
J Comb Optim
DOI 10.1007/s10878-012-9592-6

Improvements to MCS algorithm for the maximum
clique problem

Mikhail Batsyn · Boris Goldengorin ·
Evgeny Maslov · Panos M. Pardalos

© Springer Science+Business Media New York 2013

Abstract In this paper we present improvements to one of the most recent and fastest
branch-and-bound algorithm for the maximum clique problem—MCS algorithm by
Tomita et al. (Proceedings of the 4th international conference on Algorithms and Com-
putation, WALCOM’10, pp. 191–203, 2010). The suggested improvements include:
incorporating of an efficient heuristic returning a high-quality initial solution, fast
detection of clique vertices in a set of candidates, better initial colouring, and avoid-
ing dynamic memory allocation. Our computational study shows some impressive
results, mainly we have solved p_hat1000-3 benchmark instance which is intractable
for MCS algorithm and got speedups of 7, 3000, and 13000 times for gen400_p0.9_55,
gen400_p0.9_65, and gen400_p0.9_75 instances correspondingly.

Keywords Maximum clique problem · Branch-and-bound algorithm ·
Heuristic solution · Graph colouring

M. Batsyn (B) · B. Goldengorin · E. Maslov · P. M. Pardalos
Laboratory of Algorithms and Technologies for Network Analysis, National Research University
Higher School of Economics, 136 Rodionova, Nizhniy Novgorod, Russian Federation
e-mail: batsyn@yandex.ru

B. Goldengorin
e-mail: bgoldengorin@hse.ru

E. Maslov
e-mail: lyriccoder@gmail.com

P. M. Pardalos
Center of Applied Optimization, University of Florida, 401 Weil Hall,
P.O. Box 116595, Gainesville, FL 32611-6595, USA
e-mail: pardalos@ufl.edu

123

J Comb Optim

1 Introduction

The maximum clique problem refers to the problem of finding a clique (a complete
subgraph) with the largest number of vertices in a given simple graph. It has a lot
of applications, because many practical problems can be formulated in terms of the
maximum clique problem (Bomze et al. 1999). Biochemistry and genomic problems
represented by a clique-detection model include integration of genome mapping data,
nonoverlapping local alignments, matching and comparing molecular structures, and
protein docking (Butenko et al. 2006). Another problem is to find a binary code as
large as possible which can correct a certain number of errors for a given size of
the binary words (vectors) (Brouwer et al. 1990; Sloane 1989). Among these binary
words there must be two words which differ in a certain number of positions so that
a misspelled word can be detected and corrected (Du and Pardalos 1999). A clique
depicts a feasible set of vectors for a code. Error-correcting codes are used in cellular
phones, high-speed modems, and CD players (when computing checksums). Finding
large cohesive subgroups (cliques) in social networks is used in criminal network
analysis. One more application is analysing cliques in a stock market graph (Boginski
et al. 2003).

A well-known algorithm for enumerating all cliques in a graph is the algorithm
of Bron and Kerbosch (1973). It finds all maximal cliques (cliques which cannot be
further enlarged by adding any vertex) in an arbitrary graph. Since this method has only
branching and no bound is used to reduce the number of branches, it takes enormous
amount of time to find the maximum clique even in small dense graphs. The worst-case
running time of the Bron–Kerbosch algorithm is O(3

n
3) (Jenelius et al. 2006).

One of the first Branch-and-bound algorithms is the algorithm developed by Car-
raghan and Pardalos (1990). Its main idea is using bound strategy and prune branches
in case when future expanding will not lead to a clique with size bigger than the cur-
rently best found clique. The bound used in this algorithm is very simple: the maximum
clique size in a candidates subgraph is not greater than the number of the candidates.
Another idea of this algorithm is to sort vertices in a special order which reduces the
size of the search tree. This order suggested by Carraghan and Pardalos (1990) is also
used by one the most recent exact algorithms—MCS algorithm developed by Tomita
et al. (2010).

The algorithm proposed by Fahle (2002) applies a more efficient bounding strategy.
The idea is to use the chromatic number as an upper bound on the size of the maximum
clique. To be more precise, a graph of candidate vertices is coloured by means of a
heuristic sequential colouring. And the number of colours (which is an upper bound
for the chromatic number) is then used as an upper bound for the maximum clique
size. This algorithm also applies domain filtering techniques based on the following
two observations. First, if there is a vertex in the set of candidates which is connected
to all candidates, then this vertex will be included in the clique on many branches.
Such vertex should be added to the current clique immediately without any branching.
Second, a vertex in the set of candidates must be excluded from consideration if its
degree in the subgraph of candidates plus the size of the current clique is less than the
size of the best clique found so far.

123

J Comb Optim

The MCQ algorithm developed by Tomita and Seki (2003) uses the idea of graph
colouring not only as a bounding strategy but also as a branching strategy. Initially
vertices are sorted in a non-increasing degree order. At each branching step a greedy
standard sequential colouring is computed for the subgraph of candidates. The candi-
date vertex which is coloured in the biggest colour (colour with the biggest number)
is considered first.

The MCR algorithm by Tomita and Kameda (2007) and MCS algorithm by Tomita
et al. (2010) are further improvements of MCQ. The only difference between MCQ
and MCR is in the ordering of vertices performed at the beginning. In MCR vertices
are sorted as it is suggested by Carraghan and Pardalos (1990). In MCS algorithm
a new routine is added which tries to recolour a vertex with the biggest colour into
a smaller one. Another recent algorithm developed by Li and Quan (2010a) and its
improved version (Li and Quan 2010b) apply Max-Sat based upper bound which is
tighter than colouring based one. According to the published results for DIMACS
graphs MCS algorithm and the Max-Sat based algorithms report the best performance
among the existing exact methods.

