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ABSTRACT

The National Hurricane Center Hurricane Probability Program, which estimated the probability of

a tropical cyclone passing within a specific distance of a selected set of coastal stations, was replaced by the

more general Tropical Cyclone Surface Wind Speed Probabilities in 2006. A Monte Carlo (MC) method is

used to estimate the probabilities of 34-, 50-, and 64-kt (1 kt 5 0.51m s21) winds at multiple time periods

through 120 h. Versions of the MC model are available for the Atlantic, the combined eastern and central

North Pacific, and the western North Pacific. This paper presents a verification of the operational runs of the

MCmodel for the period 2008–11 and describes model improvements since 2007. Themost significant change

occurred in 2010 with the inclusion of a method to take into account the uncertainty of the track forecasts on

a case-by-case basis, which is estimated from the spread of a dynamical model ensemble and other param-

eters. The previous version represented the track uncertainty from the error distributions from the previous

5 yr of forecasts from the operational centers, with no case-to-case variability. Results show the MC model

provides robust estimates of the wind speed probabilities using a number of standard verificationmetrics, and

that the inclusion of the case-by-case measure of track uncertainty improved the probability estimates. Be-

ginning in 2008, an older operational wind speed probability table product was modified to include in-

formation from the MC model. This development and a verification of the new version of the table are

described.

1. Introduction

Scientific and technological advances during the past

few decades have contributed to enhancements in op-

erational tropical cyclone analyses and forecasts. This

progress has occurred during an era when coastal pop-

ulation and development have continued to increase, in

many cases increasing the lead time at which officials

and residents of these areas must take certain actions in

advance of the various hazards posed by an approaching

tropical cyclone. Operational forecast errors are still

sufficiently large such that the uncertainties in these

forecasts must be taken into account to make sound

preparedness decisions. While most users acknowledge

that deterministic forecasts have uncertainties, it is

challenging for them to account for those uncertainties

without additional information from the forecasters.

Products are needed that better convey forecast uncer-

tainties and enhance users’ decision-making and pre-

paredness actions in response to a tropical cyclone.

The National Hurricane Center (NHC) began issuing

‘‘strike probabilities’’ with their forecasts of Hurricane

Alicia in August of 1983 (Sheets 1985) in response to the

need to convey forecast uncertainty. The original strike
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probability product only considered track forecast un-

certainties estimated from bivariate normal distribu-

tions fitted to the recent history of NHC track forecast

errors. A tropical cyclone strike was defined as the

passing of the center of a tropical cyclone 50 n mi to

the right or 75 n mi to the left of a given location, and

probabilities were provided at selected locations from

12 to 72 h (the discrete lead times of the NHC deter-

ministic forecasts prior to 2003). Except for periodic

updating of the track error statistics, the operational

strike probability product changed very little from 1983

through the 2005 hurricane season.

The strike probabilities were used by many emer-

gency managers and other decision makers to account

for tropical cyclone track forecast uncertainties, whereby

the ‘‘close’’ passage of the cyclone center was used as a

proxy for weather effects from the cyclone. However, the

strike probabilities did not account for uncertainties in

the forecast intensity or size of the tropical cyclone and

the resulting probabilities did not convey information

about specific weather hazards that could be experienced

at a given location.

A new set of products, the tropical cyclone surface

wind speed probabilities, replaced the strike probabilities

in 2006 (DeMaria et al. 2009, hereafter D09) following an

experimental phase during 2004–05 that was supported

by the Joint Hurricane Testbed (JHT; Rappaport et al.

2012).Aswith the strike probabilities, these newproducts

were primarily developed for more sophisticated users

of forecast information, such as government officials and

other decision makers to support cost–benefit analyses.

The new technique uses a Monte Carlo (MC) method

to estimate the probability of winds of at least 34, 50,

and 64 kt (1 kt 5 0.51m s21) at specific locations within

multiple time periods out to 120 h. Probabilities are es-

timated for a set of well-known locations near the coast

as well as for a regularly spaced latitude–longitude grid

covering a very large domain. Versions are available for

the Atlantic, the combined eastern and central North

Pacific (hereafter referred to as East Pacific) and the

western North Pacific (hereafter West Pacific). D09 de-

scribed the MC probability model and presented verifi-

cation statistics for the 2006–07 seasons. In this paper,

updated verification results through the 2011 season will

be presented.

