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Abstract

We present a method for object detection that combines AdaBoost learning

with local histogram features. On the side of learning we improve the per-

formance by designing a weak learner for multi-valued features based on

Weighted Fisher Linear Discriminant. Evaluation on the recent benchmark

for object detection confirms the superior performance of our method com-

pared to the state-of-the-art. In particular, using a single set of parameters

our approach outperforms all methods reported in [5] for 7 out of 8 detection

tasks and four object classes.

1 Introduction

Among the vast variety of existing approaches to object recognition there is a remarkable

success of methods using histogram-based image descriptors. An influential work by

Swain and Ballard [16] proposed color histograms as an early view-based method for

object recognition. The idea was further developed by Schiele and Crowley [14] who

recognized objects using histograms of local filter responses. Histograms of Textons were

proposed by Leung and Malik [8] for texture recognition. Schneiderman and Kanade [15]

computed histograms of wavelet coefficients over localized object parts and were among

the first to address object categorization in natural scenes. In a similar spirit the well-

known SIFT descriptor [10] and Shape Context [1] use position-dependent histograms

computed in the neighbourhood of selected image points.

Histograms represent distributions of spatially unordered image measurements in a

region and provide relative invariance to several object transformations in the image. This

property partly explains the success of histogram-based methods. The invariance and

the descriptive power of histograms, however, crucially depend on (a) the type of local

image measurements and (b) the image region used to accumulate histograms. Regarding

the type of measurements, different alternatives have been proposed that may have better

performance depending on the recognition task [16, 14]. As a general purpose shape

descriptor, the choice of histograms of gradient orientations is well supported by many

applications of SIFT descriptor [10, 12] and other related methods [2].

Besides the question what to measure, the question where to measure obviously has a

large impact on recognition. While global histograms [16, 14] do not suite well for com-

plex scenes, a better approach supported in [15, 10, 2] consists of computing histograms

over local image regions. As illustrated in Figure 1, different regions of an object may



Figure 1: Rectangles on the left and right image are examples of possible regions for

histogram features. Stable appearance in A,B and C on both images makes corresponding

features to be good candidates for a motorbike classifier. On the contrary, regions D are

unlikely to contribute for the classification due to the large variation in appearance.

have different descriptive power and, hence, different impact on the learning and recog-

nition. In the previous work histogram regions were often selected either a-priori by the

tessellation [15, 2] or by applying region detectors of different kinds [10, 3, 11]. While

many region detectors were designed to achieve invariance to local geometric transfor-

mations, it should be stressed that the procedures used to detect such regions are based

on heuristic functions1 and cannot guarantee optimal recognition. An arguably more at-

tractive alternative proposed by Levi and Weiss [9] consists of learning class-specific

histogram regions from the training data.

In this work similar to [9] we choose the position and the shape of histogram features

to minimize the training error for a given recognition task. We consider a complete set of

rectangular regions in the normalized object window and compute histograms of gradient

orientation for several parts of such regions. We then apply AdaBoost procedure [6, 18]

to select histogram features (Boosted Histograms) and to learn an object classifier. As a

part of our contribution to object learning, we adapt the boosting framework to vector-

valued histogram features and design a weak learner based on Weighted Fischer Linear

Discriminant (WFLD). This together with other improvements is shown to substantially

improve the performance of the method in [9].

As our second contribution, we apply the developed method to the problem of object

detection in cluttered scenes and evaluate the performance on the benchmark of PASCAL

Visual Object Category (VOC) Challenge 2005 [5]. Using a single set of parameters our

approach outperforms all methods reported in [5] for 7 out of 8 detection tasks and four

object classes. Among the advantages of the method we reinforce and emphasize (a) its

ability to learn from a small number of samples, (b) stable performance for different object

classes, (c) conceptual simplicity and (d) potentially real-time implementation.

The rest of the paper is organized as follows. In Section 2 we recall AdaBoost algo-

rithm and develop a weak learner for vector-valued features. Section 3 defines histogram

features and integrates them with the boosting framework. In Section 4 we apply the

method to object detection and evaluate its performance. Section 5 concludes the paper.