Since the maximum clique problem is NP-hard (Garey and Johnson 1979), there
exists a number of heuristic approaches which can find high-quality solutions. The
so-called greedy heuristics either try to create a clique by gradually adding a vertex
to a current clique or to find a clique by repeatedly removing a vertex from a current
set which is not a clique (Kopf and Ruhe 1987). Genetic algorithms (Marchiori 2002;
Singh and Gupta 2006) are based on simplified mechanism of natural system evolu-
tion. Such an algorithm starts with some initial randomly generated population and
then performs the routines of reproduction, crossover and mutation. The reproduc-
tion operator chooses elements which should be taken to the next generation. When
such elements are chosen, the crossover operator is applied to produce new descen-
dants. After all, the mutation operator modifies some bits in ”genetic codes” of the
descendants with some probability.

There are many other heuristics including simulated annealing (Jerrum 1992),
neural networks (Bertoni et al. 1997; Funabiki et al. 1992), GRASP (Feo and Resende
1995), tabu search (Glover and Laguna 1997) and others. However in practice, the
most successful heuristic algorithms are local search heuristics. At each step a local
search heuristic finds a maximal clique, then tries to improve this solution by, for
example, a (j, k)− swap, that is removing some j vertices from a clique and adding
other k vertices to it. Pullan and Hoos (2006) developed a very efficient heuristic
called dynamic local search which consists of fast neighbourhood search and usage of
penalties to promote diversification. Grosso et al. (2008) improved the performance
of this dynamic local search algorithm by introducing restart rules. Their GLP algo-
rithm has found new cliques unknown before for very large instances. One of the most
efficient heuristic algorithms is iterated local search (ILS) developed by Andrade et
al. (2012). The authors of ILS algorithm suggested to use local search instead of an
elaborate plateau search applied in GLP algorithm. Their incremental implementation
of a local search procedure is faster than the standard one and runs in sublinear time.
In this paper we use the ILS algorithm to obtain an initial solution to the maximum
clique problem by solving heuristically the maximum independent set problem for a
complementary graph.

123

J Comb Optim

Though it is a well-known fact that any Branch-and-Bound (BnB) algorithm benefits
much when used together with a heuristic applied to obtain an initial solution, none
of the existing BnB approaches to the maximum clique problem applies this powerful
technique. In this paper we improve one of the recent BnB algorithms, namely MCS
algorithm by Tomita et al. (2010). We apply ILS heuristic (Andrade et al. 2012) to
obtain an initial high-quality solution which is then used to prune branches in our
BnB algorithm. The computational results show that this improvement leads to a
considerable reduction of the search tree size especially for large dense graphs.
We also suggest a number of the following improvements:

– Whenever a set of candidates contains a vertex adjacent to all candidates we detect
it immediately by means of colouring and thus avoid unnecessary branching.

– Our computational experiments show that for dense graphs with a moderate num-
ber of vertices (like the majority of Dimacs graphs) it is more efficient to store
vertices of a candidates set and their colours on stack than in dynamic memory on
all levels of recursion.

– In contrast to MCS algorithm we use the original Carraghan and Pardalos (1990)
sorting of vertices on the first step without any reordering after colouring. Also on
the first step when a candidates set contains all the vertices we colour them with a
standard greedy sequential colouring (Matula et al. 1972) and then do not reorder
any of these vertices as MCS algorithm does.

This paper is organized as follows. In Sect. 2 we formulate the maximum clique
problem. In Sect. 3 a detailed description of our algorithm is provided. Computational
results showing a comparison with the original MCS algorithm are presented in Sect. 4.
Short summary is given in Sect. 5.

2 Maximum clique problem

In this paper we use the following definitions:

– Graph—a simple graph G = (V, E), where V = {1, 2, . . . , n} is the set of vertices,
E ⊆ V × V is a set of edges.

– Adjacency matrix—a matrix A = (ai j) representing graph G = (V, E), where
∀i, j ∈ V ai, j = 1 if (i, j) ∈ E and ai, j = 0 if (i, j) /∈ E .

– Complementary graph—for a given graph G(V, E) it is the graph G(V, E), where
E = {(i, j) | (i, j) ∈ (V × V) \ E}.

– Complete graph—a graph which vertices are all pairwise adjacent, i.e. ∀i, j ∈
V, (i, j) ∈ E .

– Clique—a subset of vertices C ⊂ V of graph G(V, E) such that all vertices in this
subset are pairwise adjacent.

– Maximum clique—a clique which has the maximum size (number of vertices) in
a graph.

– Maximal clique—a clique in a graph which cannot be enlarged by adding any
vertex of the graph to it.

– Independent set—a subset of vertices S ⊂ V of graph G(V, E) such that all
vertices in this subset are pairwise non-adjacent.

123

J Comb Optim

– Candidate—a vertex which can extend the current clique, i.e. a vertex adjacent to
all vertices of the clique.

– Colouring—an assignment of colours (natural numbers) to graph vertices such
that any two adjacent vertices have different colours.

– Colour—a natural number assigned to a graph vertex in a colouring.
– Chromatic number—the minimum number of colours in which a graph can be

coloured.
– Clique number—the maximum clique size of a graph.
– Sequential colouring—a colouring in which vertices are ordered in some sequence

and then coloured one by one according to this sequence.
– Reasonable (tight) colouring—a sequential colouring in which a vertex consid-

ered on every step is coloured in one of the already used colours if it is possible
(otherwise a new colour is introduced).

