

showing the simulated bias in

precipitation (shaded, unit: mm

day-1) compared with

observations as in Fig. 1b

5 The Lin microphysics scheme is used for the 10-yr simulation. For

the simulation with Zhang–McFarlane (BMJ) cumulus scheme, UW

(MYNN3) planetary boundary layer schemes are used.
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distribution of the rainfall but also simulates rainfall

magnitude that is fairly close to observations (Fig. 6c, e),

especially over the coastal regions (Fig. 6b–e). The PCC

and RMSE are 0.87 and 0.62 mm day-1 with the Zhang–

McFarlane, respectively, which are better than 0.69 and

1.07 mm day-1 with the BMJ.

The time series of the domain-averaged simulated sum-

mer rainfall are shown in Fig. 7. Due to the substantial dry

bias over the coastal regions (Fig. 5e), the BMJ scheme

underestimates domain-averaged rainfall by

0.66 mm day-1. However, the bias simulated by the Zhang–

McFarlane scheme is reduced to 0.10 mm day-1.

The skill scores obtained from this additional 10-year

simulation agree well with those from the 15-day sen-

sitivity experiments (Sect. 3.2). This consistency suggests

that our statistical method designed to locate a rainfall

pattern that resembles its climatology is effective in

identifying a representative simulation period for con-

ducting the sensitivity experiments. Such a method

should therefore be applicable to regional climate simu-

lations over different regions and temporal periods.

3.4 Mechanism of cumulus scheme impact on SE US

rainfall simulation

Our analysis pinpoints cumulus schemes as one of the most

important elements affecting the ability of WRF to simu-

late SE US summer rainfall. The influences of cumulus

schemes are especially evident over the coastal regions

(Fig. 6), where rainfall is tightly associated with convec-

tive systems (e.g., Knight and Davis 2007; Kunkel et al.

2012). Understanding how different cumulus schemes

generate different spatial patterns and magnitudes of

(a) 

(b) 

(c) 

(d) 

(e) 

Fig. 6 2001–2010 summer

precipitation climatology over

the SE US (shaded, unit:

mm day-1): a observations; and

WRF simulations with the

b BMJ and c Zhang–McFarlane

schemes; their simulation bias

(shaded, unit: mm day-1) is

shown in d and e, respectively

Fig. 7 Interannual variation in summer precipitation (curves, unit:

mm day-1) averaged over terrestrial SE US (23�N–36.5�N, 91�W–

76�W) during 2001–2010. The red curve is the observations, and the

black (blue) curve is the WRF simulation with the BMJ (Zhang–

McFarlane) scheme
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rainfall is thus critical to understanding the WRF simula-

tion skill of SE US summer rainfall.

Here, we focus on the Zhang–McFarlane and BMJ

schemes by analyzing their 10-year simulation results

(Figs. 6, 7). In both schemes, convection adjusts local

atmosphere toward defined equilibrium states, and con-

vective precipitation onsets only when certain triggering

criteria are met (Janjic 1994, 2000; Zhang and McFarlane

1995; Arakawa 2004). Usually, among different parame-

terization schemes, the triggering functions differ sub-

stantially (Table 1). Thus, rainfall-triggering processes

might cause the discrepancies in their simulated rainfall.

To evaluate the rainfall-triggering processes in these two

schemes, the number of rainy days during summer seasons

was counted. Rainy days are defined as those days when

the rain gauge (model grid point) receives more than

0.4 mm precipitation within 24 h in observations (WRF

simulation). A larger number of rainy days indicate more

frequent triggering of rainfall events in the summer. In

addition, average storm intensity is defined as the rainfall

amount averaged over the rainy days.

The observed number of rainy days shows a spatial

pattern that closely resembles the seasonal mean rainfall

pattern (Figs. 6a, 8a). A high frequency of rainfall events

(more than 70 % of the summer seasons) is observed along

the coastal regions (Fig. 8a). In contrast, the average storm

intensity does not show a pattern coherent with observa-

tions. The observed local maximum of storm intensity is in

Oklahoma instead of over the coastal regions where rainfall

occurs more frequently (Fig. 8d). Synthetically, on a sea-

sonal scale, SE US summer rainfall, especially the con-

vective rainfall over the coastal regions, is related more to

the frequency of rainfall events than to storm intensity

(Fig. 8a, d). Such a feature indicates that the parameteri-

zation of rainfall-triggering processes is critical to WRF’s

ability to simulate SE US summer rainfall.

