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ABSTRACT: The NOAA/NESDIS/NCEI Daily Optimum Interpolation Sea Surface Temperature (SST), version 2.0,

dataset (DOISST v2.0) is a blend of in situ ship and buoy SSTs with satellite SSTs derived from the Advanced Very High

Resolution Radiometer (AVHRR). DOISST v2.0 exhibited a cold bias in the Indian, South Pacific, and South Atlantic

Oceans that is due to a lack of ingested drifting-buoy SSTs in the system, which resulted from a gradual data format change

from the traditional alphanumeric codes (TAC) to the binary universal form for the representation of meteorological data

(BUFR). The cold bias against Argo was about20.148C on global average and20.288C in the Indian Ocean from January

2016 toAugust 2019.We explored the reasons for these cold biases through six progressive experiments. These experiments

showed that the cold biases can be effectively reduced by adjusting ship SSTs with available buoy SSTs, using the latest

available ICOADS R3.0.2 derived from merging BUFR and TAC, as well as by including Argo observations above 5-m

depth. The impact of using the satellite MetOp-B instead of NOAA-19 was notable for high-latitude oceans but small on

global average, since their biases are adjusted using in situ SSTs. In addition, the warm SSTs in the Arctic were improved by

applying a freezing point instead of regressed ice-SST proxy. This paper describes an upgraded version,DOISST v2.1, which

addresses biases in v2.0. Overall, by updating v2.0 to v2.1, the biases are reduced to20.078 and20.148C in the global ocean

and Indian Ocean, respectively, when compared with independent Argo observations and are reduced to 20.048

and 20.088C in the global ocean and Indian Ocean, respectively, when compared with dependent Argo observations. The

difference against the Group for High Resolution SST (GHRSST) Multiproduct Ensemble (GMPE) product is reduced

from 20.098 to 20.018C in the global oceans and from 20.208 to 20.048C in the Indian Ocean.
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1. Introduction

Sea surface temperature (SST) is an essential climate indi-

cator and has been widely used in climate monitoring, assess-

ment, and simulation, as well as in applications related to

environmental protection, agriculture, and industry (IPCC

2013, 2018; EPA 2014). There are several types of SST prod-

ucts. The first is based purely on in situ observations from

ships, drifting buoys, and moored buoys (and Argo floats in

some products). Examples of this type of product include the

Extended Reconstructed SST (ERSST; Smith et al. 1996;

Smith and Reynolds 2003, 2004; Huang et al. 2015a, 2017,

2020), Met Office Hadley Centre SST (HadSST; Kennedy

et al. 2011a,b, 2019), and Japan Meteorological Agency

Centennial Observation-Based Estimates of SSTs (COBE-

SST; Ishii et al. 2005; Hirahara et al. 2014). The second type of

SST product is based solely on satellite observations; one ex-

ample is the European Space Agency (ESA) Climate Change

Initiative SST (CCI SST; Merchant et al. 2014, 2019). The third

type of product is based on the blending of both in situ and

satellite observations. These products include the Met Office

Hadley Centre Ice and SST (HadISST; Rayner et al. 2003),

Weekly Optimum Interpolation SST (WOISST; Reynolds

et al. 2002), Daily Optimum Interpolation, version 2.0 (DOISST

v2.0; Reynolds et al. 2007), and the Group for High Resolution

SST (GHRSST) Multiproduct Ensemble (GMPE) product

(Martin et al. 2012; Fiedler et al. 2019). Here we discuss im-

provements to the blended DOISST. The DOISST has been

widely used in climate assessments andmonitoring, such as the

NOAA/NCEP Climate Forecast System Reanalysis (CFSR;

Saha et al. 2010).

A common impediment in producing these SST datasets is

the difficulty in homogenizing different types of observations,

since biases of SST observations are dependent on instruments

and observing platforms that vary with space and time (Kent

et al. 2019). For example, historic ship observations are typi-

cally cold biased because of the cooling from buckets before

the 1940s and are warm biased as a result of heating of engine

room intake (ERI) after the 1940s (Kennedy et al. 2011a,b;

Huang et al. 2015a, 2017; Kent et al. 2019). Satellite
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observations may be biased by contaminations from clouds,

volcano eruptions, and continental dust and aerosols (Zhang

et al. 2004). The large-scale biases of ship SSTsmay be adjusted

towardmore reliable observations such as nighttimemarine air

temperature, or SSTs from buoy and Argo measurements

(Huang et al. 2015a 2017), or they may be adjusted by simu-

lating the heat loss or gain (Folland and Parker 1995; Kennedy

et al. 2011a,b; Carella et al. 2018). Satellite SSTs are calibrated

against collocated buoy observations or by using a reduced-

state-vector optimal estimation algorithm (Merchant et al.

2008, 2014, 2019).

Satellite and in situ systems measure the ‘‘sea surface tem-

perature’’ at different depths. A perfectly accurate satellite

SST retrieval of the sea surface skin temperature would be

different from a perfectly accurate collocated buoy measure-

ment of SST at a depth of approximately 0.2m or a ship

measuring an intake temperature (at a depth of several me-

ters). Studies indicate that most satellite SSTs deviate slightly

from in situ SSTs, and therefore a further adjustment of sat-

ellite SSTs is needed before they can be blended with in situ

SSTs (Reynolds et al. 2002, 2007; Huang et al. 2015b, 2016). A

common practice in these studies is to adjust satellite SSTs

toward in situ SSTs. This suggests that the adjusted satellite

SSTs are dependent on the accuracy and area coverage of

in situ SSTs. Ship SSTs are noisier, while buoy and Argo SSTs

are relatively accurate and homogeneous.

