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ABSTRACT

Audio-based music similarity measures can be used to au-
tomatically generate playlists or recommendations. In this
paper the similarity measure that won the ISMIR’04 genre
classification contest is reviewed. In addition, further im-
provements are presented. In particular, two new descrip-
tors are presented and combined with two previously pub-
lished similarity measures. The performance is evaluated
in a series of experiments on four music collections. The
evaluations are based on genre classification, assuming
that very similar tracks belong to the same genre. On two
collections the improvements lead to a substantial perfor-
mance increase.

Keywords: Spectral Similarity, Fluctuation Patterns,
Descriptors, Music Similarity, Genre Classification

1 INTRODUCTION

Music similarity computed from the audio signal can be
applied to playlist generation, recommendation of un-
known pieces or artists, or organization and visualization
of music collections. Unfortunately, music similarity is
very complex, multi-dimensional, context-dependent, and
ill-defined.

To evaluate algorithms which model the perception
of similarity would require extensive listening tests. A
cheaper alternative is to evaluate the performance in terms
of genre classification. The assumption is that pieces very
similar to each other belong to the same genre. We be-
lieve this assumption holds in most cases despite the fact
that music genre taxonomies have several limitations (see
e.g. [15]). An obvious issue is that many artists have a
very individual mix of several styles which is often diffi-
cult to pigeonhole. Nevertheless, genres are a widely used
concept to manage large music collections, and genre la-
bels for artists are readily available.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

In this paper we review the algorithm, based on the
work of Aucouturier and Pachet [2], which won the IS-
MIR’04 genre classification contest. Furthermore, we
demonstrate how the performance can be improved. In
particular, we combine spectral similarity (which de-
scribes aspects related to timbre) with fluctuation patterns
(which describe loudness fluctuations over time) and two
new descriptors derived thereof.

To evaluate the results we use four music collections
with a total of almost 6000 pieces and up to 22 genres per
collection. One of these collections was used as training
set for the ISMIR’04 genre classification contest. Using
last years winning algorithm as baseline our findings show
improvements of up to 41% (12 percentage points) on one
of the collections, while the results on the contest training
set (using the same evaluation procedure as in the contest)
increased by merely 2 percentage points.

One of our main observations is that not using differ-
ent music collections (with different structures and con-
tents) can lead to overfitting. Another observation is the
need to distinguish between artist identification and genre
classification. Furthermore, our findings confirm the find-
ings of Aucouturier and Pachet [2] who suggest the exis-
tence of a glass ceiling which cannot be surpassed without
taking higher level cognitive processing into account.

The remainder of this paper is organized as follows.
Section 2 covers related work. In Sect. 3 we discuss the
audio-based similarity measures we use (and used for the
contest) and present the two new descriptors. In Sect. 4
the experiments and results based on genre classification
are presented. In Sect. 5 conclusions are drawn.

2 RELATED WORK

There is a significant amount of research on audio-based
genre classification with one of the first approaches pre-
sented in [23]. More recent approaches include, for ex-
ample [13, 24]. Most of these approaches do not focus on
similarity measures (and do not use nearest neighbor clas-
sifiers to evaluate the performance). However, content-
based descriptors which work well for classifiers are also
good candidates to be included in a similarity measure.
An overview and evaluation of many of the descriptors
used for classification can be found in [21]. In addition,
recent work suggests that it is possible to automatically
extract features [26].



For our work the most important ingredient is spec-
tral similarity based on Mel Frequency Cepstrum Coeffi-
cients [1, 2, 7, 10]. Similar audio frames are grouped into
clusters which are used to compare pieces (we describe
the spectral similarity in detail later on). For these similar-
ity measures the focus in terms of applications is mainly
on playlist generation and recommendation (e.g. [9, 11]).
Alternatives include the anchor space similarity [4] and
the fluctuation patterns [16, 18]. Not much work has been
carried out to compare different similarity measures. First
attempts were made in [5, 19].

In addition, related work includes approaches us-
ing cultural information retrieved from the web (such as
playlists, reviews, lyrics, web pages) to compute similar-
ity (e.g. [3, 8, 12, 14, 25]). These web-based approaches
can complement audio-based approaches.