– Greedy colouring—a sequential colouring in which a vertex considered on every
step is coloured in the smallest possible colour.

The maximum clique problem (MCP) refers to the problem of finding the maximum
clique in a given graph. The maximum clique size for graph G is denoted by ω(G).
MCP has a number of mathematical programming formulations. One of them is as
follows:

max

{
n∑

i=1

xi | xi + x j ≤ 1,∀(i, j) ∈ E, xi ∈ {0, 1}, i = 1, ..., n

}
.

Here xi = 1 if vertex i is in the maximum clique C and xi = 0 if i /∈ C .
The maximum independent set problem (MISP) refers to the problem of finding the

maximum independent set in a given graph. MCP and MISP are equivalent problems
because a clique in graph G is an independent set in the complementary graph of G
and vice versa. (See the maximum clique {1, 2, 3, 4} in an example graph and the
maximum independent set {1, 2, 3, 4} in its complementary graph on figure 1).

Fig. 1 Maximum clique and maximum independent set problems

123

J Comb Optim

Fig. 2 Mycielski’s graphs with chromatic number 2, 3, and 4 and clique number 2

Colouring can be used to obtain an upper bound for the maximum clique problem
(Proposition 1).

Proposition 1 (Balas and Yu 1986) The maximum clique size of an arbitrary graph
is not greater than its chromatic number.

This proposition follows immediately from the fact that a clique of k vertices can
be coloured only in k colours because its vertices are all pairwise adjacent. Note that
the chromatic number of a graph can be arbitrarily greater than its clique number
(maximum clique size). The following theorem of Mycielski demonstrates this fact.

Theorem 1 (Mycielski 1955) For any natural number n there exists a finite triangle-
free graph which cannot be coloured in n colours.

It is obvious that the maximum clique size of any triangle-free graph cannot be more
than two. But the chromatic number of such a graph may be very far from the size of
the maximum clique. Figure 2 shows triangle-free graphs with chromatic numbers 2,
3, and 4, and the maximum clique size 2.

It is possible to formulate the notion of a clique in terms of a chromatic number:
a clique is a graph which chromatic number is equal to the number of vertices. It can
help to identify a clique by means of colouring (see proposition 2).

Proposition 2 If a graph with k vertices is coloured in k colours by a reasonable
colouring, then this graph is complete, i.e. its vertices form a clique.

Proof By contradiction: let this graph be incomplete. This means that it has at least
two non-adjacent vertices. Let these vertices be i and j , and vertex i is coloured before
vertex j by our reasonable colouring. Since k vertices are coloured in k colours then
every vertex has a unique colour. But then vertex j will be coloured into the same
colour as vertex i because no other vertex is coloured in this colour and our colouring
is reasonable. This contradicts with the condition that k colours are used. ��

Vertices with higher degree are usually contained in larger cliques. For example,
a vertex which is adjacent to all other vertices in a graph is contained in all maximal
cliques including the maximum one. Such vertices can be found faster after colouring
of the given graph (see propositions 3 and 4).

Proposition 3 If a vertex is adjacent to all vertices of a graph, then it will have a
unique colour in any colouring of the graph.

123

J Comb Optim

Proof Another vertex cannot have the same colour in a colouring because it is adjacent
to this vertex. ��
Proposition 4 For any greedy colouring if a vertex has a unique colour then it is
adjacent to all vertices with greater colour.

Proof By contradiction: let there be a vertex i with a unique colour k and a vertex
j with a greater colour which is not adjacent to i . Vertex j should be coloured in
colour k or even smaller colour because no vertices have colour k except i which is
not adjacent to j and our greedy colouring always uses a minimal possible colour by
definition. This contradicts with the condition that j has a greater colour than k. ��

Following the d f algorithm (Fahle 2002) we check whether there are candidates
which are adjacent to all other candidate vertices and thus should be immediately added
to the current clique without any branching. In contrast with the d f implementation
we can check it much faster using propositions 3 and 4, because we have to check
only vertices which have a unique colour after colouring. For such a vertex we should
only check if it is adjacent to all vertices with a smaller colour.

Following the MCS algorithm of Tomita et al. (2010) for an upper bound in our
algorithm we use the same greedy colouring suggested by Matula et al. (1972).

3 Algorithm description

In all the procedures of our algorithm described below the following variables are
used:

– V —the list of vertices in the graph
– E—the list of edges in the graph
– Ē—the list of edges in the complementary graph
– A—the adjacency matrix of the graph
– L—a list of candidates
– L0—a list of candidates sorted according to the initial ordering
– L̃0—a copy of the list of candidates sorted according to the initial ordering
– Q—the current clique
– Q∗—the largest clique found so far
– |X |—the size of set (or array, list, clique) X
– Ck—a list of vertices coloured in colour k
– Ck[i]—the i-th vertex in list Ck

– υ—a graph vertex
– cυ—the colour number assigned to vertex υ

– NL(υ)—the neighbourhood of vertex υ in subgraph of candidates L i.e. the set of
vertices adjacent to υ from L

– ρυ—the degree of vertex υ

– συ—the sum of vertex υ neighbours degrees (the degree of υ neighbourhood)

The main procedure (algorithm 1) of our algorithm MC SWith Heuristic() first
runs ILS heuristic to obtain an initial solution of high quality and writes this solution
to Q∗. Then we perform initial ordering of all vertices same as in Carraghan and

123

J Comb Optim

Pardalos (1990) and store the ordered vertices in list L0. Vertices in L0 are then
coloured sequentially in a standard way (using the minimal possible colour on each
step). The colouring is stored in an array of lists Ck so that for any colour k we can
quickly get all vertices coloured in k. For every vertex υ we also store its colour cυ

so that we can always quickly get this colour. We branch on every vertex of L0 in
inverse order (starting from the last vertex). Such branching rule was first applied in
Carraghan and Pardalos (1990) and proved to provide a smaller search tree.