1For example Harris function for position estimation and the normalized Laplacian for scale selection.



2 AdaBoost learning

AdaBoost [6] is a popular machine learning method combining properties of an efficient

classifier and feature selection. The discrete version of AdaBoost defines a strong binary

classifier H

H(z) = sgn(
T

∑
t=1

αtht(z))

using a weighted combination of T weak learners ht with weights αt . At each new round t,

AdaBoost selects a new hypothesis ht that best classifies training samples with high clas-

sification error in the previous rounds. Each weak learner

h(z) =

{

1 if g( f (z)) > θ
−1 otherwise

(1)

may explore any feature f of the data z. In the context of visual object recognition it is

attractive to define f in terms of local image properties over image regions r and then

use AdaBoost for selecting features maximizing the classification performance. This idea

was first explored by Viola and Jones [18] who used AdaBoost to train an efficient face

detector by selecting a discriminative set of local Haar features. Here similar to [9], we

will define f in terms of histograms computed for rectangular image regions on the object.

2.1 Weak learner

The performance of AdaBoost crucially depends on the choice of weak learners h. While

effective weak learners will increase the performance of the final classifier H, the poten-

tially large number of features f prohibits the use of complex classifiers such as Support

Vector Machines or Neural Networks. For one-dimensional features f ∈ R such as Haar

features in [18], an efficient classifier for n training samples can be found by selecting an

optimal decision threshold θ in (1) in O(n logn) time. For vector-valued features f ∈ R
m

such as histograms, however, finding an optimal linear discriminant would require unrea-

sonably long O(
(

n
m

)

) time.

One approach to deal with multi-dimensional features used in [9] is to project f onto

a pre-defined set of 1-dimensional manifolds using a fixed set of functions g j : R
m → R.

A weak learner can then be constructed for each combination of basis functions g j and

features fi. Although efficient, such an approach can be suboptimal if a chosen set of

functions g j is not well suited for a given classification problem. As an example of inef-

ficient AdaBoost classifier consider the problem of separating two diagonal distributions

of points in R
2 illustrated in Figure 2(left). Using axis-parallel linear basis functions

g1( f ) = (1 0) f and g2( f ) = (0 1) f , the resulting AdaBoost classifier has poor general-

ization and requires T ≈ 50 weak hypotheses for separating n = 200 training samples.

An alternative and still efficient choice for a multi-dimensional classifier is Fisher

Linear Discriminant (FLD) [4]. FLD guarantees optimal classification of normally dis-

tributed samples of two classes using a linear projection function

g = w⊤ f with w = (S(1) +S(2))−1(µ(1) −µ(2)) (2)

defined by the class means µ(1), µ(2) and the class covariance matrices S(1), S(2). Il-

lustration of FLD classification in Figure 2(right) clearly indicates its advantage in this



Figure 2: Classification of two diagonal distributions using (left): AdaBoost with weak

learners in terms of axis-parallel linear classifiers; (right): Fisher linear discriminant.

example compared to the classifier in Figure 2(left). A particular advantage of using FLD

as a weak learner is the possibility of re-formulating FLD to minimize a weighted clas-

sification error as required by AdaBoost. Given the weights di corresponding to samples

zi, the Weighted Fischer Linear Discriminant (WFLD) can be obtained using a function g

in (2) with the means µ and covariance matrices S substituted by the weighted means µd

and the weighted covariance matrices Sd defined as

µd =
1

n∑di

n

∑
i

di f (zi), Sd =
1

(n−1)∑d2
i

n

∑
i

d2
i ( f (zi)−µd)( f (zi)−µd)

⊤. (3)

Using WFLD as an AdaBoost weak learner eliminates the need of re-sampling the train-

ing data required for other classifiers that do not accept weighted samples. This in turn

leads to a more efficient use of the training data which is frequently limited in vision

applications.

In practice, the distribution of image features f (xi) will mostly be non-Gaussian and

multi-modal. Given a large set of features f , however, we can assume that the distribu-

tion of samples at least for some features will be close to Gaussians yielding the good

performance of resulting classifier. Experimental validation of this assumption and the

advantage of WFLD will be demonstrated in Section 4 on real classification problems.