The original version of the MC model randomly

sampled official track and intensity error distributions

from the previous 5 yr, which were then added to the

official track and intensity forecast to generate the 1000

realizations. This paper describes a new method im-

plemented in 2010, where the track uncertainty is esti-

mated on a case-by-case basis. Recent studies have shown

that carefully designed ensemble forecast systems can

provide information on the uncertainty of a number

of forecast parameters, including tropical cyclone tracks

(e.g., Hamill et al. 2011). However, one of the con-

straints of the operational MC model is that the proba-

bilities need to be consistent with the official track and

intensity forecast, making direct inclusion of ensemble

information from models problematic. In addition, the

sizes of operational global model forecast ensembles are

typically much smaller than 1000, and the horizontal

resolution is inadequate to provide unbiased estimates

of the cyclone intensities and wind radii. Also, the error

spread of the ensembles can sometimes be too small

relative to the forecast errors (i.e., underdispersive).

For these reasons, a simpler approach was under-

taken to include ensemble track information in the MC

model. Goerss (2007) developed a method of statisti-

cally estimating the error of a consensus track forecast

using the spread of a small set of operational track

forecast models and several other parameters such as

the forecast storm intensity. This method produces

the Goerss predicted consensus error (GPCE), which is

available in real time at all the U.S. tropical cyclone

forecast centers [NHC, the Central Pacific Hurricane

Center (CPHC) and the Joint Typhoon Warning Center

(JTWC)]. For use in the MC model, the official track

forecast errors were stratified into terciles by the GPCE

values. This stratification resulted in a very consistent

relationship between theGPCE tercile category and the

track errors, with increasingly broad along- and cross-

track error distributions for the terciles with the larger

GPCE values. These stratified error distributions are

then used tomodify the real-timeMCmodel runs. After

testing in 2008 and 2009, the GPCE version of the MC

model was implemented operationally beginning in

2010. This paper describes the incorporation of the

GPCE information in the MC model and evaluates its

impact.

This paper also describes the use of the MC model to

replace an older NHC intensity probability product,

which was designed to complement the strike proba-

bility product. Beginning in 1996, a wind speed proba-

bility table (WSPT) was provided for the East Pacific

(but without the central Pacific part) and theAtlantic via

the NHC web page (Rappaport et al. 2009). This prod-

uct estimated the probability that the cyclone’s maxi-

mumwind would lie in various intensity ranges (dissipated,

tropical depression, tropical storm, hurricane, and the

five categories on the Saffir–Simpson hurricane wind

scale) out to 72 h. Beginning in 2008, this table was

modified to use the intensity input from the 1000 re-

alizations from the MC model, rather than from fixed

probability distributions from historical NHC intensity

errors. The table information was also extended from
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72 to 120 h at that time. A verification of the newWSPT

product for 2008–11 will be presented.

The MC model is reviewed in section 2, the GPCE

version is described in section 3, verification results are

presented in section 4, theWSPT and its verification are

described in section 5, and conclusions are presented in

section 6.

2. The Monte Carlo wind speed probability model

The MC model and the operational products derived

from it were described in detail in D09. The MC model

estimates probabilities of the magnitude of the wind

vector (wind speed), but does not provide any infor-

mation on wind direction. For brevity, the term ‘‘wind’’

is assumed to mean ‘‘wind speed’’ in the remainder of

the paper. All of the products are determined from a set

of 1000 plausible storm tracks generated by randomly

sampling from the previous 5 yr of track errors from the

operational forecast centers (NHC, CPHC, and JTWC).

Versions are available for the Atlantic, and the East and

West Pacific. Each realization has corresponding maxi-

mum wind estimates, which are also determined from

the previous 5 yr of the operational forecast errors.

Adjustments are applied to the intensity of a realization

for times when the official track crossed land but the

realization track did not, and vice versa. The wind

structure along the track of each realization is estimated

from a simple wind radii climatology and persistence

(CLIPER) model (Knaff et al. 2007) and its error dis-

tributions, given the track and intensity. The structure is

defined in terms of the radii of the 34-, 50-, and 64-kt

winds in four directions (NE, SE, SW, and NW) relative

to the storm center. These radii are azimuthally in-

terpolated to provide a wind radii estimate at any given

azimuth. The radii-CLIPERmodel starts with the t5 0 h

radii estimates from the operational forecast centers,

and then relaxes those toward climatological radii esti-

mates. By about 36 h, the radii estimates are almost

entirely from the climatological values.