Since 2016, the in situ SSTs from the traditional alphanu-

meric codes (TAC) data stream have been gradually transi-

tioned to the binary universal form for representation (BUFR)

of meteorological data. Because DOISST v2.0 depended on

TAC data, the buoy coverage ingested into the DOISST sys-

tem decreased from near 30% of the global oceans in 2016 to

near 5% in 2019 (Fig. 1a, solid green). The lower buoy cover-

age is mostly attributed to the lower drifting-buoy coverage,

while the moored-buoy coverage does not change much. The

lower drifting-buoy coverage decreased the total coverage of

in situ SSTs by about 15%, from 55% in 2016 to 40% in 2019,

because Argo SSTs were not included in v2.0. The transition of

transmission of drifting-buoy measurements from TAC to

BUFR lowered our ability to feed in situ measurements into

the DOISST v2.0 system and therefore lowered the quality of

DOISST v2.0.

DOISST v2.0 is also likely affected by an overcorrection of

an assumed warm bias of ship SSTs since 2005, particularly

after 2016. In DOISST v2.0, the bias of ship SSTs is assumed to

be 0.148C, based on its average between 1982 and 2000

(Reynolds et al. 2002). However, since 2004, the biases of ship

SSTs against buoy SSTs have been clearly decreasing (Huang

et al. 2017; Kennedy et al. 2019) and they approach zero after

2016 (Fig. 2). The lower coverage of buoy SSTs and the over-

correction of ship SSTs may have resulted in the recently

identified cold bias in DOISST v2.0. The cold bias may also

result from the use of degraded satellite SSTs from NOAA-19

and the residual bias of satellite SSTs from MetOp-A, which

cannot be resolved by the algorithms of bias correction in

DOISST v2.0. In contrast, DOISST v2.0 exhibited a warm bias

in the Arctic and Southern Oceans (Castro et al. 2016; Banzon

et al. 2020), which may result from an inaccurate method for

estimating SST by proxy from sea ice concentration (Banzon

et al. 2020).

In this study, we document improvements in an upgraded

version, DOISST v2.1, which addresses identified problems in

v2.0 and assesses the relative contribution of each progressive

improvement from v2.0 to v2.1. The rest of the paper is orga-

nized as follows: DOISST v2.0 and v2.1 are briefly described in

section 2. Data and experiment design for each improvement

are described in section 3. Comparisons with Argo observa-

tions in each experiment are presented in section 4, and com-

parisons with GMPE are presented in section 5. Our results are

summarized and discussed in section 6.

2. DOISST v2.0 and v2.1

DOISST v2.0 and v2.1 have a resolution of daily and 0.258 3

0.258 (Table 1). DOISST v2.0 did not include BUFR ship, buoy

and Argo float observations, but v2.1 does, starting from

January 2016. Studies indicate that the ship SSTs exhibit biases

that are due to changes in instruments and observing platforms

(Kennedy et al. 2011a,b; Huang et al. 2015a, 2017). The biases

of ship SSTs are assumed to be 0.148C (the average of 1982–

2000) in v2.0 from September 1981 to December 2015

FIG. 1. Global SST coverages (%) on 15-day 28 3 28 grids in

(a) OISST v2.0 and (b) OISST v2.1. The coverages of ship, buoy,

Argo, ship 1 buoy, and ship 1 buoy1Argo are indicated in solid

red, green, purple, black, and dotted black lines, respectively. The

reason for using 15-day 28 3 28 grids is that the biases of satellite

SSTs are calculated at these grids as described in section 2.
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(Reynolds et al. 2007) but are set to 0.018C (the average from

January 2016 to August 2019) in this study (v2.1) from January

2016 to the present (Fig. 2 and Table 1). Note that the ship SST

bias decreases from 0.148C to about 0.108C between 2006 and

2015, which may result in a slight cold bias in DOISST v2.0.

However, comparisons with other similar SST products indi-

cate (not shown in figure) that the cold bias does not appear

until mid-2016. The small impact of the slightly reduced ship

bias may have been mitigated by a relatively small signal-to-

noise ratio of ships (1.0) as compared with buoys and Argo

floats (7.0; Huang et al. 2015a, 2017) when these in situ ob-

servations are merged.

The SSTs from the Advanced Very High Resolution

Radiometer (AVHRR) measurements have a near-global

FIG. 2. Monthly (dotted red) and 12-month running averaged (solid green) ship SST biases (8C) defined as the

difference between ship and buoy SSTs. SSTs are from ICOADS R3.0.0 before 2015 and from ICOADS-D R3.0.2

for 2016 and onward. Biases of 0.148 and 0.018C are indicated by two gray horizontal lines.

TABLE 1. A brief description of DOISST v2.0 and DOISST v2.1.

DOISST v2.0 DOISST v2.1

Time period Sep 1981–25 Apr 2020 Jan 2016–present; Sep 1981–Dec 2015:

converted from v2.0 NetCDF 3.6 to

NetCDF 4

Resolution Daily 0.258 3 0.258 Daily 0.258 3 0.258

AVHRR sources NOAA-7 (1982–85); NOAA-9 (1985–88);

NOAA-11 (1988–94); NOAA-9 (1994–

95); NOAA-14 (1995–2000); NOAA-16

(2000–02); NOAA-17 (2003–05);

NOAA-18 (2005–06);NOAA-17 (2006–

08); NOAA-18 (2007–11); NOAA-19

(2011–15); MetOp-A (2009–present)

from U.S. Navy

MetOp-A (2016–present) from the U.S.

Navy; MetOp-B (2016–present) from

the U.S. Navy

In situ data used to correct AVHRR

biases

Ship and buoy observations Ship, buoy, and Argo observations

In situ ship and buoy observations ICOADS R2.5 (1981–2006); NCEP GTS

receipts since 2007

ICOADS-D R3.0.2

In situ Argo observations Not applicable Argo GDAC; https://www.seanoe.org/

data/00311/42182

Assumed bias of ship SSTs 0.148C 0.018C

Sea ice concentration NASA (1981–2004); NCEP (2005–

present)

NASA (1981–2004); NCEP (2005–

present)

Proxy SST over ice-covered regions Regression between SST and ice

concentration

Freezing point based on climatological sea

surface salinity
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coverage but may contain systematic biases relative to in situ

observations. AVHRR SSTs are retrieved from the radiance

measurements, and therefore SST accuracy is critically de-

pendent on retrieval algorithms. The infrared AVHRR can

penetrate only the top millimeters of the sea surface and rep-

resent the skin temperature of the sea surface water, which is

different from the in situ measurement at a nominal depth of

0.2m. Therefore, AVHRR SSTs are more variable and sensi-

tive to diurnal heating. AVHRR SSTs may also be contami-

nated by clouds and aerosols (Zhang et al. 2004; Huang et al.

