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ABSTRACT

Automatic dubbing is an extension of speech-to-speech translation
such that the resulting target speech is carefully aligned in terms
of duration, lip movements, timbre, emotion, prosody, etc. of the
speaker in order to achieve audiovisual coherence. Dubbing qual-
ity strongly depends on isochrony, i.e., arranging the translation of
the original speech to optimally match its sequence of phrases and
pauses. To this end, we present improvements to the prosodic align-
ment component of our recently introduced dubbing architecture.
We present empirical results for four dubbing directions – English
to French, Italian, German and Spanish – on a publicly available
collection of TED Talks. Compared to previous work, our enhanced
prosodic alignment model significantly improves prosodic alignment
accuracy and provides segmentation perceptibly better or on par with
manually annotated reference segmentation.

Index Terms— speech translation, text to speech, automatic
dubbing

1. INTRODUCTION

Automatic Dubbing (AD) is the task of automatically replacing the
speech in a video document with speech in a different language,
while preserving as much as possibly the user experience of the orig-
inal video. AD dubbing differs from speech translation [1, 2, 3, 4]
in significant ways. In speech translation, a speech utterance in the
source language is recognized, translated (and possibly synthesized)
in the target language. In speech translation close to real-time re-
sponse is expected and typical use cases include human-to-human
interaction, traveling, live lectures, etc. On the other hand, AD
tries to automate the localization of audiovisual content, a complex
and demanding work flow [5] managed during post-production by
dubbing studios. A major requirement of dubbing is speech syn-
chronization which, in order of priority, should happen at the ut-
terance level (isochrony), lip movement level (lip synchrony), and
body movement level (kinetic synchrony) [5]. Most of the work on
AD [6, 7, 8], including this one, addresses isochrony, which aims to
generate translations and utterances that match the phrase-pause ar-
rangement of the original audio. Given a source sentence transcript,
the first step is to generate a translation of more or less the same ”du-
ration” [9, 10], e.g. number of characters or syllables. The second
step, called prosodic alignment (PA) [6, 7, 8], segments the trans-
lation into phrases and pauses of the same duration of the original
phrases.

This paper focuses on the PA step, by comparing previous [6, 7,
8] and new methods that allow to optimally segment and temporally
align a translation with the original phrases. Differently from previ-
ous work, we perform intrinsic and extrinsic evaluations of PA an a
significantly larger test set extracted from the MUST-C corpus [11]
and on four dubbing directions, English (en) to French (fr), Italian
(it), German (de) and Spanish (es). Intrinsic evaluations measure the

Fig. 1. Speech translation pipeline (dotted box) with enhancements
introduced to perform automatic dubbing (in bold).

accuracy, fluency and smoothness of PA with respect to manually
post-edited and segmented translations, while extrinsic evaluations
measure subjective quality of video clips dubbed by applying differ-
ent PA models on the human translations.

Our paper is arranged as follows. First, we describe the auto-
matic dubbing architecture used for our experiments, then, we focus
on existing and new PA methods, and finally we present and discuss
experimental results of all compared methods.

2. DUBBING ARCHITECTURE

We build on the automatic dubbing architecture presented in [7, 8],
and described in Figure 1, that extends a speech-to-speech transla-
tion [1, 2, 3] pipeline with: neural machine translation (MT) robust
to ASR errors and able to control verbosity of the output [12, 10, 13];
prosodic alignment (PA) [6] which addresses phrase-level synchro-
nization of the MT output by leveraging the force-aligned source
transcript; neural text-to-speech (TTS) [14, 15, 16] with precise du-
ration control; and, finally, audio rendering that enriches TTS output
with the original background noise (extracted via audio source sepa-
ration with deep U-Nets [17, 18]) and reverberation, estimated from
the original audio [19, 20].