3 AUDIO-BASED MUSIC SIMILARITY

In this section we review spectral similarity and present
the parameters which won the ISMIR’04 genre contest.
We review the fluctuation patterns from which we ex-
tract two new descriptors, namely “Focus” and “Gravity”.
Furthermore we describe how we combine these different
sources of similarity.

The idea of combining fluctuation patterns and the de-
scriptors with spectral similarity is to add complementary
information. The reason for not using descriptors based
on the overall loudness (or intensity) is because we have
found these to be very sensitive to production effects (e.g.
compression). Furthermore, we do not use spectral de-
scriptors (e.g. spectral centroid) because these aspects are
covered by the spectral similarity measure.

3.1 Spectral Similarity

Spectral similarity captures aspects related to timbre.
However, important timbre characteristics such as the at-
tack or decay of a sound are not modeled. The general idea
is to chop the audio signal into thousands of very short
(e.g. 20ms) frames and ignore their order in time. Each
frame is described by its Mel Frequency Cepstrum Coef-
ficients (MFCCs). The large number of frames is summa-
rized by a model obtained by clustering the frames. The
distance between two pieces is computed by comparing
their cluster models.

The first approach in this direction was presented by
Foote [7], who used a global set of clusters for all pieces
in the collection. The global set was obtained from a clas-
sifier. However, there are several disadvantages having
global clusters. For example, it is only possible to de-
scribe music similar to the music already known to the
system. (Thus, if a new genre emerges, everything needs
to be recomputed.)

The first localized approach was published by Logan
and Salomon [10]. For each piece an individual set of
clusters is used. The distances between these are com-
puted using the Earth Movers Distance [22]. Aucouturier
and Pachet improved this approach by using Monte Carlo
sampling instead [1]. The implementations we review
here are implemented in the MA Toolbox [17].
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Figure 1: Different frame representations. The lower three
plots have a logarithmically scaled x-axis. The dots in the
MFCC and Sone plots depict the center frequencies of the
bands.

3.1.1 MFCCs

Mel Frequency Cepstrum Coefficients are a very popu-
lar approach to represent the spectrum of an audio frame.
Frame sizes are usually around 10-100ms. The MFCCs
for each frame are computed in the following steps.

First, the frequency domain representation is com-
puted using a FFT. Second, the frequency bins are grouped
into overlapping frequency bands (usually around 40).
The widths and centers of the frequency bands are based
on the non-linear Mel-scale. The scale is designed so that
a tone with a certain Mel value is perceived twice as high
as a tone with half the Mel value. Third, the amplitudes
are transformed into a perceptual scale. Usually, the log-
arithm is computed (dB). Finally, a discrete cosine trans-
form (DCT) is applied. From the obtained coefficients
usually the first 20 are kept. This results in a spectrally
smoothed and compressed representation.

Figure 1 illustrates the difference between the spec-
tral representation obtained from the FFT and the MFCCs.
The primary difference is that the MFCC representation is
much smoother. The second important difference is the
change in the scaling of the frequency.

3.1.2 Frame Clustering

A three minute piece is represented by several thousand
frames. Most of these represent reoccurring sounds such
as an instrument or a voice. The goal of the frame cluster-
ing is to group similar frames together and describe each
of these clusters by the mean and variance (using a di-
agonal covariance matrix). The number of clusters used
ranges from 3-50.

Several alternative clustering algorithms can be used
for this task. Logan and Salomon suggest using k-
means [10] while Aucouturier and Pachet use Gaussian
mixture models with expectation maximization [1]. As
demonstrated in [2] the choice of the clustering algorithm
is not a critical factor for the overall quality. However,
computation times might be an issue.
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Figure 2: Visualization of the features. On the y-axis of
the cluster model (CM) is the loudness (dB-SPL), on the
x-axis are the Mel frequency bands. The plots show the
30 centers and their variances on top of each other. On the
y-axis of the FP are the Bark frequency bands, the x-axis
is the modulation frequency (in the range from 0-10Hz).
The y-axis on the FP.F histogram plots are the counts, on
the x-axis are the values of the FP (from 0 to 1). The y-
axis of the FP.G is the sum of values per FP column, the
x-axis is the modulation frequency (from 0-10Hz).