Compared with observations, the better performance of

the Zhang–McFarlane scheme is reflected in its simulation

accuracy in the number of rainy days. Specifically, the

BMJ scheme substantially underestimates the number of

rainy days over the coastal regions by about 10 days per

summer season, resulting in its dry bias in the seasonal

rainfall simulation (Fig. 8b). In contrast, the number of

rainy days over the coastal regions is reasonably simulated

with the Zhang–McFarlane scheme, with only slight

underestimation over Florida (*2 days) (Fig. 8c). Thus,

Table 1 Description of the cumulus schemes tested in this study

Cumulus

scheme

Mass-flux closure and convection triggering References

Kain–Fritsch

(K–F)

(a) The scheme uses a simple cloud model with moist updrafts and downdrafts

(b) Deep convection is activated if parcel vertical velocity remains positive over a depth

that exceeds a specified minimum cloud depth

(c) Activated convection has a given updraft mass flux, based on which downdraft mass

flux is estimated according to the relative humidity

(d) Convective available potential energy (CAPE) is used as mass-flux closure.

Convection rearranges mass in the column until at least 90 % of the CAPE is removed

(e) Originally developed for mesoscale models

Kain and Fritsch (1990, 1993),

Kain (2004)

Grell–Devenyi The Grell–Devenyi and Grell-3 schemes consist of an ensemble of cumulus scheme, in

which multiple schemes are run within each grid box and the results are averaged

Grell and Dévényi (2002)

Grell-3

Betts–Miller–

Janjic (BMJ)

(a) The deep convection profiles depend on the cloud efficiency, which in turn depends

on the entropy change, precipitation, and mean temperature of the cloud

(b) Deep convection is triggered only when entropy changes in the cloud pass a

threshold value

(c) In searching for the cloud top, the ascending particle mixes with the environment,

and the work of the buoyancy force on the ascending particle is required to exceed a

prescribed positive threshold

(d) Originally developed for mesoscale models

Betts (1986), Betts and Miller

(1986), Janjic (1994, 2000)

Zhang–

McFarlane

(a) The scheme is based on a plume ensemble concept. The drafts have the same initial

mass flux and the entrainment rate depends on the large-scale thermal structure of the

atmosphere

(b) Convection exists only when CAPE consumption is positive

(c) Convection removes CAPE, and the convective precipitation (through the

relationship with updraft mass flux), is proportional to the amount of CAPE in the

atmosphere

(d) Originally developed for GCMs

Zhang and McFarlane (1995)
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the more realistic performance of the Zhang–McFarlane

scheme in simulating SE US summer rainfall relies on its

better representation of rainfall-triggering processes.

The reasonable triggering of rainfall events in the

Zhang–McFarlane scheme might be due to the assumptions

it uses to parameterize cumulus convection (Table 1). The

parameterization of the Zhang–McFarlane scheme uses the

convective available potential energy (CAPE) (Zhang and

McFarlane 1995). CAPE is calculated as the vertically

integrated parcel buoyant energy (Moncrieff and Miller

1976) and is usually used to diagnose convection-related

activities (e.g., Emanuel 1994; Tompkins 2001; Li and Fu

2004; Stevens 2005; Adams and Souza 2009).

Over the SE US, summer rainfall shows a positive

relationship with CAPE (Fig. 9c). The distribution of

CAPE almost mirrors the rainfall distribution except in the

Appalachian Mountains, where rainfall is mainly forced by

orographic lifting (Fig. 9a, c). The correlation between

CAPE and summer rainfall is clear over the coastal

regions, with a high CAPE corresponding with high rainfall

amount and rainy day numbers (Figs. 6a, 8a, 9a, c).

