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FOR NONLINEAR MAGNETIC FIELD ANALYSIS 
NEWTON-RAPHSON METHOD 

T.Nakata, N.Takahashi, K.Fujiwara and N.Okamoto K.Muramatsu 
Department of Electrical Engineering 

Okayama University 
Okayama 700, Japan 

Absrracr-In order to overcome the divergence of 
the Newton-Raphson iteration in the nonlinear 
magnetic field analysis, a relaxation factor is 
introduced, and its optimum value is examined. It is 
shown that the modified Newton-Raphson method 
proposed in this paper shows quick and successful 
convergence even in the case when the 
conventional Newton-Raphson method fails in 
convergence .  

I IN?RODUCIION 

When the magnetic scalar potential method was applied to 
the analysis of 3-D nonlinear magnetic fields (for example, 
the TEAM Workshop Problem 13). very often the nonlinear 
iteration using the conventional Newton-Raphson method 
failed to converge[ 11. If the relaxation factor was introduced, 
the convergence characteristics were fairly improved[ 11. 
Therefore, most codes, which employed the magnetic scalar 
potential method, introduced such a factor[2,3] when Problem 
13 was analyzed[4]. 

In this paper, a method for determining the optimum 
relaxation factor, which utilizes the residual of Galerkin 
method, is developed. Moreover, some techniques to find the 
optimum value briefly are discussed. The effectiveness of the 
proposed method is illustrated quantitatively by applying the 
method to practical problems. 

IL MODFED NEWTON-RAPHSON M m O D  

A. Method for Determining Optimum Relaxation Factor 

In the modified Newton-Ra hson method, the obtained 
magnetic scalar potential Q i(k+ P of a node i at the o<+l)-th 
iteration can be represented by the following equation : 

Q i@+U = Q i@) + a(k) i(k) (1) 

where 6Q is the increment of Q. a is the relaxation factor 
introduced. The case of a=l corresponds to the conventional 
Newton-Raphson method. The optimum value aopt of the 
relaxation factor can be determined using thelinear search 
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method[5]. 
The residual Gi can be written as follows[6]: 

where Ni is the interpolation function and p is the 
permeability. T o  is the current vector potential 
corresponding to the magnetizing current density. If Q 
converges, Gi will approach zero. Therefore, hpt should be 
determined so that the following objective function W 
becomes a minimum: 

(3) 

where nu is the total number of unknown variables. 

B .  Techniques for Reducing CPU Time 

Although our new method is superior from the standpoint 
of the convergence, the computing time for finding the 
optimum relaxation factor is a problem. In this section, some 
techniques for reducing the CPU time for finding the 
optimum value are discussed. 

I) Calculation of objective function: The objective 
function W defined by (3) can be separated into two parts, 
which are W, and W, in the nonlinear and linear regions, as 
follows : 

where ns and na are the number of unknown variables in the 
nonlinear region and that in the linear region respectively. 
Since W, is negligibly small compared with W, (this will be 
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shown in the next Section), the following approximation can 
be done: 

When ns is much less than na, the CPU time can be 
considerably saved using (7). 

2)  Golden section method: There are many kinds of 
methods to determine aOpt which gives the minimum W,. 
The golden section method[5]. which is a kind of the linear 
search method, is superior from the standpoint of the CPU 
time. Since the CPU time for the golden section method is 
dominated by the number of iterations in it, the number is 
discussed in the next Section. 

IIL EXAMPLES OF APPLICATION 

A. Analyzed Model 

As mentioned above, the TEAM Workshop Problem 
13[1] which is shown in Fig.1 is chosen as the analyzed 
model which fails to converge by the conventional Newton- 
Raphson method. Since the convergence characteristics 
depend on the subdivision. two kinds of meshes which are 
shown in Fig.2 and Table I are compared. The 1st-order brick 
nodal element and the T42 method[6] are applied. The 
periodic boundary condition[l] which is applied on the y-z 
plane enables us to analyze only 1/4 of the whole region. 

center plate (steel) 
channel (steel) \ !coil (dc 3000AT) 

center plate Y 
\ 4 yil channel 

Fig. 1 3-D nonlinear magnetostatic model 
(TEAM Workshop Problem 13). 

4 channel 

Y 
X 

(a) coarse mesh 
Z channel 

X 
Y 

(b) fine mesh 

Fig. 2 Meshes. 

Table I Discretization data 
coarse fine 

number of elements 
number of nodes 
number of unknowns 
number of non-zero entries I 36,012 I 74,949 

B.  Results and Discussion 

In order to examine the method for finding the optimum 
relaxation factor sop. the relationship between the relaxation 
factor a(') and the objective function W(2) at the second step 
of iteration for the modified Newton-Raphson method shown 
in Fig.3 is investigated. The curve for the coarse mesh has 
two local minima. The optimum values for the coarse and 
fine meshes are 0.3 and 0.2 respectively. 

Figure 4 shows aopt at each iteration for the modified 
Newton-Raphson method. Since aopt changes sharply with 
iteration, it should be determined for every iteration. 

Figures 5(a) and (b) show the objective functions W, and 
W, in the nonlinear and linear regions defined by (5 )  and (6) 
at two different steps for the modified Newton-Raphson 
method. W, is negligibly small compared with W, at any 
step and for any a. Therefore, the approximation using (7) is 
permissible. 

Table I1 shows the numbers ns and na of unknown 
variables in the nonlinear and linear regions. Since ns is 
usually very small compared with na as shown in this table, 
we can use the speedup method mentioned in Sections I1 B 
1). 
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E 4r- 
coarse mesh P t d 

0 0.2 0.4 0.6 0.8 1.0 
relaxation factor a (1) 

Fig. 3 Relationship between relaxation factor a 
and objective function W (second step of 
New ton-Raphson iteration). 