Examples of cluster models are given in Figure 2. All
of the clusters models have little energy in high frequen-
cies and lots of energy (with a high variance) in the low
frequencies. As the cluster models are a very low-level
representation it is difficult to guess the actual instrumen-
tation by looking at the figures.

3.1.3 Cluster Model Similarity

Computing the similarity of two pieces of music given
their cluster models is not as straightforward as distance
computations in a vector space. Two approaches exist,
one uses the Earth Movers Distance [10], the other Monte
Carlo sampling [1].

The Earth Movers Distance computes the necessary
“work” to transform one model into another. First, the dis-
tances between all clusters from one piece to all clusters
from the other piece are computed using the Kullback-
Leibler divergence (taking the variances into account).
Then, one piece is treated as supplier (with each cluster
being a supply center with a capacity defined by the num-
ber of frames belonging to the cluster), the other piece as
demander (and demand centers defined by the clusters).
The minimum cost to transfer the frames defines the sim-
ilarity of the pieces.

Monte Carlo sampling means that the cluster models
are treated as probability distributions from which sam-
ples are drawn. The sample size usually ranges from 200
to 2000. To compute the similarity of piecesα andβ a
sample from each is drawn,Sα andSβ respectively. The
log-likelihoodL(S|M) that a sampleS was generated by
the modelM is computed for each piece/sample combi-
nation. The distance is computed asdαβ = L(Sα|Mβ) +
L(Sβ |Mα) − L(Sα|Mα) − L(Sβ |Mβ). The reason for

subtracting the self-similarity is to normalize the results.
As shown in [2] the difference between the two ap-

proaches in terms of quality is not very significant. While
Monte Carlo sampling seems to yield slightly better re-
sults, the Earth Movers Distance can have an advantage in
terms of computation time.

3.1.4 ISMIR’04 Genre Contest Submission

For the contest1 hosted by UPF/MTG we submitted an al-
gorithm based on the spectral similarity described by Au-
couturier and Pachet (AP) [2] with the following parame-
ters, using the MA Toolbox [17] and the Netlab Toolbox2

for Matlab.
From the 22050Hz mono audio signals two minutes

from the center were used for further analysis. The sig-
nal was chopped into frames with a length of 512 sam-
ples (about 23ms) with 50% overlap. The average energy
of each frame’s spectrum was subtracted. The 40 Mel
frequency bands (in the range of 20Hz to 16kHz) were
represented by the first 20 MFCC coefficients. For clus-
tering we used a Gaussian Mixture Model with 30 clus-
ters and trained using expectation maximization (after k-
means initialization). The cluster model similarity was
computed with Monte Carlo sampling and a sample size
of 2000.

The submitted classifier computed the distances of
each piece in the test set to all pieces in the training set.
The genre of the closest neighbor in the training set was
used as prediction (nearest neighbor classifier). Of the five
submitted algorithms this submission was probably by far
the computationally most intensive.

3.2 Fluctuation Patterns

Fluctuation Patterns (FPs) describe loudness fluctuations
in 20 frequency bands [16, 18]. They describe character-
istics of the audio signal which are not described by the
spectral similarity measure.

First, the audio signal is cut into 6-second sequences.
We use the center 2 minutes from each piece of music
and cut it into non-overlapping sequences. For each of
these sequences a psychoacoustic spectrogram, namely
the Sonogram is computed. For the loudness curve in each
frequency band a FFT is applied to describe the amplitude
modulation of the loudness.

From the FPs we extract two new descriptors. The first
one, describes how distinctive the fluctuations at specific
frequencies are, we call itFocus. The second one which
we callGravity, is related to the overall perceived tempo.

3.2.1 Sone

Each 6-second sequence is cut into overlapping frames
with a length of 46ms. For each frame the FFT is com-
puted. The frequency bins are weighted according to a
model of the outer and middle-ear to emphasize frequen-
cies around 3-4kHz and suppress very low or high fre-
quencies. The FFT frequency bins are grouped into fre-
quency bands according to the critical-band rate scale with

1http://ismir2004.ismir.net/genrecontest
2http://www.ncrg.aston.ac.uk/netlab



the unit Bark [27]. A model for spectral masking is ap-
plied to smooth the spectrum. Finally, the loudness is
computed with a non-linear function. We normalize the
loudness of each piece such that the peak loudness is 1.