3. RELATED WORK

In the past, there has been little work to address prosodic align-
ment for automatic dubbing [6, 7, 8]. The work of [6] utilized
the attention mechanism of neural machine translation to achieve
isochrony. While this approach achieves linguistic similarity be-
tween corresponding source and target phrases, it has no mechanism
to explicitly control for uneven or extreme speaking rates that can
cause unnatural sounding dubbing. This was partly addressed in [7]
by segmenting the translation according to the length similarity be-
tween corresponding source-target phrases. Moreover, [7] proposed
a more efficient implementation based on dynamic programming as
opposed to generating and rescoring segmentation hypotheses [6].
More recently, [8] further improved on speech fluency by not only
controlling the speaking rate match between corresponding source-
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target phrases but also the speaking rate variation across consecutive
target phrases. Additionally, it introduced a mechanism to relax
the timing constraints to cope with too high TTS speaking rates.
While it achieves much smoother speech, the human evaluation
of the automatically dubbed videos revealed that users still prefer
human-annotated reference segmentation over the one produced by
the model. Finally, another limitation of this study is the use of a
rather small test set. In this work, we address these issues by using
a much larger dataset and combine the advantages of content-based
[6] and fluency-based [7, 8] approaches. In sec. 6, we provide
a direct comparison of our present work with [8] and an indirect
comparison of our work with [6].

4. PROSODIC ALIGNMENT

The goal of the PA [6, 7, 8] is to segment the target sentence to
optimally match the sequence of phrases and pauses in the source
utterance. Let e = e1, e2, . . . , en be a source sentence of n words,
segmented according to k breakpoints 1 ≤ i1 < i2 < . . . ik = n,
denoted with i. Let the temporal duration of e be T and the temporal
intervals of the segmentation i be s1 = [l1, r1] , . . . , sk = [lk, rk],
denoted by s, s.t. l1 ≥ ∆ε, li < ri, li+1 − ri ≥ ∆ε, T − rk ≥
∆ε, where ∆ε is the minimum silence interval after (and before)
each break point.1 Given a target sentence f = f1, f2, . . . , fm of m
words, the goal is to find k breakpoints 1 ≤ j1 < j2 < . . . jk = m
(denoted with j) that maximize the probability:

max
j

log Pr(j | i, e, f , s) (1)

By assuming a Markovian dependency on j, i.e.:

Pr(j | i, e, f , s) =

k∑
t=1

log Pr(jt | jt−1; t, i, e, f , s) (2)

and omitting from the notation the constant terms i,e,f and s we
derive the following recurrent quantity:

Q(j, t) = max
j′<j

log Pr(j | j′; t) +Q(j′, t− 1) (3)

where Q(j, t) denotes the log-probability of the optimal segmenta-
tion of f up to position j with t break points. The implicit assump-
tion is that corresponding source and target segments, defined by i
and j, have exactly the same duration (isochrony), defined by s. In
[8], we allow target segments to possibly extend the source interval
by some fraction of ∆ε to the left and to the right, which we call δl
and δr . In this work, we additionally allow trimming by having neg-
ative relaxations such that δl, δr ∈

{
0,± 1

4
,± 2

4
,± 3

4
,±1

}
. Hence,

we tradeoff isochrony for the flexibility of adjusting speaking rates
to improve the viewing experience. Thus, we optimize

Q (j, δl, δr; t) = max
j
′
<j : δ

′
r≤1−δl

log Pr
(
j, δl, δr | j

′
, δ

′
l , δ

′
r; t
)

+Q
(
j
′
, δ

′
l , δ

′
r; t− 1

)
(4)

Here Q is the score of the optimal segmentation into t segments up
to position j, with relaxations δl, δr on the last segment. Hence, not
only different breakpoints j for the t-segment are evaluated, but also
relaxations of the original time interval st = [lt, rt], to the right by
δr∆ε and to the left by δl∆ε. We denote the relaxed interval by s∗t .
The constraint δ′r ≤ 1− δl in (4) makes sure that the left relaxation

1In this work the minimum silence interval ∆ε is set to 300ms.

of segment t does not overlap with the right relaxation of segment
t − 1. Additionally, owing to negative relaxations, we note that we
have implicit though trivial restrictions on the choice of δl, δr, δ′r, δ′l
to ensure s∗t > 0, s∗t−1 > 0.