In the Zhang–McFarlane scheme, the CAPE criterion is

used to trigger convection in addition to the mass-flux

closure for convection (Table 1; Zhang and McFarlane

1995). Constrained by mass-flux closure, the cumulus

convection removes CAPE accumulated by large-scale

forcing, which acts to stabilize the local atmospheric col-

umn (Zhang and McFarlane 1995). Thus, the Zhang–

McFarlane scheme implies a positive ‘‘CAPE-precipita-

tion’’ relationship (Fig. 9b, d; Arakawa 2004; Adams and

Souza 2009), similar to that observed over the SE US

(Fig. 9a, c). As a result, the observed summer rainfall

pattern (Fig. 6a) and rainy day number (Fig. 8a) over the

SE US are likely to be reproduced by the Zhang–McFar-

lane scheme, with a more frequent onset of convection

leading to stronger seasonal precipitation over the coastal

regions (Figs. 6c, 8c; Liu et al. 2010), where CAPE is the

highest within the SE US domain (Fig. 9b).

In contrast to the Zhang–McFarlane scheme, the other

4 cumulus schemes fail to capture the observed ‘‘CAPE-

precipitation’’ relationship, thus lowering their skills in

simulating SE US summer rainfall. Figure 10 illustrates

the relationship between CAPE and precipitation as

simulated by the other 4 cumulus schemes in the sen-

sitivity experiment. The K–F, Grell–Dévényi, and Grell-3

schemes tend to simulate strong rainfall over regions

with low CAPE values (Fig. 10a–c), resulting in an

overestimate of precipitation across the SE US (Fig. 5).

On the other hand, the BMJ scheme simulates a negative

‘‘CAPE-precipitation’’ relationship over the SE US

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Fig. 8 10-year (2001–2010)

average number of rainy days

(shaded, unit: days) during

summer: a observations, and

WRF simulations with the

b BMJ, and c Zhang–McFarlane

schemes; and the average storm

intensity (shaded, unit:

mm day-1) in d observations,

and WRF simulations with the

e BMJ, and f Zhang–McFarlane

schemes
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(Fig. 10d), which might explain its dry bias over the

coastal regions along with its wet bias in the interior

domain (Fig. 5i).

The analysis of the relationship between CAPE and

precipitation suggests that the representation of this rela-

tionship is a key to the high-quality simulations of SE US

summer rainfall, whereas the effects of the resolutions on

the effectiveness of using the cumulus schemes is less

significant. The Zhang–McFarlane scheme was originally

developed for GCMs (Zhang and McFarlane 1995), whose

grid points are usually of 102 km (Taylor et al. 2012). In

contrast, the other schemes are designed mainly for

mesoscale model, indicating that they are supposed to be

more skillful in regional climate simulations than the

Zhang–McFarlane scheme (Table 1). The better perfor-

mance of Zhang–McFarlane scheme thus indicates the

importance of the representation of physical processes

responsible for rainfall generation over the SE US. Overall,

the lower skills of these four schemes might be attributed to

their inability to capture the observed ‘‘CAPE-precipita-

tion’’ relationship.

4 Discussion: Choice between a very-high-resolution

convection-permitting simulation and a low-

resolution Zhang–McFarlane simulation

Our analysis indicates that cumulus schemes cause the

greatest uncertainty in WRF-simulated SE US summer

rainfall, compared with microphysics and planetary

boundary layer schemes (Figs. 4, 5). Theoretically, the

uncertainty from cumulus schemes in rainfall simulations

can be eliminated by increasing the WRF resolution to

explicitly resolve convective systems (Weisman et al.

1997; Arakawa 2004). Next, we will examine whether

using a convection-permitting resolution with WRF

improves rainfall simulation over the SE US.

In order to explicitly resolve convective systems, the

WRF model is configured over the SE US (Fig. 2) with a

3-km horizontal resolution. The simulation period is Aug.

1–Aug. 15, 2009. The cumulus scheme option is turned off,

while the other physical parameterization schemes are the

same as in the cumulus scheme sensitivity experiment (see

Sect. 3.2). To evaluate the performance of WRF at the

(a) 

(b) 

(c) 

(d) 

Fig. 9 2001–2010 JJA climatology of convective available potential

energy (CAPE) over the SE US (shaded, unit: J Kg-1): a observations;

bWRF simulation with the Zhang–McFarlane scheme. c and d are the

CAPE (normalized) versus summer precipitation (normalized) over

the SE US in observations and the WRF simulation with the Zhang–

McFarlane scheme, respectively. The red lines in c and d are the best

least squares fitting lines
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3-km resolution, the Zhang–McFarlane simulations at the

15-km resolution and observations are used for

comparison.