0 2 4 6 8 1 0 1 2  
iteration number 

Fig. 4 Optimum relaxation factor aopt 
at each iteration. 

relaxation factor a 
(a) coarse mesh 

relaxation factor a 
(b) fine mesh 

Fig. 5 Objective functions WS and Wa 
in nonlinear and linear regions. 

Table 11 Number of unknown variables 

region 

5,950( 1) 
988(0.13) 

linear 

Figures 6(a) and (b) show the CPU time for the coarse and 
line mesh respectively. The convergence criterion for the 
Newton-Raphson iteration is chosen as 0.OlxaT. Although 
aopt may become larger than 1 as shown in Fig.4, the range 
of search of a for finding aopt should be limited to a range 
between 0 and 1. This is, because the nonlinear iteration 
should be decelerated by an underrelaxation factor (ad) .  The 
CPU time for Newton-Raphson method does not include that 
for the golden section method. The CPU time for the golden 
section method increases considerably with the number of 
iterations NG for the golden section method. The total CPU 
time for the coarse mesh has a minimum at N G = ~ .  Although 
the suitable number of iterations for the fine mesh is not 
obvious due to the oscillation, N G = ~  can be acceptable. 
Therefore, NG is fixed at 3. 

golden section 

3 5 7 9 
number of iterations NG 

(a) coarse mesh 

r 
n W v) \- 

&-?*A. 

-U-y I method I 
O1 3 5 7 9 

-5 400- 
Newton-Raphson 

,method 

. number of iterations NG 

(b) fine mesh 

convergence criterion for Newton 
-Raphson iteration : 0.01~ Q T 

Fig. 6 CPU time. 
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relaxation 
factor a 

1 (const.) 

Figure 7(a) shows the x-component BPX of flux density 
at the point P for the coarse mesh. The point P (near the 
comer of the channel) is chosen from the standpoint that the 
flux density at the point P contains remarkable error because 
the flux density changes steeply near here. Although the flux 
density oscillates when the conventional Newton-Raphson 
method ( ~ 1 )  is used, it converges for the cases of ~ 0 . 5  and 
obpb Figure 7@) shows the z-component BQZ of flux density 
at the point Q for the fine mesh. As BPX does not oscillate 
violently with the number of iterations, another flux density 
B Q ~  at the point Q is chosen. The convergence characteristics 
are fairly stabilized when obpt is used for every iteration. 

Table 111 shows the number of iterations for Newton- 
Raphson method and the CPU time. Since many iterations 
for the golden section method are ,required for the 
determination of uopt, the CPU time for each Newton- 
Raphson iteration is increased. However, the number of 
iterations for Newton-Raphson method is reduced. 

CPU time ( s ) number of 
iterations NR 

coarse I fine coarse I fine 
OSCF I OSCY W* I W *  

z Y 

0.5 (const.) 
optimum** 

6 

E 
E 4  

PI "i 2 

8 
2 0  
G 

-2 

I 

12 osc? 130 W *  

10 14 136 447 

CJ 

(a) coarsemesh 

z Y 

P4 

X 
0 

0 m e  X 

U :  a =1 (const.) 
--e- -: a 4 . 5  (const.) 

e4  -A-,: a =optimum 

(b) finemesh 

Fig. 7 Convergence characteristics of 
Newton-Raphson method. 

Table III Number of iterations for Newton-Raphosn 
method and CPU time 

computer used : NEC supercomputer SX-1E 

convergence criterion for 

convergence criterion for ICCG method : 10-5 

(maximum speed : 285MFLOPS) 

Newton-Raphson method : 0.01~ a T 

* number of iterations for 
Newton-Raphson method : 30 

**number of iterations for golden section method : 3 

IV. CONCLUSIONS 

The results obtained can be summarized as follows: 
(1) A modified Newton-Raphson method is introduced. 
(2)The optimum relaxation factor can be obtained by 

minimizing the total square residual of GaIerkin method. 
(3)Methods for reducing the CPU time for finding the 

optimum relaxation factor are proposed. 
(4)Themethod is applied to a practical problem and 

compared the convergence characteristics and the CPU 
time with the conventional methods. 
The possibility of expansion of this method to the 

analysis using the magnetic vector potential will be reported 
in another paper. 

REFERENCES 

[I] T.Nakata, N.Takahashi, K.Fujiwara, K.Mummatsu and P.Olszewski : 
"Analysis of Magnctic Fields of 3-D Non-linear Magnetostatic 
Model (Probleml3)". Proceedings of the European TEAM Workshop 
and International Seminar on Electromagnetic Field Analysis, 107 
(1990). 

[2] C.A.Magele. K.Preis and W.Renhart : "Some Improvements in 
Nonlinear 3D Magnetostatics". IEEE Trans. Magnetics, MAG-26.2, 
375 (1990). 

[3] S.Pissanetzky : " The Interpolation of Magnetization Tables", 
SOMPEL. 5, 41 (1986) Boole Press. 

[4] T.Nakata and K.Fujiwara : "Summary of Results for Benchmark 
Problem 13 (3-D Non-Linear Magnetostatic Model)". Proceedings of 
the Eurcpean TEAM Workshop and International Seminar on 
Electromagnetic Field Analysis, 155 (1990). 

[S] R.H.GaUagher and 0.C.Zienkiewicz : "Optimum Smctural Design 
-Theory and Applications-" (1973) John Wiley & Sons. 

[6] TNakata. N.Takahashi. K.Fujiwara and Y.Okada : "Improvements of 
the T-R Method for 3-D Eddy Current Analysis", IEEE Trans. 
Magnetics, MAG-24, 1, 94 (1988). 