Algorithm 1 MCS with incorporated ILS heuristic and other improvements
function MCSWithHeuristic()

HeuristicSolution()
InitialOrderingAndColouring(L0)
for i = |L0|, 1 do
 L0 is not ordered by colour numbers

υ = L0
i

if UpperBound(υ) > |Q∗| then
ProcessBranch(υ, L0)

end if
end for

end function

To apply ILS heuristic (algorithm 2) we build the complementary graph and run
ILS algorithm for it. An independent set found by ILS is a clique in the original graph.
We use this clique as an initial solution. A complete description of ILS algorithm can
be found in Andrade et al. (2012).

Algorithm 2 Run ILS heuristic on the complementary graph
function HeuristicSolution()

Q∗ = ILS(V, Ē)
 See ILS description in Andrade et al. (2012)
end function

Initial ordering (algorithm 3) is performed in the same way as in Tomita et al. (2010).
Find the vertex υ with the minimum degree ρυ in the graph and place it to the last
position |V | of candidates list L0. If several vertices have the same minimum degree
then take the vertex which has the minimum support συ (sum of the vertex neighbors
degrees) among them. For several vertices having the same minimum support ties are
broken arbitrarily. Then delete this vertex from the graph and find the next vertex with
the minimum degree in the remaining graph in the same way. This vertex is placed to
position |V | − 1 of list L0. An so on until all vertices are placed into L0. Then the
standard sequential colouring is applied to vertices in L0. Following MCS algorithm
we also permute the adjacency matrix A.

The colouring algorithm (algorithm 4) together with its ”re-number” improvement
(algorithm 5) are taken from MCS algorithm.

The permutation of the adjacency matrix (algorithm 6) is made so that the vertices
in L0 have numbers 1, 2, ..., n after the permutation. This increases the CPU cache
usage because candidates are always taken in L0 ordering and so the adjacency matrix
is also accessed in this order (Tomita et al. 2010).

123

J Comb Optim

Algorithm 3 Initial ordering and colouring

function InitialOrderingAndColouring(L0)
for i = 1, |V | do

ρi = |NV (i)|
σi =

∑
j∈NV (i)

ρ j

end for
for i = |V |, 1 do

υ ← vertex with min ρ, and min σ if there are several vertices with min ρ

L0
i = υ

ρυ = 0
 Remove this vertex from further consideration
for j ∈ NV (υ), ρ j �= 0 do
 Correct degrees of its neighbours

ρ j = ρ j − 1
end for
for i = 1, |V | do
 Recompute neighborhood degrees for all vertices

σi =
∑

j∈NV (i)

ρ j

end for
end for
SolveRelaxedProblem(L0)
PermuteVertices(L0)

end function

Algorithm 4 Colour vertices
function SolveRelaxedProblem(L)

k0 = |Q∗| − |Q|
kmax = 1
for i = 1, |L| do

for k = 1, |L| do
if Ck ∩ NL (Li) = ∅ then

break
end if

end for
Ck = Ck ∪ {Li }
if k > kmax then

kmax = k
if k > k0 then

ReNumber(Li , k)
if Ck = ∅ then

kmax = kmax − 1
end if

end if
end if

end for
end function

The colour cυ of vertex υ actually shows the number of colours in which this
vertex together with its neighbours in candidates subgraph can be coloured when we
branch on this vertex (algorithm 7). So the current clique size plus this number give
the maximum possible clique size for the current branch.

For the branch of vertex υ (algorithm 8) we first remove this vertex from candidates
list L0, then find a new candidates list L which has only neighbours of υ in the

123

J Comb Optim

Algorithm 5 Recolour vertices
function ReNumber(p, k)

k0 = |Q∗| − |Q|
for k1 = 1, k0 − 1 do

if |Ck1 ∩ NL (p)| = 1 then
q = (Ck1 ∩ NL (p))[1]
for k2 = k1 + 1, k0 do

if Ck2 ∩ NL (q) = ∅ then
Ck = Ck \ {p}
Ck1 = Ck1 \ {q} ∪ {p}
Ck2 = Ck2 ∪ {q}
return

end if
end for

end if
end for

end function

Algorithm 6 Permute adjacency matrix according to the initial ordering

function PermuteVertices(L0)
A′ = A
for i = 1, |L0| do

for j = 1, |L0| do
Ai j = A′Li L j

end for
end for
for i = 1, |L0| do

L0
i = i

end for
end function

Algorithm 7 Upper bound using colouring
function UpperBound(υ)

return |Q| + cυ
 Return maximum possible clique size for this branch
end function

candidates subgraph. If there are no neighbours then we have found an inclusion-
maximal clique and should return from recursion. If this clique is greater than the
currently best clique then it replaces the best clique. If there are new candidates we
colour them and check if they form a clique. If it is so we return from recursion.
Otherwise we check if there are vertices which should be added to the current clique
Q without branching. Then list L is sorted according to the colours of the vertices.
We add vertex υ to the current clique Q and recursively process the new candidates.
After it the current clique is restored to be used on other branches.

Using proposition 2 function DetectClique() (algorithm 9) checks if the candi-
dates in list L form a clique. If it is so then this clique is added to the current clique Q
and if the obtained clique is larger than Q∗ then it is stored to Q∗.