We define the model probability with a log-linear model:

log Pr (j, δl, δr | . . . ; t) ∝
5∑
k=1

wa log sa (j, δl, δr, . . . ; t) (5)

where weights wa are learned from data and functions sa model the
following features:

1. Language model score of target break point.

2. Cross-lingual semantic match score across source and target
segments.

3. Speaking rate variation across target segments.

4. Speaking rate match across source and target segments.

5. Isochrony score for left and right relaxations.

Speaking rate computations rely on the strings f̃t and ẽt, denoting
the t-th source and target segments, as well as the original interval
st and the relaxed interval s∗t . Hence, the speaking rate of a source
(target) segment is computed by taking the ratio between the dura-
tion of the utterance by source (target) TTS run at normal speed and
the source (target) interval length,2 i.e:

re(t) =
duration(TTSe(ẽt))

|st|
(6)

rf (t) =
duration(TTSf (f̃t))

|s∗t |
(7)

4.1. Language model

As in previous work [7, 8], we define a language model score that es-
timates the probability of placing a break between consecutive target
words ft−1 and ft:

slm(j, ft−1, ft) = Pr (br|ft−1, ft)

=
c (gt−1, br, gt)

c (gt−1, br, gt) + c (gt−1, gt)
(8)

To use this feature, we first map the sentence f into a sequence g
of parts-of-speech3, where punctuation marks denoting pauses (pe-
riod,comma, colon or semicolon) are mapped to the br class. Unlike
our previous work, we now compute the probability directly from
counts extracted from the training portion of the MUST-C corpus.

4.2. Cross-lingual semantic match

The pioneering work of [6] exploits the attention mechanism in neu-
ral machine translation to segment and align the translation to the
source phrases. To capture such semantic similarity between cor-
responding source and target phrases, we define the cross-lingual
semantic match scm(·) as

scm
(
ẽt, f̃t; t

)
= cos

(
φ (ẽt) , φ(f̃t)

)
(9)

where φ(·) denotes the encoding of the input phrase by using a pre-
trained multilingual sentence embedding model [23]. In Sec. 6.2,

2We run TTS on the entire sentence, force-align audio with text [21, 22]
and compute segment duration from the time-stamps of the words.

3We use https://aws.amazon.com/comprehend for this step.
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we provide a quantitative comparison of using different multilingual
embedding models. Note that the accuracy of the prosodic align-
ment depends strongly on matching the linguistic content between
the source and target phrases and our past work [8] shows that accu-
racy impacts strongly the subjective viewing experience. Hence, we
expect to benefit by using such content-matching feature.

4.3. Speaking rate variation

As in [8] we penalize hypotheses resulting in high variation in speak-
ing rates for consecutive target phrases, we define the speaking rate
variation score ssv(·) as follows:

ssv
(
f̃t, s

∗
t , f̃t−1, s

∗
t−1; t

)
= 1− |rf (t)− rf (t− 1)|

rf (t− 1)
. (10)

Naturally, this feature works for t ≥ 2 and reaches its maximum
value when consecutive phrases have the same speaking rate.

4.4. Speaking rate match

We realized that the speaking rate match score in [8] does not take
into account global information of the target sentence, such as its
verbosity relative to the source sentence. Hence, to better match
speaking rates between target and source segments, we introduce
the factor:

β =
duration(TTSf (f))

duration(TTSe(e))
(11)

that computes the ratio of the duration of the target sequence f and
the source sequence e, both synthesized using TTS at normal speak-
ing rate. Thus, we define the speaking rate match score as:

ssm
(
ẽt, f̃t, st, s

∗
t ; t
)

= 1− |rf (t)− βre(t)|
βre(t)

. (12)

This feature reaches it maximum when the target speaking rate is
identical to the scaled source speaking rate.