Serial correlations of the track, intensity, and wind

structure errors are taken into account. For example, the

12-h position in a realization is determined by randomly

sampling from the along- and across-track error distri-

butions of the operational center forecasts from the

previous five years. The 24-h track errors are then pre-

dicted from the 12-h errors using a first-order autore-

gressive procedure to account for the serial correlation,

and then a random component is added to that estimate,

based on the residuals from the fit of the autoregressive

estimate. Along- and across-track errors were utilized

because the autoregressive estimate is more accurate

compared to when the track errors are partitioned into

geographic components. Similar procedures are used to

account for serial correlations of the intensity and

structure errors.

Figure 1 shows an example of the tracks and in-

tensities of the 1000 realizations and the NHC official

forecast for a case from Hurricane Earl during the 2010

Atlantic Hurricane season. The NHC official forecast

for this case did not make landfall in North Carolina, but

several of the realizations did. The impact of the land

correction can be seen since most of the realizations that

did cross land in North Carolina (to the left of the NHC

forecast) have lower intensities than those of the official

forecast and the realizations to the right of the NHC

track.

Once the 1000 realizations are generated, the proba-

bilities of 34-, 50-, or 64-kt winds at any given point

are determined simply by counting the number of re-

alizations where that point came within the area of

34-, 50-, or 64-kt winds during the time period of interest.

Cumulative (0–6 h, 0–12 h, . . .) and incremental (0–6 h,

6–12 h, . . .) probabilities are provided out to 120 h. For

some National Weather Service Weather Forecast Of-

fice (WFO) applications, probabilities in 12-h increments

are needed. These can be calculated from the 6-h cumu-

lative and incremental probabilities as described in D09.

The operational MC model was run in 2006–08 with no

changes other than an update of the track and intensity

error distributions at the beginning of each year to

FIG. 1. The tracks of the 1000 realizations in the MC model for

the forecast beginning at 0000 UTC 1 Sep 2010 for Hurricane Earl.

The NHC official forecast is indicated by the thick line near the

center of the 1000 realizations and the points on that track are at

12-h intervals. The intensities of the NHC official forecast and the

realizations are indicated by the colors.
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include cases from the previous 5 yr. When data for

a new year are added to the error distributions, the data

from the oldest year are removed so the error distribu-

tions always include the most recent 5 yr. In 2009 a code

optimization was applied, in addition to updating the

error statistics.

In 2010, two other changes weremade to themodel. In

the original model the underlying time step for the cal-

culation was 2 h. However, for very small or very fast-

moving storms, this time step was too large, making the

probabilities unrealistically noisy when plotted as a

function of latitude and longitude. For this reason, the

time step was decreased to 1 h.

Amore significantmodification to the 2010MCmodel

was the inclusion of track error distributions stratified by

the GPCE values. This version is described in the next

section and was also run in 2011. The probability dis-

tributions were also updated to include the previous 5 yr

for the 2011 season. However, due to difficulties asso-

ciated with computer transitions and a small coding er-

ror identified during the first 2011 East Pacific cyclone

(Adrian), the 2010 version was run in all basins in 2011

starting with the second East Pacific cyclone (Beatriz).

The error distributions for the 2011 version are very

similar to those from 2010, so this delay in updating the

distributions was not a serious problem. The error dis-

tributions were updated for 2012.

A few other minor model changes have been imple-

mented since 2007. An examination of the intensities for

the realizations over land showed that the random per-

turbations sometimes resulted in maximum winds that

were too high. A bias correction was implemented in

2009 that prevents the intensity in a realization from

exceeding the observed maximum wind as a function

of the distance inland, developed from a large sample of

U.S. landfalling Atlantic storms (1967–2007). For ex-

ample, for cyclones that are 500 km inland, the highest

observed maximum wind was 40 kt, so the intensities in

a realization cannot exceed that value when they are

500 km inland. In 2012 an improved method for esti-

mating the inner radii of 34-, 50-, and 64-kt winds was

added. As described in D09, the probabilities are de-

termined by counting the number of realizations at a

point that come between the inner (inside the radius of

maximumwind) and outer wind radii for each threshold.