2015b). The AVHRR SSTs are calibrated by in situ buoy ob-

servations, but the calibration in satellite SST retrieval al-

gorithms may not work perfectly, for various reasons. For

example, the calibration was done for averaged atmospheric

conditions and might not be able to catch the spatially and

temporally varying components. These are the reasons why the

AVHRR SSTs are adjusted when they are ingested into the

DOISST system (Reynolds and Smith 1994; Reynolds et al.

2002, 2007).

The large-scale biases of AVHRR SSTs are corrected

against the available in situ observations from ships and buoys

in DOISST v2.0 (Reynolds et al. 2007) and from ships, buoys,

and Argo floats in this study (v2.1; Table 1). Daily biases of

AVHRR SSTs (e.g., 15 January 2020) are calculated in the

following procedures: 1) daily AVHRR and in situ SSTs are

bin-averaged separately to 28 3 28 grids; 2) daily AVHRR and

in situ SSTs are averaged separately within a 15-day running

window (e.g., 8–22 January 2020); 3) the averaged AVHRR

and in situ SSTs are projected onto a common set of empirical

orthogonal teleconnection (EOT) functions; 4) the difference

between EOT-filtered AVHRR and in situ SSTs is defined as

AVHRR biases; and 5) the daily biases on 28 3 28 grids are

interpolated linearly to 0.258 3 0.258 grids and applied to

AVHRR SST [see more details in Reynolds et al. (2007);

Huang et al. 2015b]. By adjusting the biases of AVHRR SSTs,

the DOISST v2.0 and v2.1 represent the SSTs measured by

in situ instruments at 0.2-m nominal depth. We note that re-

sidual biasesmay remain in bias-correctedAVHRRSSTs since

biases at grid scales may not be resolved by EOTs and because

in situ data are not available everywhere to inform the

correction.

In the ice-covered regions of the Arctic and Southern

Ocean, the proxy SST from ice concentration is blended with

in situ and satellite SSTs. The sea ice concentration is from

NASA (1981–2004; Cavalieri et al. 1996, 1999) and NCEP

(2005–present; Grumbine 2014). The proxy SST is calculated

using linear regressions over 28 regions in DOISST v2.0

(Reynolds et al. 2007) in two separate time periods, 1981–2014

and 2005–present. The proxy SST is replaced by freezing points

of seawater in v2.1 when ice concentration is higher than 35%,

based on the recent study of Banzon et al. (2020). The freezing

points are calculated on the basis of climatological sea surface

salinity.

3. Data and experiments

DOISST v2.0 (Table 1) used ship and buoy SSTs from the

International Comprehensive Ocean–Atmosphere Datasets

Release 2.4 (ICOADS R2.4) between September 1981 and

December 2006 (Woodruff et al. 2011) and from the National

Centers for Environmental Prediction (NCEP) Global

Telecommunication System (GTS) receipts thereafter.

DOISST v2.1 uses SSTs from ship and buoy observations from

a merged TAC–BUFR ICOADS daily stream (ICOADS-D

R3.0.2; C. Liu et al. 2020, unpublished manuscript) as well as

Argo observations (Argo 2000; Roemmich et al. 2001) above

5-m depth from January 2016 to present. ICOADS-D R3.0.2

is a merging of TAC and BUFR data provided by the National

Centers for Environmental Information (NCEI).

DOISST v2.0 used satellite-based AVHRR observations

from Pathfinder v5.0 (NOAA-7, 1982–85) and v5.1 (NOAA-9,

1985–88; NOAA-11, 1988–94; NOAA-9, 1994–95; NOAA-14,

1995–2000; NOAA-16, 2000–02; NOAA-17, 2003–05; NOAA-

18, 2005–06), and from the U.S. Navy (NOAA-17, 2006–08;

NOAA-18, 2007 to August 2011; NOAA-19, August 2011–15;

MetOp-A, 2009–present) (Banzon et al. 2016). In DOISST v2.1

(Table 1),NOAA-19 is replaced byMetOp-B from January 2016

to the present.MetOp-A andMetOp-B SSTs are retrieved by the

U.S. Navy Naval Oceanographic Office.

The impacts of input data changes were progressively tested

with the following six experiments from January 2016 to

August 2019 (Table 2): MA1N19, using AVHRR SSTs from

MetOp-A (MA) and NOAA-19 (N19), which is the same as

DOISST v2.0; MA1MB, which is the same as MA1N19 but

replacing NOAA-19 with MetOp-B (MB); FrzPnt, which is

the same as MA1MB but using freezing-point (FrzPnt) proxy

SST instead of ice-concentration proxy SST in ice-covered re-

gions; Ship01, which is the same as FrzPnt but using ship SST

bias of 0.018C (Ship01) instead of 0.148C; R3.0.2, which is the

same as Ship01 using ship and buoy SSTs from ICOADS-D

R3.0.2 instead of NCEP GTS receipts; and ALL, which is the

same asR3.0.2 but including all (ALL) in situ observations from

ships, buoys, and Argo floats above 5-m depth and has been

implemented in operational DOISST v2.1.

These progressive experiments were designed to assess

each revision in Table 2 on the improvement of DOISST

TABLE 2. Descriptions for DOISST experiments.