4.5. Isochrony score

We extend the isochrony score sis(·) of [8] to positive and negative
relaxations δl, δr , as:

sis(δl, δr) = 1− [α |δl|+ (1− α) |δr|] (13)

This feature reaches its maximum when no relaxation occurs (δr =
δl = 0), that is when the TTS output is stretched to exactly fit the
duration of the original utterance. The relaxation mechanism of [8]
is able to mitigate only very high speaking rates. To mitigate very
low speaking rates, we introduce negative values for relaxation and
hence use absolute values for δl, δr in (13). Since relaxations are
less tolerated at the beginning than at the end of a phrase [5], we set
α > 4

5
such that left relaxation is always more penalized than the

right, i.e.:

α |δl| > (1− α) |δr| ∀δl, δr ∈
{

0,±1

4
,±2

4
,±3

4
,±1

}
(14)

5. EVALUATION DATA

To train and evaluate PA, we re-translated and annotated a total of
495 video clips from 20 TED talks of the MUST-C corpus such that
a clip contains a single sentence with at least one pause of at least
300ms. Using [21], we time aligned the English text with the au-
dio. Using external vendors, we manually adapted and segmented
the available translations in 4 languages - French, German, Italian
and Spanish - so as to fit the duration and segmentation of corre-
sponding English utterances. For automatic evaluation, we use the
metrics Accuracy, Fluency and Smoothnes as defined in [8].

6. EXPERIMENTS

To test the importance of relaxation mechanism, we evaluate our
new PA model without (B) and with (C) relaxations and compare
our results with the best model with relaxation from our previous
work [8], i.e. model A. To simplify search and run ablation tests
across models, we find optimal feature weights using hierarchical
grid search with convex combinations of feature pairs 4:

A:
(
sis, (slm, (ssm, ssv)wsm)wlm

)
wis

B:
(
scm, (slm, (ssm, ssv)wsm)wlm

)
wcm

C:
(
sis,

(
scm, (slm, (ssm, ssv)wsm)wlm

)
wcm

)
wis

Note that for model A, the features sis, slm and ssm are defined
differently than for models B and C presented in this paper.

6.1. Two-step optimization

As we explain in Sec. 6.2, performance of model A [8] on the ex-
panded test dataset of 495 sentences is significantly lower than that
on the previous corpus. In particular, we found that relaxations do
not help to improve accuracy but only improve fluency and smooth-
ness. Hence, to find the optimal feature weights for model C we de-
cided to utilize a two-step optimization procedure. In the first step,
we find optimal weightswsm, wlm, wcm by maximizing average ac-
curacy. This is equivalent to training model B. In the second step, we
find the optimal weight wis by maximizing average smoothness by
keeping the segmentation obtained in step 1. Thus, model C has the
same segmentation (and hence accuracy) of model B but should have
better smoothness.

6.2. Automatic evaluation

Table 1 shows the results of automatic evaluation. All the observed
improvements of the new models B and C on our previous work
A are statistically significant [24]. For all four languages, model
B outperforms model A with relative improvements in accuracy –
fr: +99.4%, it: +87.3%, de: +80.2%, es: +86.1%. This shows that
the improvements in the speaking rate match feature, the language
model and the addition of cross-lingual semantic match feature pro-
vides a strong improvement in the scoring function. The reduction
in fluency and smoothness metrics can be attributed to the fact that
A uses relaxations and B does not.