3 Histogram features

As motivated in the introduction, local histograms provide effective means to represent

visual information for recognition. To avoid a-priori selection of histogram regions, we

consider all rectangular sub-windows r of the object. For image regions r we compute

weighted histograms of gradient orientations

γ(x,y) = arctan
Lx(x,y)

Ly(x,y)
, Lξ = I ∗

∂

∂ξ

(

1

2πσ2
e−(x2+y2)/2σ2

)

(4)

using Gaussian derivatives Lx,Ly defined on the image I. We discretize γ into m = 4 orien-

tation bins and increment histograms by the values of the gradient magnitude ||(L2
x ,L

2
y)||2.

The histograms are normalized to the sum value 1 to reduce the influence of illumination.

To preserve some positional information of measurements within the region, we sub-

divide regions into parts as illustrated in Figure 3(upper,left) and compute histograms



Figure 3: (top,left): Four types of compound histogram features; (bottom,left): Frequency

of the types of compound features in the AdaBoost motorbike classifier; (top,right): Fea-

tures chosen in the three first rounds t = 1,2,3 of AdaBoost learning; (bottom,right):

Superposition of all rectangular features selected for a motorbike classifier. The value at

each pixel corresponds to the number of selected regions that overlap with the pixel.

separately for each part. Four types of image features fk,r(z), k = 1, ...,4 are then defined

for each region r by concatenating part-histograms into feature vectors of dimensions

m,2m,2m and 4m respectively. All histogram features are computed efficiently using in-

tegral histograms [9, 13] which enables real-time implementation of the detection method.

During training we compute features fk,r(z) for the normalized training images and

apply AdaBoost to select a set of features fk,r and hypotheses h( fk,r) for optimal per-

formance of classification. A few features selected for motorbikes in the first rounds of

AdaBoost are shown in Figure 3(upper,right). By superimposing the regions of all se-

lected features illustrated in Figure 3(lower,right) we can observe the relative importance

of different parts of the motorbike for the classification. The frequency of selected fea-

ture types is illustrated in Figure 3(lower,left) and indicates the preference of compound

features for the classification.

4 Evaluation

We evaluate the designed classifier on the problem of object detection in natural scenes.

For the training we assume a set of scale and position normalized object images with

similar views. We use a cascade AdaBoost classifier [18] and collect negative examples

for training by detecting false positives in random images. For the detection we use the

standard window scanning technique and apply the classifier to the densely sampled sub-

windows of the image. To suppress multiple detections we cluster positively classified

sub-windows in the position-scale space and use the size of resulting clusters as a confi-

dence measure for the detection.

To improve the performance of object detection, we found it particularly useful to

populate the training set of positive samples as follows. Given annotation rectangles for

objects in training images, we generate similar rectangles for each annotation by perturb-

ing the position and the size of original rectangles. We treat the generated rectangles as

new annotations and populate the training set of positive samples by the factor of 10.



Figure 4: (Left): Comparison of detection methods using Precision-Recall curves.

(Right): Distributions of training samples projected onto examples of basis functions se-

lected by different weak learners (top): WFLD; (bottom): Levi&Weiss04.

Comparison to Levi and Weiss [9]. Our method differs from the one proposed by Levi

and Weiss [9] in three main respects: (i) we introduce WFLD weak learner for vector-

valued features, (ii) we use compound histogram features described in Section 3 and (iii)

we use a populated set of training samples as described above. To evaluate these exten-

sions we compare our method with [9] on the problem of detecting motorbikes in natural

scenes. To train and to test the detectors we used the training and the validation datasets

of VOC 2005 [5]. Evaluation in terms of Precision-Recall (PR) curves illustrated in Fig-

ure 4(left) shows how the performance of the method in [9] is gradually improved by our

extensions. In particular we noticed that WFLD usually gave a better separation of train-

ing samples as illustrated in Figure 4(right) as well as resulted in a simpler classifier with

about 25% less weak classifiers than required by our implementation of [9]. Surprisingly

we observed that most of improvement was given by the population of the training set.