Expt Description

MA1N19 MetOp-A and NOAA19, which is the

same as DOISST v2.0

MA1MB Same as MA1N19 but using MetOp-A

and MetOp-B

FrzPnt Same as MA1MB but using freezing-

point (FrzPnt) over the regions of

sea ice

Ship01 Same as FrzPnt but replacing ship bias of

0.148C with 0.018C

R3.0.2 Same as Ship01 but replacing ship and

buoy SSTs from NCEP with SSTs from

ICOADS-D R3.0.2

ALL Same as R3.0.2 but including Argo

temperatures above 5-m depth, which is

the same as DOISST v2.1

Argo90% Same as ALL but including 90% of Argo
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v2.1 over v2.0. The impacts of the MA1N19, MA1MB,

FrzPnt, Ship01, and R3.0.2 experiments were assessed by

comparison with independent Argo observations in section 4

and with GMPE SST in section 5. These impacts may change

when the order of experiments is switched. The inclusion of

Argo observations in final experiment ALL and operational

DOISST v2.1 was intended to maximize the use of available

observations. We note that the comparison between exper-

iment ALL and Argo is not independent. To verify the role

of Argo in DOISST v2.1, we ran an additional experiment

Argo90% (Table 2), which is the same as experiment ALL

except that only 90% of Argo profiles are randomly selected

and included, leaving the other 10% of Argo profiles for

independent verification.

4. Improvements toward DOISST v2.1

a. Biases in DOISST v2.0

The bias in DOISST v2.0 (equivalent to experiment

MA1N19) was assessed by comparing globally averaged SST

differences with Argo (Argo float data are not assimilated into

this experiment, and thus serve as an independent validation

dataset; Fig. 3a, solid black). Experiment MA1N19 showed

a cold bias in the global oceans, which increases from

about 20.18C in 2016 to between 20.18 and 20.28C during

2017–18, and finally to between 20.18 and 20.48C during

January–August 2019. The averaged bias is about 20.148C

(Table 3). Averaged between January 2016 and August 2019,

the cold bias is approximately from 20.48 to 20.88C in the

FIG. 3. (a) Globally averaged and (b) Indian Ocean averaged SST differences (8C) in daily

0.258 3 0.258 grids against Argo for experiments MA1N19 (solid black), MA1MB (dotted

red), FrzPnt (dotted black), Ship01 (solid light blue), R3.0.2 (dotted green), and ALL (solid

red). A 15-day running average is applied when plotted.
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Indian Ocean and from 20.18 to 20.48C in the western trop-

ical Pacific, the subtropical North and South Pacific, and the

tropical–subtropical Atlantic (Fig. 4a). The large bias in the

Indian Ocean happens over the entire period of 2016–19,

particularly after June 2017 (Fig. 3b, solid black). The averaged

bias in the Indian Ocean from January to August 2019 is

about 20.288C, which is about 2 times the global averaged bias

(Table 3), although the root-mean-square difference (RMSD)

values are very close to those in the global average.

In addition to the overall increased cold bias with time in

DOISST v2.0, the bias was relatively strong during the

Northern Hemisphere summer (June–August; Fig. 3a, solid

black). These stronger biases may result from the seasonal

nature of higher cloudiness and dust aerosols in the tropical

oceans. The higher cloudiness and dust aerosols can result in a

cold bias of satellite AVHRR measurements as indicated in

Zhang et al. (2004) and many other studies.

In contrast to the overall cold bias in MA1N19, there are

warm biases (0.28–0.68C) in the western tropical Indian, eastern

tropical Pacific, northwestern North Pacific, and northern

North Atlantic Oceans (Fig. 4a). The RMSDs between

MA1N19 and Argo are small (about 0.18C) in most of the

global oceans except for the western North Pacific and western

North Atlantic (about 0.68C) (Fig. 5a). Our analysis indicates

that those mean biases and RMSDs are associated with sparse

in situ observations and higher SST variabilities in these re-

gions, particularly when most buoy observations were not in-

gested to the analysis during the transition fromTAC toBUFR

(Fig. 1a) in OISST v2.0.

b. Role of MetOp-B

By replacing NOAA-19 with MetOp-B in experiment

MA1MB (Fig. 3, dotted red), the area-averaged biases

against Argo over the global and Indian Ocean are almost

identical to that in MA1N19 (again, Argo float data are not

assimilated into this experiment and thus serve as an inde-

pendent validation dataset; Fig. 3, solid black). The spatial

distributions of biases are very close in MA1MB and MA1N19

(Figs. 4a,b), as well as the RMSDs in MA1MB and MA1N19

(Figs. 5a,b). The similar biases in MA1MB and MA1N19 sug-

gest that the use of MetOp-B has not improved the DOISST

performance. This may seem counterintuitive, since NOAA-19

has developed increasing bias in recent years. However, in

blending different SST observations, the satellite SSTs are bias

corrected by adjusting them relative to in situ SSTs, as described

in section 2. Therefore, the magnitude and spatial distribution of

adjusted large-scale satellite SSTs are in theory close to those of

large-scale in situ SSTs (Huang et al. 2013, 2015b, 2016).

However, since the coverage of buoy SSTs used in these experi-

ments and OISST v2.0 was increasingly reduced after 2016

(Fig. 1a), the satellite biases have not been correctedwell in either

MA1N19 or MA1MB experiments. Therefore the large biases

remain (Figs. 4a,b and 5a,b).

Another way to assess the role ofMetOp-B is to calculate the

SST difference between experiments MA1MB and MA1N19

(Fig. 6a). By usingMetOp-B, the SST becomes slightly warmer

(,0.058C) in the Southern Ocean south of 508S and coastal

regions of the Arctic, and becomes slightly colder in the trop-

ical and subtropical oceans. Overall, the globally averaged

impact of using MetOp-B is small (Fig. 7, solid blue), which is

consistent with the comparisons with Argo observations over

the entire experiment period between January 2016 and

August 2019 (Fig. 3, dotted red and solid black).

c. Role of freezing point as an SST proxy

Studies indicate that DOISST v2.0 over the ice-covered

Arctic regions had a warm bias, sometimes as large as 28C

(Castro et al. 2016) when and where ice-SST regressions did

not work well. A recent study (Banzon et al. 2020) indicated

that the freezing point–based ice-SST proxy can reduce the

warm bias over the ice-covered regions, which is validated by

independent buoy observations. Therefore, the ice-SST re-

gressions are replaced by freezing points when ice concentra-

tion is higher than 35% in v2.1 (Table 1).