Table 3 shows a comparison of accuracy for PA model using
only the cross-lingual semantic match feature with different pre-
trained models such as multilingual universal sentence encoder

4Where (a, b)θ := θa+ (1− θ)b with θ ∈ [0.1]
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Automatic A B C R
en-fr Accuracy 35.6% 70.9%∗ – 100%

Fluency 87.9% 62.8%∗ 82.6%∗ 59.2%
Smoothness 82.4% 68.5%∗ 81.0%∗ 64%

en-it Accuracy 43.0% 80.6%∗ – 100%
Fluency 78.4% 50.7%∗ 59.6%∗ 52.3%
Smoothness 82.9% 67.7%∗ 73.8%∗ 67.6%

en-de Accuracy 39.8% 71.7%∗ – 100%
Fluency 68.1% 57.6%∗ 73.5%∗ 59.1%
Smoothness 70.2% 65.0%∗ 74.0%∗ 64.5%

en-es Accuracy 43.4% 80.8%∗ – 100%
Fluency 77.0% 44.9%∗ 52.1%∗ 44.2%
Smoothness 77.4% 68.0%∗ 75.1%∗ 68.2%

Table 1. Results of automatic evaluation with prosodic alignments:
(A) previous work [8], (B) new model without relaxation, (C) new
model with relaxation and manual reference (R). Test set is made of
495 sentences. Significance testing is against model A, with levels
p < 0.05 (+) and p < 0.01 (∗). Best PA results are in bold face.

Manual A vs. C C vs. R
en-fr Wins 22.6% 52.4%∗ 39.6% 30.2%∗

Score 4.5 5.14∗ 4.96 4.76∗

en-it Wins 26.9% 36.8%∗ 28.3% 27.9%
Score 4.55 4.76 ∗ 4.49 4.49

en-de Wins 27.3% 47.6%∗ 38.8% 31.8%∗

Score 4.81 5.38∗ 5.24 5.15
en-es Wins 24.6% 34.5%∗ 20.8% 23.4%

Score 4.56 4.78∗ 5.05 5.07

Table 2. Results of manual evaluations with prosodic alignments:
(A) previous work [8], (C) new model with relaxation and manual
reference (R). Test set is made of 50 video clips. Significance testing
is with levels p < 0.05 (+) and p < 0.01 (∗).

(mUSE) [25], sentence BERT (SBERT) [26], language agnostic bert
sentence embeddings (LaBSE) [27] and language agnostic sentence
representations (LASER) [23]. LASER substantially outperforms
all other models on all languages for our dataset and is hence used
for scm. This configuration can be seen as a proxy of the PA model
of [6], although we use a pretrained state-of-the-art embedding
model rather than attention-based model and implement PA with
dynamic programming.

The full model C improves on model B’s Fluency (fr: +31.5%,
it: +17.5%, de: +27.7%, es: +16.2%) and Smoothness (fr: +18.2%,
it: +9%, de: +13.9%, es: +10.4%) without sacrificing on B’s ac-
curacy thanks to the two-step optimization procedure described in
Sec. 6.1. Though not shown here, we note that compared to using
positive relaxations, the addition of negative relaxations improves
fluency and smoothness on average across all languages by +9% and
+5% respectively. In comparing models C and A, we see a drop in
Fluency in all languages except German (fr: -5.9%, it: -23.9%, de:
+8%, es: -32.3%), as well as in Smoothness (fr: -1.7%, it: -11%,
de: +5.5%, es: -2.9%). The observed drop in these metrics can be
attributed to the restriction on the choice of segmentation that the
two-step optimization imposes on C. In the next section, we show
however that the overall dubbing quality of model C is far superior
to that of model A, thanks to the higher accuracy which out-weighs
the lower fluency and smoothness.

mUSE SBERT LaBSE LASER
en-fr 46.06% 51.11% 50.3% 61.21%
en-it 59.19% 63.84% 67.27% 74.95%
en-de 54.14% 57.17% 59.19% 66.06%
en-es 61.01% 64.04% 67.68% 74.55%

Table 3. Model accuracy using only the cross-lingual semantic
match feature on pretrained models of mUSE [25], SBERT [26],
LaBSE [27] and finally LASER [23] that significantly outperforms
all other models on our dataset.