Function DetectCliqueV ertices() (algorithm 10) uses propositions 3 and 4 to
find vertices adjacent to all candidates in L . According to proposition 3 only vertices
coloured in a unique colour should be checked. Moreover according to proposition 4

123

J Comb Optim

Algorithm 8 Process one branch
function ProcessBranch(υ, L0)

L0 = L0 \ {υ}
L̃0 = L = NL0 (υ)
 Find new candidates list
if L = ∅ then

if |Q| ≥ |Q∗| then
 Check if this clique is the largest one found so far
Q∗ = Q ∪ {υ}

end if
return
 Return since the current clique is inclusion-maximal

end if
SolveRelaxedProblem(L)
Q0 = Q
 Save the current clique to restore it then
if DetectClique(L) then

return
 Return if L forms a clique
else

DetectCliqueVertices(L̃0, L)
end if
Quick sort L by colours Ck so that vertex L1 has colour 1
Q = Q ∪ {υ}
ProcessBranches(L̃0, L)
Q = Q0
 Restore the current clique

end function

Algorithm 9 Check if candidates from L form a clique
function DetectClique(L)

kmax = max{k|Ck �= ∅}
if |L| = kmax then

if |Q| + |L| > |Q∗| then
Q∗ = Q ∪ L

end if
return true

end if
return false

end function

such vertices are always adjacent to vertices with a greater colour. So we check adja-
cency only with vertices having a smaller colour.

Function Process Branches() (algorithm 11) considers candidates starting from
the vertex with the greatest colour and ending when the upper bound is not greater
than the current best clique size.

It is well known that applying a fast heuristic before running an exact BnB algorithm
always reduces the search tree size and usually reduces the total running time. A
heuristic finds a high-quality solution which is not very far from the optimal solution.
This solution is then used to prune branches which have an upper bound not greater
than the value of the objective function for this solution.

Along with combining of the BnB algorithm with the heuristic we suggest a number
of improvements reducing the computational time. Our first improvement is avoiding
of dynamic memory allocation which allows to save the computational time spent
on memory allocating/deallocating every time a new candidates set is formed and
coloured. Instead of working with dynamic memory we allocate stack memory of

123

J Comb Optim

Algorithm 10 Check if some candidates from L are adjacent to all vertices in L

function DetectCliqueVertices(L0, L)
for k = 1, max{k|Ck �= ∅} do

if |Ck | > 1 then
 Check only vertices with a unique colour
continue

end if
υ = Ck [1]
for l = 1, k − 1 do
 Check adjacency only to vertices with a smaller colour

for i = 1, |Cl | do
ω = Cl [i]
if Aυω == 0 then

goto next-color
end if

end for
end for
Q = Q ∪ {υ}
 Add υ adjacent to all candidates to Q without branching
L0 = L0 \ {υ}
L = L \ {υ}
next-color:

end for
if |Q| > |Q∗| then

Q∗ = Q
end if

end function

Algorithm 11 Process branches corresponding to candidates from L

function ProcessBranches(L0, L)
for i = |L|, 1 do
 L is ordered by colour numbers

υ = Li
if UpperBound(υ) > |Q∗| then

ProcessBranch(υ, L0)
else

return
 Next vertices have smaller colour and upper bound
end if

end for
end function

a predetermined size enough for any number of vertices up to 1,500. This constant
can be easily changed (it only requires the program recompilation). However, too
big value of this constant quickly increases the size of the stack and causes a lot of
memory swapping performed by the operating system. This, of course, slows down
the overall performance of the program. Since we use a depth-first search strategy in
our BnB algorithm then we have to store vertices of a candidates set together with their
colours on all levels of recursion. This needs many allocation/deallocation operations.
If the memory is allocated on the stack, its size is predefined and the only operation
performed by the processor is the movement of the stack pointer. In contrast with
it, in the case when dynamic memory is allocated/deallocated on the heap a lot of
processor operations are needed when the context is switched to the operating system
mode and back and when the heap manager finds a free chunk of memory or adds a
deallocated chunk to the free memory. So we improve the performance of the program
by eliminating dynamic memory allocation (see Table 2).

123

J Comb Optim

The next our improvement is based on propositions 2, 3, and 4. If a subgraph of
candidates has k vertices and is coloured in k colours then it is a clique. In this case
we do not need to branch any more and waste time for finding candidates. It costs
nothing to check it, because on every step of branching we colour the subgraph of
candidates. Applying propositions 3 and 4 we also quickly find the vertices adjacent
to all candidates and then add them to the current clique without branching. This
approach reduces the search tree size and the running time of our algorithm (see
Table 3).

Another our improvement is induced by the order of vertices. In MCS algorithm
vertices are sorted in ascending order of their colours after colouring. But at the
beginning of the algorithm the vertices are sorted as in Carraghan and Pardalos (1990),
because it provides a smaller search tree. In order to keep this ordering after colouring
MCS algorithm does not use the standard sequential colouring on the first step. It
simply assigns a unique colour to every vertex of the whole graph except a special set
Rmin (Tomita et al. 2010) without considering any connections between the vertices.
As a result many vertices have a big colour number and thus MCS algorithm has a
lot of branching on the first level of the search tree. We suggest to use a standard
sequential colouring on the first step, but do not reorder the vertices by their colour
numbers. So on the first level we have to keep in the candidates set those vertices for
which their colour number plus the current clique size is not greater than the currently
best clique size. Our experimental results show that our approach reduces the search
tree size and the overall running time (see Table 1).