Figure 1 compares a Sone frame with an MFCC frame.
The main differences is the outer and middle-ear weight-
ing which changes the slope of the curve. Another differ-
ence is that while we use 20 frequency bands for the Sone,
we use 40 for the MFCCs. However, due to the DCT com-
pression the 40 bands are also represented by 20 numbers.

3.2.2 Fluctuation Patterns

Given a 6-second Sonogram we compute the amplitude
modulation of the loudness in each of the 20 frequency
bands using a FFT. The amplitude modulation coefficients
are weighted based on the psychoacoustic model of the
fluctuation strength [6]. This modulation has different ef-
fects on our hearing sensation depending on the frequency.
The sensation of “fluctuation strength” is most intense
around 4Hz and gradually decreases up to a modulation
frequency of 15Hz. The FPs analyze modulations up to
10Hz.

To emphasize certain patterns a gradient filter (over
the modulation frequencies) and a Gaussian filter (over
the frequency bands and the modulation frequencies) are
applied. Finally, for each piece the median from all FPs
representing a 6-second sequence is computed. This fi-
nal FP is a matrix with 20 rows (frequency bands) and 60
columns (modulation frequencies).

Two pieces are compared by interpreting their FP ma-
trices as 1200-dimensional vectors and computing the
Euclidean distance. An implementation of the FPs is
available in the MA Toolbox [17]. Figure 2 shows some
examples of FPs. The vertical lines indicate reoccurring
periodic beats. The song Spider, by Flex, which is a typi-
cal example of the genre eurodance, has the strongest ver-
tical lines.

3.2.3 Focus

The Focus (FP.F) describes the distribution of the energy
in the FP. In particular, FP.F is low if the energy is fo-
cused in small regions of the FP, and high if the energy
is spread out over the whole FP. The FP.F is computed as
mean value of all values in the FP matrix, after normal-
izing the FP such that the maximum value equals 1. The
distance between two pieces of music is computed as the
absolute difference between their FP.F values.

Figure 2 shows five example histograms of the values
in the FPs and the mean thereof (as vertical line). Black
Jesus by Everlast (belonging to the genre alternative) has
the highest FP.F value (0.42). The song has a strong focus
on guitar chords and vocals, while the drums are hardly
noticeable. The song Spider by Flex (belonging to euro-
dance) has the lowest FP.F value (0.16). Most of the songs
energy is in the strong periodic beats.

Figure 3 shows the distribution of FP.F over different
genres. The values have a large deviation and the overlap
between quite different genres is significant. Electronic
has the lowest values while punk/metal has the highest.
The amount of overlap is an important factor for the qual-
ity of the descriptor. As we will see later, in the optimal
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Figure 3: Boxplots showing the distribution of the de-
scriptors per genre on two music collections. A descrip-
tion of the collections can be found in Section 4.1. The
boxes have lines at the lower quartile, median, and upper
quartile values. The whiskers show the extent of the rest
of the data (the maximum length is 1.5 of the inter-quartile
range). Data beyond the ends of the whiskers are marked
with plus-signs.

combination of all similarity sources, FP.F has the small-
est contribution.

3.2.4 Gravity

The Gravity (FP.G) describes the center of gravity (CoG)
of the FP on the modulation frequency axis. Given 60
modulation frequency-bins (linearly spaced in the range
of 0-10Hz) the CoG usually lies between the 20th and the
30th bin, and is computed as

CoG =

∑
j j

∑
i FPij

∑
ij FPij

, (1)

where FP is a 20×60 matrix andi is the index of the fre-
quency band, andj of the modulation frequency. We com-
pute FP.G by subtracting the theoretical mean of the fluc-
tuation model (which is around the 31st band) from the
CoG.

Low values indicate that the piece might be perceived
slow. However, FP.G is not intended to model the per-
ception of tempo. Effects such as vibrato or tremolo are
also reflected in the FP. The distance between two pieces
of music is computed as the absolute difference between
their FP.G values.