By using freezing-point temperature as an SST proxy in

DOISST v2.1 (Fig. 6b), SSTs decrease by from20.18 to20.38C

in most of theArctic region and by20.18C along the coasts of the

Southern Ocean. The lower SSTs in these regions are consistent

with the conclusion that DOISST v2.0 exhibited a warm bias by

applying ice-SST regressions (Castro et al. 2016; Banzon et al.

2020). In contrast, SSTs increase by 0.18–0.38C along the coasts of

the European and Asian continents and the Queen Elizabeth

Islands of Canada. The higher SSTs may be associated primarily

with a higher freezing point due to a lower salinity forced by

river runoff (e.g., the Queen Elizabeth Islands of Canada;

https://www.nodc.noaa.gov/OC5/regional_climate/arctic).

The lower SSTs in Fig. 6b occur primarily in the Northern

Hemisphere summer (June–August; Fig. 7, dotted red) when

ice concentration is lower and ice-SST regressions do not work

well. In contrast, the seasonal variations of ice concentration

and freezing point are small in the SouthernOcean. Since there

are few Argo observations in the regions of the ice-covered

TABLE 3. Comparisons of DOISST experiments with Argo in averaged (from January 2016 to August 2019) biases and root-mean-square

difference in the global oceans and Indian Ocean.

Expt Mean global bias Global RMSD Mean Indian Ocean bias Indian Ocean RMSD

MA1N19 20.148C 0.438C 20.288C 0.508C

MA1MB 20.158C 0.438C 20.288C 0.508C

FrzPnt 20.158C 0.438C 20.298C 0.508C

Ship01 20.088C 0.428C 20.208C 0.508C

R3.0.2 20.078C 0.388C 20.148C 0.468C

ALL 20.048C 0.248C 20.088C 0.268C
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Arctic and Southern Ocean, the comparisons of experiment

FrzPnt with Argo (Fig. 3, dotted blue and red; Figs. 4c and 5c)

remain almost the same as those in experiment MA1MB.

d. Role of ship SST bias correction

SST observations were obtained purely from ships before

buoys and Argo floats became available, with buoys beginning

to gain importance for global sampling in the mid-1980s

(Freeman et al. 2017). Earlier studies indicated that ship

SSTs were cold biased (from 20.28 to 20.38C) because of the

heat loss of buckets before the 1940s and warm biased (about

0.18C) because of the heating from ERI after the 1940s

(Kennedy et al. 2011a,b; Huang et al. 2015a, 2017). Recent

studies showed that the biases of ship SST could be more

FIG. 4. Averaged (from January 2016 to August 2019) SST differences (8C) against Argo in (a) MA1N19,

(b) MA1MB, (c) FrzPnt, (d) Ship01, (e) R3.0.2, and (f) ALL. The differences are averaged to 28 3 28 for visu-

alization purposes.
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variable at the level of individual decks and at a global scale

(Chan et al. 2019; Chan and Huybers 2019; Kennedy et al.

2019). In DOISST v2.0, a bias of 0.148C was estimated from

early years of data and removed from ship SSTs; however, this

early estimate became clearly an overestimate after 2012 (Fig. 2).

In particular, the biases are near zero after 2016. Therefore, the

averaged bias of 0.018C was applied in DOISST v2.1 after 2016

based on recent years of data (Table 1). The bias correction to

ship SSTs may need to be refined further in the future develop-

ment of DOISST to correctly quantify its variabilities at different

geographic locations at seasonal to interannual time scales.

By setting the biases of ship SSTs to near zero (0.018C) in

experiment Ship01, the globally and time-averaged SST bias

against Argo observations (again, Argo float data are not

FIG. 5. SST RMSDs (8C; from January 2016 to August 2019) against Argo in daily 0.258 3 0.258 grids in

(a) MA1N19, (b) MA1MB, (c) FrzPnt, (d) Ship01, (e) R3.0.2, and (f) ALL. The RMSDs are averaged to 28 3 28

for visualization purposes.
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assimilated into this experiment, and thus serve as an in-

dependent validation dataset in this step) decreases

from20.158 to20.088C (Table 3), particularly after June 2017

and in the Indian Ocean (Fig. 3, solid light blue and dotted

blue; Table 3). The reduction of the cold biases is evident not

only in the Indian Ocean but also in the tropical Atlantic

(Figs. 4c,d), although weak warm biases increase slightly in the

western equatorial Indian Ocean, eastern equatorial Pacific,

and North Atlantic south of Greenland. However, the RMSDs

remain similar in FrzPnt and Ship01 (Figs. 5c,d; Table 3).

The impact of reducing ship SST bias correction is evident

(;0.108C) over the global oceans (Fig. 6c) where ship obser-

vations are available, particularly in the Indian Ocean, the

tropical–subtropical Atlantic, and the North Pacific near 508N.

FIG. 6. Averaged (from January 2016 to August 2019) SST differences (8C) in daily 0.258 3 0.258 grids between

progressive experiments of (a) MA1MB minus MA1N19, (b) FrzPnt minus MA1MB, (c) Ship01 minus FrzPnt,

(d) R3.0.2 minus Ship01, (e) ALL minus R3.0.2, and (f) ALL minus MA1N19.
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For the global average, SSTs increased by 0.058C in 2016 and

by approximately 0.108C in 2019 (Fig. 7, dotted black). The

enhancement of SST increase is associated with the reduction

of buoy SST coverage (Fig. 1a, solid green), since the coverage

of ship SST is near a constant (Fig. 1a, solid red). This implies

that ship SSTs become more important in the merged in situ

SST and the bias correction of satellite SSTs, as the observa-

tions from buoys ingested into DOISST v2.0 become fewer and

fewer since the transition from TAC to BUFR lowered our

ability to feed in situ measurements into the DOISST v2.0

system. That problem has been corrected in v2.1.

e. Role of ICOADS-D R3.0.2

One of the most serious problems in DOISST v2.0 is that the

coverage of the ingested buoy SST decreased from nearly 30%

in 2016 to only 5% by 2019 (Fig. 1a, solid green), which de-

creased the total coverage of Ship1Buoy from about 55%–

40% by 2019 (Fig. 1a, solid black). As discussed earlier, the

decrease of buoy SSTs was caused by the transition of GTS

data transmissions from TAC to BUFR (C. Liu et al. 2020,

unpublished manuscript). The reduction of buoy SSTs first

affects the accuracy and spatial coverage of merged in situ data

from ship and buoy SSTs, and then affects the accuracy of bias

correction to satellite SSTs, as indicated in our earlier studies

(Huang et al. 2013, 2015b, 2016).