4 Computation results

We perform our computational study on Intel Core i7 machine with 2.3 GHz CPU and
8 Gb of memory. First we test initial colouring, memory usage, and clique detection
improvements separately. Tables 1, 2, and 3 present the results for every improvement
of MCS algorithm tested separately. The experiments are performed on random graphs
with edge probabilities distributed uniformly in [0,1]. Tables 1, 2, and 3 show the

Table 1 Search tree size and
running time with initial
colouring improvement

Vertices Density Running time (%) Search tree size (%)

200 0.95 90.5 91.1

200 0.90 95.1 96.0

800 0.50 100.1 100.3

10000 0.16 99.8 100.0

Table 2 Running time with
memory usage improvement

Vertices Density Running time (%)

200 0.95 91.2

200 0.90 94.6

800 0.50 75.1

123

J Comb Optim

Table 3 Search tree size and
running time with clique
detection improvement

Vertices Density Running time (%) Search tree size (%)

200 0.95 98.4 97.1

200 0.90 99.1 98.0

800 0.50 99.7 99.2

10000 0.16 100.0 100.0

ratio of search tree size and running time of improved algorithm to search tree size
and running time of original MCS algorithm. For every considered combination of
vertices number and density 50 instances are generated and the average running time
and search tree size are computed. The number of vertices and density of the generated
instances are chosen so that solving of one instance takes not more than 10 min (or 500
min for 50 instances) and thus all experiments can be performed in a reasonable time.
Note that memory usage improvement reduces only the running time of the program.
For large sparse graphs with 10,000 vertices or more it is not possible to use the stack
memory in our implementation because we use an adjacency matrix and not adjacency
lists.

We test our algorithm with all improvements on DIMACS benchmark instances.
The computational results for graphs from DIMACS library are presented in Tables
4 and 5. Table 4 shows the search tree size for our algorithm and for MCS algorithm
implemented in complete accordance with the paper of Tomita et al. (2010). The last
two columns contain the size of the maximum clique and the size of the best clique
found by the ILS heuristic applied in our algorithm. It is clear that the better clique
is found by the ILS heuristic the greater is the reduction in the search tree size we
observe. We run the ILS heuristic with 100,000 scans for all the considered instances
except gen400_p0.9_55 and p_hat1000-3 for which we use 60 millions scans because
these two instances are very hard both for the ILS heuristic and for our BnB algorithm.
The greatest reduction of the search tree size compared to MCS algorithm is obtained
for gen, san, c-fat, and p_hat1000-3 instances. It varies from 60 times reduction for
gen400_p0.9_55 up to more than 7,000 times reduction for gen400_p0.9_65 and
several san instances. This is because for these graphs colouring usually gives a good
upper bound and when the maximum clique is already found a lot of branches are
pruned quickly.

The comparison of the total computational time for our algorithm and MCS algo-
rithm is given in Table 5. The second column contains the running time of ILS heuristic.
The third and the fourth columns contain the total running time of our and MCS algo-
rithm correspondingly. For hard instances (which need more than 15 min to be solved
by MCS algorithm) our approach shows better results and reduces the computational
time by 35 % in average. The total time of computing all DIMACS graphs is reduced
by 75% (MCS time for p_hat1000-3 instance is taken equal to 1,000,000 s). The
best results are obtained for gen400_p0.9_75 (our algorithm is 13,000 times faster
for it), gen400_p0.9_65 (3000 times faster), gen400_p0.9_55 (7 times faster), and
p_hat1000-3 graphs. MCS algorithm is unable to solve p_hat1000-3 instance (at least
in 10 days) while our algorithm solves it in 3 days. However, our approach is usually
slower for simple graphs (solved in less than 15 min by MCS) than MCS because it is
not efficient to perform 100,000 scans of the ILS heuristic for such graphs.