Figure 2 shows the sum of the values in the FP over
the frequency bands (i.e. the sum over the rows in the FP
matrix) and the CoGs marked with a vertical line. Spi-
der by Flex has the highest value (-5.0), while the low-
est value (-6.4) is computed for Take Five by the Dave
Brubeck Quartet and Surfin’ USA by the Beach Boys.

Figure 3 shows the distribution of FP.G over different
genres. The values have a smaller deviation compared to
FP.F and there is less overlap between different genres.



Classical and a capella have the lowest values, while elec-
tronic, metal, and punk have the highest values.

3.3 Combination

To combine the distance matrices obtained with the 4
above mentioned approaches we use a linear combination
similar to the idea used for the aligned Self-Organizing
Maps (SOMs) [20]. Before combining the distances we
normalize the four distances such that the standard devi-
ation of all pairwise distances within a music collection
each equals 1. In contrast to the aligned-SOMs we do
not rely on the user to set the optimum weights for the
linear combination, instead we automatically optimize the
weights for genre classification.

4 GENRE CLASSIFICATION

We evaluate the genre classification performance on four
music collections to find the optimum weights for the
combination of the different similarity sources. We use
a nearest neighbor classifier and leave-one-out cross val-
idation for the evaluation. The accuracies are computed
as ratio of the correctly classified compared to the total
number of tracks (without normalizing the accuracies with
respect to the different class probabilities). Genre classi-
fication is not the best choice to evaluate the performance
of a similarity measure. However, unlike listening tests it
is very fast and cheap.

In contrast to the ISMIR 2004 genre contest we apply
an artist filter. In particular, we ensure that all pieces of an
artist are either in the training set or test set. Otherwise we
would be measuring the artist identification performance,
since all pieces of an artist are in the same genre (in all of
the collections we use).

The resulting performance is significantly worse. For
example, on the ISMIR 2004 genre classification training
set (using the same algorithm we submitted last year) we
get 79% accuracy without artist filter and only 64% with
artist filter. The difference is even bigger on a large in-
house collection where (using the same algorithm) we get
71% without artist filter and only 27% with filter. In the
results described below we always use an artist filter if not
stated otherwise.

In the remainder of this section first the four music
collections we use are described. Second, results using
only one similarity source are presented. Third, pairwise
combinations with spectral similarity (AP) are evaluated.
Fourth, all four sources are combined. Finally, the perfor-
mances on all collections is evaluated to avoid overfitting.

4.1 Data

For our experiments we use four music collections with a
total of almost 6000 pieces. Details are given in Tables 1
and 2. For the evaluation (especially to avoid overfitting)
it is important that the collections are structured differ-
ently and have different types of contents.

4.1.1 DB-S

The smallest collection consists of 100 pieces. We have
previously used it in [17]. However, we removed all

classes consisting of one artist only. The categories are not
strictly genres (e.g. one of them is romantic dinner music).
Furthermore, the collection also includes one non-music
category, namely speech (German cabaret). This collec-
tion has a very good (i.e low) ratio of tracks per artist.
However, due to its size the results need to be treated with
caution.

4.1.2 DB-L

The second largest collection has mainly been organized
according to genre/artist/album. Thus, all pieces from an
artist (and album) are assigned to the same genre, which
is a questionable but common practice. Only two pieces
overlap between DB-L and DB-S, namely Take Five and
Blue Rondo by the Dave Brubeck Quartet. The genres
are user defined and inconsistent. In particular, there are
two different definitions of trance. Furthermore, there are
overlaps, for example, jazz and jazz guitar, heavy metal
and death metal etc.

4.1.3 DB-MS

This collection is a subset of DB-ML which has been used
as training set for the ISMIR 2004 genre classification
contest. The music originates from Magnatune3 and is
available via creative commons. UPF/MTG arranged with
Magnatune a free use for research purposes. Although we
have a larger set from the same source we use it to com-
pare our results to those of the ISMIR’04 results.

The genre labels are given on the Magnatune website.
The collection is very unbalanced. Most pieces belong to
the genre classical and a large number of pieces in world
sound like classical music. Some of the original Mag-
natune classes were merged by UPF/MTG due to ambigu-
ities and the small number of tracks in some of the genres.

4.1.4 DB-ML

This is the largest set in our experiments. DB-MS is a sub-
set of this collection. The genres are also very unbalanced.
The number of artists is not much higher than in DB-MS.
The number of tracks per artist is very high. The genres
which were merged for the ISMIR contest are separated.