By using ICOADS-D R3.0.2 derived from merging TAC

and BUFR (C. Liu et al. 2020, unpublished manuscript) the

coverage of merged in situ SSTs increases from a range of

40%–55% in DOISST v2.0 (Fig. 2a, solid black) to about 65%

in v2.1 (Fig. 2, dotted black). SST biases in experiment R3.0.2

decrease significantly over the global oceans during June–

November 2017, May–August 2018, and May–August 2019

(Fig. 3a, dotted green and solid light blue) and over the Indian

Ocean during January–April 2017 and from July 2018 to

August 2019 (Fig. 3b). For the time average from January 2016

to August 2019, SST biases decrease slightly from 20.088C in

experiment Ship01 to 20.078C in experiment R3.0.2 over the

global oceans and from20.208 to20.148C in the Indian Ocean

(Table 3). The reduction of the cold biases is evident not only in

the Indian Ocean but also in the central equatorial Pacific near

the date line and in the South Atlantic (Fig. 4e). The use of

ICOADS-D R3.0.2 also reduces the warm biases in the west

equatorial Indian Ocean and North Atlantic south of

Greenland, but the warm bias in the eastern equatorial Pacific

increases slightly. Overall, the RMSD against Argo (again,

Argo float data are not assimilated into this experiment, and

thus serves as an independent validation dataset in this step;

Figs. 5d,e) decreases between experiments Ship01 and R3.0.2.

The RMSD decreased from 0.428 to 0.388C (Table 3) in global

average and from 0.508 to 0.468C in the Indian Ocean,

indicating a clear improvement in DOISST biases by using

ICOADS-D R3.0.2. Similar features are found when these

experiments are compared with GMPE in section 5.

It is interesting that the impact of using ICOADS-D R3.0.2

is not uniformly distributed over the global oceans or in time

(Fig. 6d). SSTs increase by about 0.028C in the tropical and

South Pacific, by about 0.028C in the tropical and South

Atlantic, and by about 0.108–0.308C in the IndianOcean except

FIG. 7. Globally averaged SST differences (8C) in daily 0.258 3 0.258 grids between progressive experiments of

MA1MBminusMA1N19 (solid blue), FrzPnt minusMA1MB (dotted red), Ship01 minus FrzPnt (dotted black),

R3.0.2 minus Ship01 (solid light blue), ALL minus R3.0.2 (dotted green), and ALL minus MA1N19 (solid red).

A 15-day running average is applied when plotted.
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for the region along the Somalia coast. The increase of SSTs in

these regions demonstrates the capability of using ICOADS-D

R3.0.2 in correcting the cold biases of AVHRR satellite mea-

surements due to the cloudiness and dust aerosols over the

tropical oceans, especially during the Northern Hemisphere

summer (Zhang et al. 2004). In contrast, SSTs decrease by

0.058C in most of the Northern Hemisphere oceans and in the

Southern Ocean south of 458S. These opposite changes result

in an overall small increase in globally averaged SST during

periods of July–December 2017, May–August 2018, and May–

August 2019 (Fig. 7, solid light blue), which is consistent with a

small reduction in globally averaged bias against Argo as

shown in Fig. 3a (dotted green and solid light blue).

f. Role of Argo

Our previous studies indicated that Argo observations can

play an important role in SST reconstruction, particularly in

data-sparse regions such as the equatorial oceans and the

Southern Ocean where ships and surface drifters are hard to

sustain (Huang et al. 2017, 2019). The importance of Argo ob-

servations can be seen clearly from the increase of in situ data

coverage: the total coverage of in situ SSTs is about 65% (Fig. 1b,

dotted black) when Argo SSTs are included, and about 55%

(Fig. 1b, solid black) when Argo SSTs are not included.

By using all available in situ observations including Argo,

SSTs in experiment ALL increase by 0.058–0.108C in the Indian

Ocean, the western tropical Pacific, the South Pacific between

308 and 508S and along the coasts of South America, and the

South Atlantic (Fig. 6e). It should be pointed out that SSTs in

experiment R3.0.2, which does not include Argo, suffer from

cold biases exactly in these regions as shown in Fig. 4e.

Therefore, it is easy to understand that the inclusion of Argo

should have improved the SST quality in experiment ALL as

suggested by the comparison with Argo, particularly in the

Indian Ocean (Figs. 4f and 5f).

In contrast, by including Argo observations, SSTs decrease

by between 20.058 and 20.108C in the western equatorial

Indian Ocean along the Somalia coast, eastern equatorial

Pacific, central South Pacific near 258S, South Pacific near New

Zealand, and North Atlantic south of Greenland (Fig. 6e). The

SST decrease in these regions has clearly reduced the warm

biases in v2.1 (Figs. 4f and 5f) in comparison with experiment

R3.0.2 (without including Argo; Fig. 4e).

On the global average, the reduction of biases appears over

July–November 2017, May–August 2018, and April–August

2019 (Fig. 3, solid red and dotted green). For the global and

time average (January 2016 to August 2019), the inclusion of

Argo observations has reduced the mean bias from 20.078

to 20.048C and reduced the RMSD from 0.388 to 0.248C

(Table 3). In contrast, in the Indian Ocean (Fig. 3b), the biases

are improved from 20.148 to 20.088C on average and from

0.468 to 0.268C in RMSD (Table 3), indicating an important

impact of Argo on improving DOISST biases.