Figure 11 shows the rainfall simulated by the 3-km

experiment. Generally, with a finer resolution, more local

details in rainfall are reflected in the 3-km simulation

(Fig. 11) compared to the 15-km simulation (Fig. 5). When

compared to the observations, the 3-km simulation captures

the high precipitation rate over the coastal regions,

although it underestimates the rainfall over Florida and the

inland SE US (Fig. 11). Generally, the 3-km simulation

outperforms the simulations with the majority of cumulus

schemes (Fig. 5a–c), indicating that the convection-per-

mitting approach can improve SE US summer rainfall

simulations to some extent. However, the 3-km simulation

fails to outperform the 15-km Zhang–McFarlane scheme6:

the PCC of the 3-km simulation is only 0.43 (0.77 in

Zhang–McFarlane), and its RMSE reaches 2.38 mm day-1

(1.28 mm day-1 in Zhang–McFarlane). To avoid the arti-

ficially high skill scores of 15-km Zhang–McFarlane

scheme due to the usage of relatively coarse resolution

observation data (*25 km), we also calculate the PCC and

RMSE using the 4-km Parameter-elevation Regression on

Fig. 11 Aug. 01–Aug. 15, 2009, summer precipitation (shaded, unit:

mm day-1) as simulated by 3-km WRF convection-permitting

configurations; in the simulation, cumulus scheme is turned off and

the rainfall is generated only by microphysics

Fig. 10 CAPE (normalized)

versus summer precipitation

(normalized) over the SE US in

the WRF simulation (blue dots)

with the a K–F, b Grell–

Dévényi; c Grell-3, and d BMJ

schemes, respectively. The red

lines are the best least squares

fitting lines

6 The influence of data interpolation methods on the calculation of

PCC and RMSE is noticed. Thus, multiple interpolation methods,

including the nearest neighbor, kriging, bi-linear interpolation, and

cubic spline, are compared. The specific PCC and RMSE values do

vary among different methods. However, the conclusion does not

change based on qualitative comparison of the 3-km simulation and

the Zhang–McFarlane 15-km simulation.
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Independent Slope Model (PRISM) data (Daly et al. 2008).

The change to higher resolution observations does change

the PCC and RMSE values, however, the overall skill

scores of the Zhang–McFarlane scheme are still higher

than that of the 3-km simulation. Specifically, the PCC is

higher, and the RMSE is lower in the 15-km Zhang–

McFarlane simulation (PCC = 0.66; RMSE = 1.86) than

in the 3-km simulation (PCC = 0.45; RMSE = 2.64).

Thus, the 15-km Zhang–McFarlane simulation generally

outperforms the 3-km simulation. Considering that the

3-km simulation requires 125 times more computational

time on our local computing facilities than the 15-km

simulation, our results indicate that choosing an optimal

cumulus scheme can more effectively improve the simu-

lations of SE US summer rainfall than using a convection-

permitting resolution.

The inferior performance of the 3-km simulation com-

pared to the 15-km Zhang–McFarlane simulation might be

caused by multiple factors. First, SE US summer rainfall

systems are mainly tropical convective systems, which

usually require a resolution finer than 3 km to fully resolve

them (Weisman et al. 1997). Second, it might indicate that

SE US summer rainfall is fairly stochastic at spatial scales

\60 km (Fig. 3). Thus, the physical models cannot pro-

vide further improvement in simulation skills even with a

fivefold increase in resolution. In addition, the location of

the lateral boundaries may also influence to some different

extent the skill of high and low resolution RCM simula-

tions. All these hypotheses about WRF simulation skill of

SE US summer rainfall need further investigation.