4.2 Individual Performance

The performances using one similarity source are given
in Figure 4 in the first (only spectral similarity, AP) and
last columns (only the respective similarity source). AP
clearly performs best, followed by FP. The performance
of FP.F is extremely poor on DB-S while it is equal to
FP.G on DB-L.

For DB-MS without the artist filter we obtain 79% us-
ing only AP (this is the same performance also obtained
on the ISMIR’04 genre contest test set, which indicates
that there was no overfitting on the data). Using only FP
we obtain 66% accuracy which is very close to the 67%
Kris West’s submission achieved. The accuracy for FP.F
is 30% and 43% for FP.G. Always guessing that a piece
is classical gives 44% accuracy. Thus, the performance of
FP.F is significantly below the random guessing baseline.

3http://www.magnatune.com



Artists/Genre Tracks/Genre
Genres Artists Tracks Min Max Min Max

In-House Small (DB-S) 16 66 100 2 7 4 8
In-House Large (DB-L) 22 103 2522 3 6 45 259
Magnatune Small (DB-MS) 6 128 729 5 40 26 320
Magnatune Large (DB-ML) 10 147 3248 2 40 22 1277

Table 1: Statistics of the four collections.

DB-S alternative, blues, classic orchestra, classic piano, dance, eurodance, happy sound,
hard pop, hip hop, mystera, pop, punk rock, rock, rock & roll, romantic dinner, talk

DB-L a cappella, acid jazz, blues, bossa nova, celtic, death metal, DnB, downtempo,
electronic, euro-dance, folk-rock, German hip hop, hard core rap, heavy metal/thrash,
Italian, jazz, jazz guitar, melodic metal, punk, reggae, trance, trance2

DB-MS classical, electronic, jazz/blues, metal/punk, pop/rock, world

DB-ML ambient, classical, electronic, jazz, metal, new age, pop, punk, rock, world

Table 2: List of genres for each collection.
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Figure 4: Results for combining AP with one of the other
sources. All values are given in percent. The values on the
x-axis are the mixing coefficients. For example, the fourth
column in the second row is the accuracy for combining
70% AP with 30% of FP.F.

4.3 Combining Two

The results for combining AP with one of the other
sources are given in Figure 4. The main findings are that
combining AP with FP or FP.G performs better than com-
bining AP with FP.F (except for 10% FP.F and 90% AP in
DB-MS). For all collections a combination can be found
which improves the performance. However, the improve-
ments on the Magnatune collection are marginal. The
smooth changes of the accuracy with respect to the mix-
ing coefficient are an indicator that the the approach is
relatively robust (within each collection).

4.4 Combining All

Figure 5 shows the accuracies obtained when all similar-
ity sources are combined. There are a total of 270 possi-
ble combinations using a step size of 5 percent-points and
limiting AP to a mixing coefficient between 100-50% and
the other sources to 0-50%.

Analogously to the previous results FP.F has the weak-
est performance and the improvements for the Magnatune
collection are not very exciting. As in Figure 4 the smooth
changes of the accuracy with respect to the mixing coef-
ficient are an indicator for the robustness of the approach
(within each collection). Without the artist filter the com-
binations on the DB-MS reach a maximum of 81% (com-
pared to 79% using only AP).

It is clearly noticeable that the results on the collec-
tions are quite different. For example, for DB-S using as
little AP as possible (highest values around 45-50%) and
a lot of FP.G (highest values around 25-40%) gives best
results. On the other hand, for the DB-MS collection the
best results are obtained using 90% AP and only 5% FP.G.
These deviations indicate overfitting, thus we analyze the
performances across collections in the next section.

4.5 Overall Performance

To study overfitting we compute the relative performance
gain compared to the AP baseline (i.e. using only AP).
We compute the score (which we want to maximize) as
the average of these gains over the four collections. The
results are given in Table 3.

The worst combination (using 50% AP and 50% FP.F)
yields a score of 0.85. (That is, in average, the accuracy
using this combination is 15% lower compared to using
100% AP.) There are a total of 247 combinations which
perform better than the AP baseline. Almost all of the 22
combinations that fall below AP have a large contribution
of FP.F. The best score is 14% above the baseline. The
ranges of the top 10 ranked combinations are 55-75% AP,
5-20% FP, 5-10% FP.F, 10-30% FP.G.