Comparison to VOC 2005. One of our main contributions is the evaluation of the pre-

sented method on the VOC 2005 dataset [5]. In [5] several state-of-the-art methods for

object detection were evaluated on the problem of detecting four object classes: motor-

bikes, bicycles, people and cars. The training and the two test sets contained substantial

variation of objects in terms of scale, pose occlusion and within-class variability. The

evaluation was done in terms of PR curves and the Average Precision (AP) values ap-

proximating the area under the PR-curves (see [5] for details).

As follows from Figure 5 and Tables 1,2 our method denoted as Boosted Histograms

outperforms the best results in [5] in seven out of eight test problems. To generate the

results we did not optimize our method for each object class. The (few) parameters of our

detector such as the number of histogram bins m = 4 and the scale of Gaussian derivatives

σ = 1 in (4) were optimized on the validation set of the motorbike class and were fixed for

the rest of object classes. Notably, the performance of Boosted Histograms (BH) greatly

outperforms results in [5] for people and bicycles. For motorbikes and cars we note that

BH performs better or similar to competitor methods [2, 7] while the relative performance

of [2] and [7] is rather different for these two object classes.



Method Motorbikes Bicycles People Cars

Boosted Histograms 0.896 0.370 0.250 0.663

TU-Darmstadt 0.886 – – 0.489

Edinburgh 0.453 0.119 0.002 0.000

INRIA-Dalal 0.490 – 0.013 0.613

Table 1: Average precision for object detection on test1 VOC 2005 image set.

Method Motorbikes Bicycles People Cars

Boosted Histograms 0.400 0.279 0.230 0.267

TU-Darmstadt 0.341 – – 0.181

Edinburgh 0.116 0.113 0.000 0.028

INRIA-Dalal 0.124 – 0.021 0.304

Table 2: Average precision for object detection on test2 VOC 2005 image set.

Figure 6 shows examples of detection results for motorbikes and people. In Fig-

ure 6(top) gradual decrease of the detection confidence is consistent with the increased

complexity of detected motorbikes. The frequent presence of bicycles within false pos-

itives can also be explained intuitively. Moreover, exclusive fusion of detection results

for motorbikes and bicycles is expected to increase the detection results for both classes

even further. In Figure 6(bottom) we observe that acceptable detections of people (red

rectangles) are frequently labelled as “misclassified” during the evaluation due to the mis-

alignment with the annotation (green rectangles) or due to the missing annotation.

5 Conclusion

We presented a method for object detection that combines AdaBoost learning with local

histogram features. While being conceptually similar to [9] our method provides a num-

ber of extensions that significantly improve the results of object detection. We evaluated

the method on the recent benchmark for object detection [5] and demonstrated its supe-

rior performance compared to the state-of-the-art methods reported in [5]. Based on the

observations in Section 4 we conclude that the current method has a stable performance

for different objects classes.

Among the possible extensions, the current method can be easily re-formulated to

capture histograms of other image measurements such as textons. This might further

improve the performance by adapting the method to particular object classes. On the side

of learning more work towards efficient weak learners might be fruitful. Re-formulating

the current method for multi-class problems using multi-class version of AdaBoost [17]

is another potentially interesting extension.
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motorbikes: test1 motorbikes: test2

bicycles: test1 bicycles: test2

people: test1 people: test2

cars: test1 cars: test2

Figure 5: PR-curves for eight object detection tasks of PASCAL VOC 2005 Challenge.

The proposed method (Boosted Histograms) is compared to the best detection methods

reported for each task in [5]. (This Figure is better viewed in colour.)



Figure 6: Examples of correct and false detections of motorbikes and people. The posi-

tions of illustrated detections on the PR-curves are marked with the crosses. (top): False

detections of motorbikes (red rectangles) frequently correspond to bicycles. (bottom): Ac-

ceptable detections of people (red rectangles) are frequently labelled as “misclassified” in

the evaluation due to the misalignment with the annotation (green rectangles).



References

[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using

shape contexts. IEEE-PAMI, 24(4):509–522, April 2002.

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In

Proc. CVPR, pages I:886–893, 2005.
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