5 Conclusions

Regional climate modeling provides important information

for climate mitigation and climate policy making over the

SE US. However, satisfactory regional climate simulation

skills have not yet been achieved over this region, espe-

cially for summer rainfall (e.g., Lo et al. 2008; Mearns

et al. 2012; Bowden et al. 2013). Some previous studies

have emphasized the influences of lateral boundary con-

ditions on SE US rainfall simulation (Castro et al. 2005;

Xue et al. 2007). By performing a WRF simulation driven

by CFSR data, this study addresses two other important

aspects associated with WRF’s simulation skills, that is,

physical parameterization scheme and model resolution

(e.g., Castro et al. 2005; Christensen et al. 2007; Bukovsky

and Karoly 2009; Foley 2010; Rummukainen 2010).

Sensitivity experiments are performed to test the WRF

simulation skills of SE US summer rainfall in response to

various physical parameterization schemes. The period of

Aug. 01–Aug. 15, 2009, is chosen as a simulation period

because the rainfall pattern averaged over this time span

‘‘best’’ resembles SE US summer rainfall climatology

(Fig. 1). The WRF model is configured over the SE US

(Fig. 2) with a 15-km resolution according to the DCT

analysis (Fig. 3). The sensitivity experiments show that the

WRF simulation of SE US summer rainfall is most sensi-

tive to the cumulus schemes in WRF, moderately sensitive

to the planetary boundary layer schemes, and least sensitive

to the microphysics schemes.

The sensitivity of the rainfall simulation to cumulus

schemes indicates the importance of convective systems in

the formation of SE US warm-season rainfall patterns (e.g.

Konrad 1997; Kunkel et al. 2012), consistent with previous

studies (e.g. Bukovsky and Karoly 2009). Among five of

the cumulus schemes analyzed in this study, three of them

(K–F, Grell–Dévényi, and Grell-3) simulate a strong wet

bias, especially over the coast of the Carolinas, causing

significant overestimation of rainfall over the region

(Fig. 5b–d). In contrast, the BMJ scheme underestimates

summer rainfall, resulting in a dry bias, especially over the

coastal regions. The Zhang–McFarlane scheme realistically

reproduces the observed spatial pattern of rainfall, the

domain-averaged rainfall amount, and all the designed

evaluation metrics. Thus, based on our simulations, Zhang–

McFarlane scheme seems an effective approach to the

improvement of SE US summer rainfall simulation by

WRF. However, we should make clear that the Zhang–

McFarlane scheme might not be the only method to

improve SE US summer rainfall simulations. Previous

studies have shown that the application of interior grid

nudging (e.g. Lo et al. 2008; Bowden et al. 2013), adjust-

ment of parameters in cumulus schemes (e.g. Yang et al.

2012), and the consideration of ‘‘cumulus cloud—radia-

tion’’ feedback in WRF (e.g. Alapaty et al. 2012) can also

improve SE US summer rainfall simulation to some extent.

Further analysis suggests that the superior rainfall sim-

ulation skills by the Zhang–McFarlane scheme are attrib-

utable to its reasonable representation of rainfall-triggering

processes over the SE US. The observed number of rainy

days over the SE US is accurately simulated by the Zhang–

McFarlane scheme, with \5 % error. The cumulus

parameterization in the Zhang–McFarlane scheme implic-

itly assumes a positive relationship between rainfall and

CAPE (Zhang and McFarlane 1995). Such a relationship

realistically reflects the summer rainfall pattern over the SE

US (except for the Appalachian Mountains) (Fig. 9) and

thus improves the WRF simulation skills in SE US summer

rainfall using the Zhang–McFarlane scheme.

WRF rainfall simulation with the Zhang–McFarlane

scheme at the 15-km resolution is also compared with that

produced using a 3-km convection-permitting resolution

where cumulus scheme is turned off. The PCC and RMSE

indicate that the 3-km simulation does not outperform the

15-km Zhang–McFarlane simulation (Fig. 11). On top of
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that, the 3-km simulation takes 125 times more computa-

tional time on our local computing platform. Thus, our

analysis suggests that selecting an optimal cumulus

parameterization scheme is an effective way to obtain a

satisfactory simulation of SE US summer rainfall. This

study provides an important tool for reliable future climate

forecasts and informed water resource management over

the region.
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