6.3. Human evaluation

For comparability with our previous work, we present results of hu-
man evaluation on the same subset of 50 test sentences used in [8].
For each language and each test sentence, starting with manually
post-edited translation, we apply PA with models A and C, followed
by neural text-to-speech and audio rendering steps as described in
Sec. 2 to generate the dubbed videos. As reference (R), we also
dubbed videos using the manual segmentation. We asked native
speakers in each language to grade the viewing experience of each
dubbed video on a scale of 0-10. To reduce the cognitive load, we
perform two distinct evaluations, comparing two conditions in each
case: A vs. C and C vs. R. We run evaluations using Amazon Me-
chanical Turk with 20 subjects each grading all videos for a total of
2000 scores in each language.

We compare A, C and R using the Wins (percentage of times
one condition is preferred over the other) and Score (average score
of dubbed videos) metrics. We use the linear mixed-effects model5

(LMEM) by defining subjects and sentences as random effects [29].
Table 2 shows that C clearly outperforms A on all languages

for both Wins (fr: +131.8%, it: +36.8%, de: +74.4%, es: +40.2%)
and Score (fr: +14.2%, it: +4.6%, de: +11.9%, es: +4.8%) with all
results statistically significant (p < 0.01). Comparing C with R,
for it and es languages, we find no statistically significant difference
for either metric. Instead, for de and fr we find +18% (+1.7%) and
+23.7% (+4.2%) relative gains in Wins (Score), respectively. To un-
derstand why C outperforms R on fr and de, we used a LMEMs to
explain observed Score variations by means of the three automatic
metrics. We observe that for fr, smoothness is the only statistically
significant factor (p < 0.01), while for de all three metrics are sig-
nificant (p<0.01) in the following order of importance: smoothness,
fluency, accuracy. This analysis confirms the importance of the re-
laxation mechanism and the two-step optimization process that help
improve smoothness and fluency without sacrificing accuracy.

7. CONCLUSIONS

In this work, we presented the improved prosodic alignment compo-
nent for automatic dubbing and evaluated it on a significantly larger
test set with support for four dubbing directions. Modifications to
the language model and speaking rate match features coupled with
the addition of cross-lingual semantic match feature improves sig-
nificantly the accuracy. Our two-step optimization process with the
addition of negative relaxations helps improve smoothness and flu-
ency without degrading accuracy. From the perspective of dubbing
experience our new model provides segmentation vastly superior to
our previous work and perceptibly better or on par compared to the
reference segmentation for all four languages.

5We used the lme4 package for R [28].

4



8. REFERENCES

[1] F. Casacuberta, M. Federico, H. Ney, and E. Vidal, “Recent ef-
forts in spoken language translation,” IEEE Signal Processing
Magazine, vol. 25, no. 3, pp. 80–88, 2008.

[2] Ron J. Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui Wu,
and Zhifeng Chen, “Sequence-to-Sequence Models Can Di-
rectly Translate Foreign Speech,” in Proc. Interspeech 2017.
Aug. 2017, pp. 2625–2629, ISCA.

[3] Laura Cross Vila, Carlos Escolano, Jos A. R. Fonollosa, and
Marta R. Costa-Juss, “End-to-End Speech Translation with
the Transformer,” in IberSPEECH 2018. Nov. 2018, pp. 60–
63, ISCA.

[4] Matthias Sperber and Matthias Paulik, “Speech Translation
and the End-to-End Promise: Taking Stock of Where We Are,”
in Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, Online, July 2020, pp. 7409–
7421, Association for Computational Linguistics.

[5] Frederic Chaume, “Synchronization in dubbing: A translation
approach,” in Topics in Audiovisual Translation, Pilar Orero,
Ed. 2004, pp. 35–52, John Benjamins B.V.
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