Note that those reductions in mean bias and RMSD are

partly associated with comparisons with the same Argo data

included in experiment ALL; that is, in this ALL experiment,

the Argo data are not an independent dataset, but are merged

with ship and buoy data. To verify the role of Argo in DOISST

v2.1 shown in Table 3 and Figs. 3, 4f, and 5f by an independent

dataset, an additional experiment Argo90% (Table 2) was

undertaken. Experiment Argo90% was the same as experi-

ment ALL except that only 90% of Argo profiles were ran-

domly selected and included, leaving the other 10% of Argo

profiles (Argo10%) as an independent dataset for verification.

Our analyses indicate that the comparisons with independent

Argo10% (Table 4) are qualitatively consistent with those with

Argo (Table 3; figures are shown in the online supplemental

information). Quantitatively, however, the improvements of

using Argo on DOISST become smaller in experiment

Argo90% than in experiment ALL, since verification is inde-

pendent in Argo90% but not completely independent in ALL.

5. Comparisons with GMPE

To further illustrate the improvements of DOISST v2.1 over

v2.0, DOISST experiments (Table 2) are compared with GMPE

SST (Martin et al. 2012; Fiedler et al. 2019). GMPE SST is de-

rived from the median of an ensemble of 16 SST products of

GHRSST in daily 0.258 3 0.258 grids and is commonly used as a

reference in the SST data intercomparisons within theGHRSST

community. Note that DOISST v2.0 is included in GMPE, and

thus DOISST v2.1 may not be entirely independent from

GMPE. Our comparisons indicate that the globally averaged

differences (Fig. 8a) are consistent with those against Argo ob-

servations (Fig. 3a): The differences remain large in experiments

MA1N19, MA1MB, and FrzPnt, and are clearly reduced in

experiments Ship01, R3.0.2, and ALL. The mean differences

are 20.098, 20.098, 20.098, 20.028, 20.028, and 20.018C,

respectively, in experiments MA1N19, MA1MB, FrzPnt, Ship01,

R3.0.2, and ALL (Table 5). Note that these differences against

GMPE are smaller than those against Argo in Table 3, which may

result from 1) a large sample in the global average since every

TABLE 4. Comparisons of DOISST experiments with Argo10% in averaged (from January 2016 to August 2019) biases and root-mean-

square difference in the global oceans and Indian Ocean.

Expt Mean global bias Global RMSD Mean Indian Ocean bias Indian Ocean RMSD

MA1N19 20.148C 0.418C 20.248C 0.488C

MA1MB 20.158C 0.418C 20.268C 0.478C

FrzPnt 20.158C 0.418C 20.268C 0.478C

Ship01 20.088C 0.408C 20.188C 0.448C

R3.0.2 20.078C 0.368C 20.128C 0.388C

Argo90% 20.068C 0.318C 20.098C 0.338C
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oceanic grid has a valid SST value when compared with GMPE

and/or 2) a potential cold bias in GMPE SST since the cold-

biased DOISST v2.0 is included in GMPE. The RMSDs

against GMPE are 0.408, 0.398, 0.408, 0.408, 0.368, and 0.328C,

respectively, in experiments MA1N19, MA1MB, FrzPnt,

Ship01, R3.0.2, and ALL (Table 5). Note that the RMSD

reduction (0.048C) is nearly the same between experiments

R3.0.2 and Ship01 and between ALL and R3.0.2, indicating

FIG. 8. (a) Globally and (b) IndianOcean averaged SST differences (8C) in daily 0.258 3 0.258

grids against GMPE for experiments MA1N19 (solid black), MA1MB (dotted red), FrzPnt

(dotted black), Ship01 (solid light blue), R3.0.2 (dotted green), and ALL (solid red). A 15-day

running average is applied when plotted.

TABLE 5. Comparisons of DOISST experiments with GMPE in averaged (from January 2016 to August 2019) biases and RMSD in the

global oceans and Indian Ocean.

Expt Mean global bias Global RMSD Mean Indian Ocean bias Indian Ocean RMSD

MA1N19 20.098C 0.408C 20.208C 0.408C

MA1MB 20.098C 0.398C 20.208C 0.398C

FrzPnt 20.098C 0.408C 20.208C 0.398C

Ship01 20.028C 0.408C 20.128C 0.398C

R3.0.2 20.028C 0.368C 20.078C 0.338C

ALL 20.018C 0.328C 20.048C 0.298C
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an equally important role of using ICOADS-D R3.02 and

Argo SST in reducing DOISST biases.

Similar features in improving the DOISST bias are found in

the Indian Ocean (Fig. 8b). The mean differences against

GMPE are 20.208, 20.208, 20.208, 20.128, 20.078,

and 20.048C, respectively, in experiments MA1N19,

MA1MB, FrzPnt, Ship01, R3.0.2, and ALL (Table 5). The

RMSDs against GMPE are 0.408, 0.398, 0.398, 0.338, and 0.298C.

Note that the reductions ofmean differences are slightly higher

between Ship01 and R3.0.2 (0.058C) than between R3.0.2 and

ALL (0.038C). Similarly, the reduction of RMSDs is higher

between Ship01 and R30.02 (0.068C) than between R3.0.2 and

ALL (0.048C). Themagnitude of these bias reductions suggests

that the impact of using ICOADS-D R3.0.2 is larger than that

when additionally usingArgo SSTs. Similar to the comparisons

with Argo, SSTs in DOISST v2.0 (experiment MA1NA;

FIG. 9. Averaged (from January 2016 to August 2019) SST differences (8C) in daily 0.258 3 0.258 grids against

GMPE in (a) MA1N19, (b) MA1MB, (c) FrzPnt, (d) Ship01, (e) R3.0.2, and (f) ALL.
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Fig. 9a) are clearly colder than those in GMPE in the Indian