Without artist filter, for DB-MS the top three ranked
combinations from Table 3 have the accuracies 1: 79%,
2: 78%, 3: 79% (the AP baseline is 79%, the best possible
combination yields 81%). For the DB-S collection with-



Weights Classification Accuracy
Rank AP FP FP.F FP.G DB-S DB-L DB-MS DB-ML Score

1 65 15 5 15 38 32 67 58 1.14
2 65 10 10 15 38 31 67 57 1.14
3 70 10 5 15 38 31 67 58 1.14
4 55 20 5 20 39 31 65 57 1.14
5 60 15 10 15 38 31 66 57 1.14
6 60 15 5 20 39 31 66 57 1.13
7 75 10 5 10 37 31 67 58 1.13
8 75 5 5 15 38 31 66 58 1.13
9 65 10 5 20 38 30 66 58 1.13

10 55 5 10 30 41 29 65 56 1.13
248 100 0 0 0 29 27 64 56 1.00
270 50 0 50 0 19 23 61 53 0.85

Table 3: Overall performance on all collections. The displayed values in columns 2-4 are the mixing coefficients in
percent. The values in columns 5-8 are the rounded accuracies in percent.
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Figure 5: Results for combining all similarity sources. A
total of 270 combinations are summarized in each table.
All values are given in percent. The mixing coefficients
for AP (the first row) are given above the table, for all
other rows below. For each entry in the table of all possi-
ble combinations the highest accuracy is given. For exam-
ple, the second row, third column depicts the highest ac-
curacy obtained from all possible combinations with 10%
FP. The not specified 90% can have any combination of
mixing coefficients, e.g. 90% AP, or 80% AP and 10%
FP.G etc.
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Figure 6: Individual relative performance ranked (x-axis)
by score (y-axis).

out artist filter the AP baseline is 52% and the top three
ranked combinations have the accuracies 1: 63%, 2: 61%,
3: 62% (the best possible score achieved through combi-
nation is 64%).

This is another indication that genre classification and
artist identification are not the same type of problem.
Thus, it is necessary to ensure that all pieces from an artist
(if all pieces from an artist belong to the same genre) are
either in the training or test set.

Figure 6 shows the relative performance of all combi-
nations ranked by their score. As can be seen there are
significant deviations. In several cases a combination per-
forms well on one collection and performs poor on an-
other. This indicates that there is a large potential for over-
fitting if the necessary precautions are not taken (such as
using several different music collections). However, an-
other observation is that although there is a high variance
the performance stays above the baseline for most of the
combinations and there is a common trend. Truly reliable
results would require further testing on additional collec-
tions.



5 CONCLUSIONS

We have presented an approach to improve audio-based
music similarity and genre classification. We have com-
bined spectral similarity with three additional information
sources based on Fluctuation Patterns. In particular, we
have presented two new descriptors and a series of exper-
iments evaluating the combinations.

Although we obtained an average performance in-
crease of 14%, our findings confirm the glass ceiling ob-
served in [2]. Preliminary results with a larger number
of descriptors indicate that the performance per collection
can only be further improved by up to 1-2 percent-points.
However, the danger of overfitting is eminent.

Our results show that there is a significant difference
in the overall performance if pieces from the same artist
are in the test and training set. We believe this shows the
necessity to use an artist filter to evaluate genre classifica-
tion performances (if all pieces from an artist are assigned
to the same genre). Furthermore, the deviations between
the collections suggest that it is necessary to use different
collections to avoid overfitting.

One possible future direction is to focus on developing
similarity measures for specific music collections (analo-
gously to developing specialized classifiers able to distin-
guish only two genres). However, combining audio-based
approaches with information from different sources (such
as the web), or modeling the cognitive process of music
listening are more likely to help us get beyond the glass
ceiling.

ACKNOWLEDGEMENTS

This research was supported by the EU project SIMAC
(FP6-507142). The Austrian Research Institute for Ar-
tificial Intelligence is supported by the Austrian Federal
Ministry for Education, Science, and Culture and by the
Austrian Federal Ministry for Transport, Innovation, and
Technology.