123

J Comb Optim

Table 4 Search tree size

Instance MCS Our algorithm Maximum clique ILS solution

brock200_1 266180 237473 21 21

brock200_2 3505 2275 12 12

brock200_3 13016 12728 15 15

brock200_4 51526 27135 17 17

brock400_1 88555048 87946118 27 23

brock400_2 34145195 30682956 29 24

brock400_3 66379744 66280298 31 24

brock400_4 29696341 17963868 33 26

brock800_1 1097174023 1095645796 23 19

brock800_2 972110520 970862419 24 20

brock800_3 625234820 625139200 25 19

brock800_4 424176492 424101537 26 19

c–fat200–1 188 3 12 12

c–fat200–2 176 0 24 24

c–fat200–5 142 26 58 58

c–fat500–1 486 0 14 14

c–fat500–10 374 0 126 126

c–fat500–2 474 0 26 26

c–fat500–5 436 0 64 64

gen200_p0.9_44 96070 81052 44 44

gen200_p0.9_55 288654 1739 55 55

gen400_p0.9_55 3425049256 55079436 55 54

gen400_p0.9_65 6500277298 822991 65 64

gen400_p0.9_75 10140428816 41445 75 75

hamming10–2 511 255 512 473

hamming6–2 31 0 32 32

hamming6–4 81 80 4 4

hamming8–2 127 0 128 128

hamming8–4 35347 35336 16 16

johnson16–2–4 293670 256098 8 8

johnson8–2–4 30 22 4 4

johnson8–4–4 125 114 14 14

keller4 8441 8214 11 11

keller5 10339211493 10337321299 27 27

MANN_a27 33345 55 126 126

MANN_a45 221476 219979 345 344

MANN_a9 799002 44 16 16

p_hat1000–1 171929 165611 10 10

p_hat1000–2 25209207 21587044 46 44

p_hat1000–3 − 8773710250 68 67

123

J Comb Optim

Table 4 continued

Instance MCS Our algorithm Maximum clique ILS solution

p_hat1500–1 1086203 1007917 12 11

p_hat1500–2 660539819 607200969 65 61

p_hat300–1 1876 1201 8 8

p_hat300–2 3526 2334 25 25

p_hat300–3 565792 265698 36 35

p_hat500–1 9903 9306 9 9

p_hat500–2 89836 56552 36 34

p_hat500–3 17259920 15398976 50 48

p_hat700–1 29656 15827 11 11

p_hat700–2 670369 416003 44 42

p_hat700–3 98911559 81631372 62 60

san1000 188132 0 15 15

san200_0.7_1 990 0 30 30

san200_0.7_2 1262 0 18 18

san200_0.9_1 83047 0 70 70

san200_0.9_2 11118 0 60 60

san200_0.9_3 15708 0 44 44

san400_0.5_1 3197 0 13 13

san400_0.7_1 64568 0 40 40

san400_0.7_2 23471 0 30 30

san400_0.7_3 253044 0 22 22

san400_0.9_1 20537 4 100 100

sanr200_0.7 115666 98857 18 18

sanr200_0.9 8103466 4723495 42 42

sanr400_0.5 245271 239833 13 12

sanr400_0.7 51507583 51501398 21 20

5 Summary and future research directions

In this paper we report a number of improvements incorporated in one of the best BnB
algorithms, namely MCS algorithm by Tomita et al. (2010) for solving the maximum
clique problem. We have enriched the MCS algorithm by means of the high-quality ILS
heuristic by Andrade et al. (2012) which reduces the search tree size essentially. The
most impressive reduction of the search tree size evaluates by more than 7,000 times
for gen400_p0.9_65 benchmark instance. Our algorithm is able to solve p_hat1000-3
instance which cannot be solved in a reasonable time by MCS algorithm.

It seems that all well-known BnB algorithms for solving the maximum clique
problem, as far as we are aware, have not used any efficient heuristic at least described
explicitly (see e.g. Carmo and Zuge 2012). Hence it will be worthwhile to experiment
with different high-quality heuristics incorporated into different BnB algorithms.

123

J Comb Optim

Table 5 Computational time

Instance ILS heuristic Our algorithm MCS

brock200_1 6 7 1

brock200_2 12 12 0

brock200_3 10 10 0

brock200_4 9 9 0

brock400_1 26 483 460

brock400_2 25 212 199

brock400_3 26 346 320

brock400_4 25 135 161

brock800_1 167 6482 6337

brock800_2 164 5886 5737

brock800_3 166 3994 3830

brock800_4 166 3009 2849

c–fat200–1 11 11 0

c–fat200–2 10 10 0

c–fat200–5 7 7 0

c–fat500–1 62 62 0

c–fat500–10 42 42 0

c–fat500–2 63 63 0

c–fat500–5 56 56 0

gen200_p0.9_44 2 3 0

gen200_p0.9_55 2 2 1

gen400_p0.9_55 4320 5133 39015

gen400_p0.9_65 8 25 77620

gen400_p0.9_75 7 8 110579

hamming10–2 5 0 0

hamming6–2 0 0 0

hamming6–4 2 2 0

hamming8–2 1 1 0

hamming8–4 14 14 0

johnson16–2–4 2 2 0

johnson8–2–4 0 0 0

johnson8–4–4 1 1 0

keller4 7 7 0

keller5 96 78957 78875

MANN_a27 2 4 0

MANN_a45 5 130 126

MANN_a9 0 0 0

p_hat1000–1 302 302 0

p_hat1000–2 172 360 272

123

J Comb Optim

Table 5 continued

Instance ILS heuristic Our algorithm MCS

p_hat1000–3 54185 214611 >1000000

p_hat1500–1 693 696 3

p_hat1500–2 346 10231 11859

p_hat300–1 27 27 0

p_hat300–2 17 17 0

p_hat300–3 10 11 3

p_hat500–1 75 75 0

p_hat500–2 41 42 1

p_hat500–3 24 171 164

p_hat700–1 147 147 0

p_hat700–2 77 81 6

p_hat700–3 44 1303 1529

san1000 464 464 3

san200_0.7_1 6 6 0

san200_0.7_2 7 7 0

san200_0.9_1 2 2 0

san200_0.9_2 2 2 0

san200_0.9_3 2 2 0

san400_0.5_1 65 65 0

san400_0.7_1 26 26 1

san400_0.7_2 33 33 0

san400_0.7_3 35 35 2

san400_0.9_1 6 6 1

sanr200_0.7 7 7 1

sanr200_0.9 2 28 42

sanr400_0.5 49 50 1

sanr400_0.7 31 180 171

Acknowledgements The authors would like to thank professor Mauricio Resende and his co-authors for
the source code of their powerful ILS heuristic. The authors are supported by LATNA Laboratory, National
Research University Higher School of Economics (NRU HSE), Russian Federation government grant, ag.
11.G34.31.0057. Boris Goldengorin and Mikhail Batsyn are partially supported by NRU HSE Scientific
Fund grant “Teachers-Students” #11-04-0008 “Calculus for tolerances in combinatorial optimization: theory
and algorithms”.