Ocean (from 20.28 to 20.68C), western tropical Pacific

(20.28C), eastern South Pacific (from 20.28 to 20.68C), and

South Atlantic between 108 and 308S (20.28C). In contrast,

SSTs in v2.0 are warmer than GMPE along the coasts of the

Arctic (as high as 0.88C), western North Pacific, western North

Atlantic, western equatorial Indian Ocean, and eastern equa-

torial Pacific (0.28C). These differences do not change much

when MetOp-B replaces NOAA-19 (Fig. 9b). However, the

positive SST difference along the Arctic coasts is clearly re-

duced when the use of freezing-point SST proxy replaces the

use of ice-SST proxy (Fig. 9c), although its contribution to the

reduction of globally averaged difference is small. When biases

of ship SSTs are set to 0.018C (Fig. 9d), the negative SST dif-

ferences are reduced in the Indian Ocean, western tropical

Pacific and South Pacific, and South Atlantic, but positive

FIG. 10. SST RMSDs (8C; from January 2016 to August 2019) against GMPE in daily 0.258 3 0.258 grids in

(a) MA1N19, (b) MA1MB, (c) FrzPnt, (d) Ship01, (e) R3.0.2, and (f) ALL.
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SST differences increase slightly in the North Pacific, North

Atlantic, eastern equatorial Pacific, eastern equatorial

Atlantic, and western equatorial Indian Ocean. These cold and

warm SST differences are reduced effectively when ICOADS-

D R3.0.2 data are used, except for the warm SST differences in

the equatorial oceans (Fig. 9e). The cold SST differences are

reduced further by usingArgo SSTs in the IndianOcean, South

Pacific, and South Atlantic, but remain in the maritime conti-

nental regions (Fig. 9f). The warm SST difference is also re-

duced in the eastern equatorial Pacific but remains in the

western equatorial Indian Ocean and eastern equatorial

Atlantic. These results clearly suggest an important role of

Argo in DOISST, as described in section 4.

In contrast to the clear reductions in averaged SST differ-

ence, the reductions in RMSD are less (Fig. 10; Table 5), al-

though the reduction of RMSD is notable in the tropics of the

global ocean basins between 308S and 308N, when ICOADS-D

R3.0.2 and Argo observations are used (Figs. 10e,f). These

results are consistent with those comparisons with Argo in

section 4.

6. Summary, discussion, and conclusions

DOISST v2.0 has been updated to v2.1 from January 2016

onward. The updates include the following five aspects: 1)

MetOp-B replaces NOAA-19, 2) freezing-point temperature

replaces ice-SST regression in SST proxy in ice-covered

oceans, 3) the estimated ship SST bias is reduced from 0.148

to 0.018C, 4) ship and buoy observations from ICOADS-D

R3.0.2 are used instead of NCEP GTS receipts, and 5) Argo

observations above 5-m depth are included. It should be kept in

mind that the Argo observations were used as independent

data to validate the improvements in updates 1–4, but theArgo

observations become dependent in the verification of the final up-

date. For an independent validation, an additional experiment was

carried out with 10% of Argo float data reserved and not used in

DOISST. Among these updates, the ship SST bias revision and the

use of ICOADS-DR3.0.2 andArgo have played themost important

role in reducing the global biases in v2.0. The SST proxy using

freezing-point temperature has reduced the warm bias in the Arctic

andSouthernOcean, but does not greatly reduce global averagebias.

The impact of using MetOp-B in reducing the bias in v2.0 is trivial,

since satellite SSTs are adjusted against the available in situ SSTs.

By updating DOISST from v2.0 to v2.1, the globally and time-

averaged (January 2016 toAugust 2019) bias is reduced from20.148

to 20.078C, and RMSD reduces from 0.438 to 0.388C when com-

pared with independent Argo observations during the progressive

development processes. The bias and RMSD in the final v2.1 are

reduced to 20.048 and 0.248C, respectively, when compared with

dependent Argo observations. The reduction of biases is most evi-

dent in the IndianOcean, where v2.0 suffers a serious cold bias since

2016 due to a reduction of drifting buoy observations ingested into

v2.0, which was a result of the inability of the system switching from

TAC to BUFR-formatted data.

The biases in the Indian Ocean are reduced from 20.288

to 20.148C on average and from 0.508 to 0.468C in RMSD when

compared with independent Argo observations during the pro-

gressive development processes. The average bias andRMSD in the

final v2.1 are reduced to 20.088 and 0.268C, respectively, when

compared with dependent Argo observations. Biases are also re-

duced in the tropical and South Pacific and in the tropical and South

Atlantic. These results remain robust when DOISST v2.0 and v2.1

are comparedwith theGMPEensemblemedianof 16SSTproducts.

In comparison between DOISST v2.1 and v2.0, the globally

averaged SST increases from about 0.028 to 0.108C between

January 2016 and August 2019 (Fig. 7, solid red). This SST

increase overcomes the increasing cold bias of v2.0 due to the

reduction of ingested buoy observations, as indicated in Fig. 3a

(solid black). The average increase of SSTs is nearly global

except for the Arctic and along the coasts of the Antarctic

(Fig. 6f), with the highest magnitude (about 0.38C) in the

Indian Ocean, central equatorial Pacific near the date line,

South Pacific along the coasts of South America, South

Atlantic, and along the coasts of the Arctic.

However, it should be noted that DOISST v2.1 may still

have a residual cold bias of about 20.048C over the global

oceans (Fig. 3a, solid red), particularly near the end of the ex-

periment period (June–August 2019) and about 20.088C in the

IndianOcean (Fig. 3b, solid red). Comparisons withGMPESST

indicate that the global averaged difference is very small (Fig. 8a,

solid red), but a notable difference remains in the Indian Ocean

(Fig. 8b, solid red). These differences may result from residual

biases of satellite measurements that cannot be resolved by the

bias correction algorithm in DOISST. Those differences may

also result from nonhomogeneous in situ measurements from

ships, buoys, and Argo floats. Our future work will focus on

detecting the source of this residual bias and correcting it.

In conclusion, DOISST v2.1 has overcome most of the cold

biases exhibited in the previous v2.0, particularly in the Indian

Ocean, South Pacific, and South Atlantic, by recovering previ-

ously unused buoy SSTs using the latest ICOADS-D R3.0.2, by

including Argo SSTs that were not used in v2.0, by revising ship

SST bias correction according to available ship and buoy SSTs,

and by using a new SST proxy scheme in the Arctic region.
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