References

[1] J.-J. Aucouturier and F. Pachet. Music similarity
measures: What’s the use? InProc ISMIR, 2002.

[2] J.-J. Aucouturier and F. Pachet. Improving timbre
similarity: How high is the sky?Journal of Negative
Results in Speech and Audio Sciences, 1(1), 2004.

[3] S. Baumann and O. Hummel. Using cultural meta-
data for artist recommendation. InProc WedelMusic
Conf, 2003.

[4] A. Berenzweig, D. P.W. Ellis, and S. Lawrence. An-
chor space for classification and similarity measure-
ment of music. InProc IEEE Intl Conf on Multime-
dia and Expo, 2003.

[5] A. Berenzweig, B. Logan, D. P. W. Ellis, and
B. Whitman. A large-scale evaluation of acoustic
and subjective music similarity measures. InProc
ISMIR, 2003.

[6] H. Fastl. Fluctuation strength and temporal masking
patterns of amplitude-modulated broad-band noise.
Hearing Research, 8:59–69, 1982.

[7] J. Foote. Content-based retrieval of music and au-
dio. In Multimedia Storage and Archiving Systems
II, 1997.

[8] P. Knees, E. Pampalk, and G. Widmer. Artist classi-
fication with web-based data. InProc ISMIR, 2004.

[9] B. Logan. Music recommendation from song sets.
In Proc ISMIR, 2004.

[10] B. Logan and A. Salomon. A music similarity func-
tion based on signal analysis. InProc IEEE Intl Conf
on Multimedia and Expo, 2001.

[11] B. Logan. Content-based playlist generation: Ex-
ploratory experiments. InProc ISMIR, 2002.

[12] B. Logan, A. Kositsky, and P. Moreno. Semantic
analysis of song lyrics. InProc IEEE Intl Conf on
Multimedia and Expo 2004, 2004.

[13] M. F. McKinney and J. Breebaart. Features for audio
and music classification. InProc ISMIR, 2003.

[14] F. Pachet, G. Westerman, and D Laigre. Musical data
mining for electronic music distribution. InProc
WedelMusic Conf, 2001.

[15] F. Pachet and D. Cazaly. A taxonomy of musical
genres. InProc RIAO 2000 Content-Based Multime-
dia Information Access, 2000.

[16] E. Pampalk. Islands of music: Analysis, organiza-
tion, and visualization of music archives. MSc the-
sis, Vienna University of Technology, 2001.

[17] E. Pampalk. A Matlab toolbox to compute music
similarity from audio. InProc ISMIR, 2004.

[18] E. Pampalk, A. Rauber, and D. Merkl. Content-
based organization and visualization of music
archives. InProc ACM Multimedia, 2002.

[19] E. Pampalk, S. Dixon, and G. Widmer. On the eval-
uation of perceptual similarity measures for music.
In Proc Intl Conf on Digital Audio Effects, 2003.

[20] E. Pampalk, W. Goebl, and G. Widmer. Visualizing
changes in the structure of data for exploratory fea-
ture selection. InProc ACM SIGKDD Intl Conf on
Knowledge Discovery and Data Mining, 2003.

[21] T. Pohle. Extraction of audio descriptors and their
evaluation in music classification tasks. MSc thesis,
TU Kaiserslautern,̈OFAI, DFKI, 2005.

[22] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth
movers distance as a metric for image retrieval.Intl
Journal of Computer Vision, 40(2), 2000.

[23] G. Tzanetakis, G. Essl, and P. Cook. Automatic mu-
sical genre classification of audio signals. InProc
ISMIR, 2001.

[24] K. West and S. Cox. Features and classifiers for the
automatic classification of musical audio signals. In
Proc ISMIR, 2004.

[25] B. Whitman and S. Lawrence. Inferring descriptions
and similarity for music from community metadata.
In Proc Intl Computer Music Conf, 2002.

[26] A. Zils and F. Pachet. Automatic Extraction Of Mu-
sic Descriptors From Acoustic Signals. InProc IS-
MIR, 2004.

[27] E. Zwicker and H. Fastl.Psychoacoustics, Facts and
Models. Springer, 1999.