References

Andrade DV, Resende MGC, Werneck RF (2012) Fast local search for the maximum independent set
problem. J Heuristics 18(4):525–547. doi:10.1007/s10732-012-9196-4

Balas E, Yu CS (1986) Finding a maximum clique in an arbitrary graph. SIAM J Comput 15(4):1054–1068

123

http://dx.doi.org/10.1007/s10732-012-9196-4

J Comb Optim

Bertoni A, Campadelli P, Grossi G (1997) A discrete neural algorithm for the maximum clique problem:
analysis and circuit implementation. In: Proceedings of workshop on algorithm, engineering, WAE’97,
pp 84–91

Boginski V, Butenko S, Pardalos PM (2003) Innovations in financial and economic networks. In: Nagurney
A (ed) On structural properties of the market graph. Edward Elgar Publishing, London, pp 29–45

Bomze I, Budinich MPMP, Pelillo M (1999) The maximum clique problem. In: Handbook of combinatorial
optimization. Kluwer Academic Publishers, Boston

Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM
16(9):575–577. doi:10.1145/362342.362367

Brouwer A, Shearer J, Sloane N, Smith W (1990) A new table of constant weight codes. IEEE Trans Inf
Theory 36(6):1334–1380. doi:10.1109/18.59932

Butenko S, Wilhelm WE (2006) Clique-detection models in computational biochemistry and genomics.
Eur J Oper Res 173(1):1–17. doi:10.1016/j.ejor.2005.05.026

Carmo R, Zuge A (2012) Branch and bound algorithms for the maximum clique problem under a unified
framework. J Braz Comput Soc 18(2):137–151

Carraghan R, Pardalos PM (1990) An exact algorithm for the maximum clique problem. Oper Res Lett
9(6):375–382. doi:10.1016/0167-6377(90)90057-C

Du D, Pardalos PM (1999) Handbook of combinatorial optimization, Supplement, vol A. Springer, New
York

Fahle T (2002) Simple and fast: improving a branch-and-bound algorithm for maximum clique. In: Pro-
ceedings of the 10th annual European symposium on algorithms, ESA ’02. Springer-Verlag, London,
pp 485–498

Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Global Optim 6(2):109–
133. doi:10.1007/BF01096763

Funabiki N, Takefuji Y, Lee KC (1992) A neural network model for finding a near-maximum clique. J
Parallel Distrib Comput 14(3):340–344. doi:10.1016/0743-7315(92)90072-U

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness,
vol 24. W. H Freeman and Co, New York

Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Norwell
Grosso A, Locatelli M, Pullan W (2008) Simple ingredients leading to very efficient heuristics for the

maximum clique problem. J Heuristics 14(6):587–612. doi:10.1007/s10732-007-9055-x
Jenelius E, Petersen T, Mattsson L (2006) Importance and exposure in road network vulnerability analysis.

Transport Res A Policy Pract 40(7):537–560. doi:10.1016/j.tra.2005.11.003
Jerrum M (1992) Large cliques elude the metropolis process. Random Struct Algorithms 3(4):347–359.

doi:10.1002/rsa.3240030402
Kopf R, Ruhe G (1987) A computational study of the weighted independent set problem for general graphs.

Found Control Eng 12(4): 167–180
Li CM, Quan Z (2010a) Combining graph structure exploitation and propositional reasoning for the max-

imum clique problem. In: Proceedings of the 2010 22nd IEEE international conference on tools with
artificial intelligence, Vol 01, ICTAI’10. IEEE, Arras, pp 344–351

Li CM, Quan Z (2010b) An efficient branch-and-bound algorithm based on maxsat for the maximum clique
problem. In: Proceedings of the twenty-fourth AAAI conference on artificial intelligence, AAAI-10.
AAAI Press, Atlanta, pp 128–133

Marchiori E (2002) Genetic, iterated and multistart local search for the maximum clique problem. In:
Applications of evolutionary computing. Springer-Verlag, New York, pp 112–121

Matula DW, Marble G, Isaacson JD (1972) Graph coloring algorithms. In: Graph theory and computing.
Academic Press, New York, pp 109–122

Mycielski J (1955) Sur le coloriage des graphes. Colloq Math 3:161–162
Pullan W, Hoos HH (2006) Dynamic local search for the maximum clique problem. J Artif Int Res 25(1):159–

185
Singh A, Gupta AK (2006) A hybrid heuristic for the maximum clique problem. J Heuristics 12(1–2):5–22.

doi:10.1007/s10732-006-3750-x
Sloane NJA (1989) Unsolved problems in graph theory arising from the study of codes. Graph Theory

Notes NY 18(11):11–20
Tomita E, Kameda T (2007) An efficient branch-and-bound algorithm for finding a maximum clique with

computational experiments. J Global Optim 37(1):95–111

123

http://dx.doi.org/10.1145/362342.362367
http://dx.doi.org/10.1109/18.59932
http://dx.doi.org/10.1016/j.ejor.2005.05.026
http://dx.doi.org/10.1016/0167-6377(90)90057-C
http://dx.doi.org/10.1007/BF01096763
http://dx.doi.org/10.1016/0743-7315(92)90072-U
http://dx.doi.org/10.1007/s10732-007-9055-x
http://dx.doi.org/10.1016/j.tra.2005.11.003
http://dx.doi.org/10.1002/rsa.3240030402
http://dx.doi.org/10.1007/s10732-006-3750-x

J Comb Optim

Tomita E, Seki T (2003) An efficient branch-and-bound algorithm for finding a maximum clique. In: Pro-
ceedings of the 4th international conference on discrete mathematics and theoretical computer science,
DMTCS’03. Springer-Verlag, Berlin, Heidelberg, pp 278–289

Tomita E, Sutani Y, Higashi T, Takahashi S, Wakatsuki M (2010) A simple and faster branch-and-bound
algorithm for finding a maximum clique. In: Proceedings of the 4th international conference on algo-
rithms and computation, WALCOM’10. Springer-Verlag, Berlin, Heidelberg, pp 191–203

123

	Improvements to MCS algorithm for the maximum clique problem
	Abstract
	1 Introduction
	2 Maximum clique problem
	3 Algorithm description
	4 Computation results
	5 Summary and future research directions
	Acknowledgements
	References