The inner and outer radii are azimuthally interpolated

to each grid point from values along four radial direc-

tions. However, for cases where the maximum wind is

close to the wind threshold of interest, the inner radii at

some of the four azimuths were zero, resulting in in-

terpolated radii values that are too small. The new azi-

muthal interpolation method uses extrapolation from

the nearest nonzero value rather than interpolation in

the cases between nonzero and zero radii values. Also

in 2009, a check was implemented tomake sure the track

error changes over 12-h intervals (e.g., the difference

between the track error at 24 h and the track error at

12 h) from the random sampling never exceed the

maximum change in the original official forecast track

error distributions.

3. Inclusion of track error uncertainty

As described above, the tracks for the 1000 re-

alizations are determined by randomly sampling from

the previous 5 yr of operational track forecast errors.

These error distributions are basin wide (Atlantic, East

Pacific, or West Pacific), and so do not contain any in-

formation about a specific forecast case. Goerss (2007)

developed a parameter called GPCE that estimates the

track error of a consensus forecast based on the spread

of the forecast tracks in the models that contributed to

the consensus. The GPCE parameter is available in real

time for all the basins where the MC model is run, and

was used to provide forecast-specific information in the

probability estimates.

When GPCE was first developed, the consensus

model on which it was based, ‘‘CONU’’, included track

forecasts from three global models and two regional

models: the National Centers for Environmental Pre-

diction (NCEP) Global Forecasting System (GFS),

the Met Office global model (UKMet), the U.S. Navy

Operational Global Atmospheric Prediction System

(NOGAPS), the NCEP version of the regional coupled

Geophysical Fluid Dynamics Laboratory (GFDL) hur-

ricane model, and a version of the GFDL model run by

theU.S. Navy (GFDN). Because none of thesemodels is

available by the time the forecast is issued, CONU uses

the runs from the previous forecast cycle adjusted so that

the initial position matches the position of the tropical

cyclone at the beginning of the forecast period (these

adjusted models are sometimes called the interpolated

or early models). GPCE parameters for each forecast

are available back to 2004, although themodels included

in the consensus on which GPCE is based have changed

over the past few years (e.g., Cangialosi and Franklin

2011). The primary predictor of track error in the GPCE

parameter is the spread of the multimodel consensus

tracks. Other predictors are also included, such as the

forecasted intensity.

As described above, the GPCE parameter was de-

veloped to provide an uncertainty measure of a dy-

namical model consensus track forecast. However, an

analysis by Hauke (2006) showed that GPCE also pro-

vides uncertainty information about the NHC official

track forecast, and suggested that it could be used to
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improve the MC model. To confirm those results, the

5-yr samples of official forecast track errors for the

three basins were divided into terciles based on the GPCE

values. It turned out that there was a very consistent

relationship between the GPCE values and the spread

of the along- and across-track official forecast error

distributions. Figure 2 shows an example for the 72-h

Atlantic across-track errors from 2005 to 2009. The

spread of the error distributions increases for each

GPCE category, so that the track spread increases

when the errors are sampled from the distributions with

successively higher GPCE terciles. As a further test,

the standard deviations of the across- and along-track

errors distributions at 12–120 h were calculated for

each tercile. These results (not shown) indicate that the

standard deviations of both the across- and along-track

errors increased monotonically with the GPCE tercile

at nearly every forecast period in every basin, providing

further confirmation that the GPCE parameter can

be used to provide uncertainty estimates of the official

track forecasts.

For the real-time MC model forecasts, the GPCE

value at each forecast time is provided as model input.

The corresponding tercile at each forecast time is then

determined from the GPCE thresholds used to stratify

the track errors, based on the previous 5-yr sample. The

MC model then samples from the appropriate error

distributions. It is fairly common for the GPCE category

to change during the forecast period. For example, the

value could be in the lower category for 12–48 h but then

switch to the middle or upper category for the rest of the

forecast. This does not create a problem in the simula-

tions, however, because the method used to include

serial correlation eliminates abrupt track changes that

might result from suddenly sampling from a broader or

narrower error distribution. Also, in practice, the GPCE

categories vary fairly smoothly during the 120-h forecast

period.

The impact of the GPCE input depends on the GPCE

category. For cases where the GPCE values are in the

middle tercile, the resulting probabilities are not much

different than the version without the GPCE input.

When the GPCE values are mostly in the upper (lower)

tercile, the probabilities tend to decrease (increase)

close to the official forecast track, but increase (de-

crease) away from that track. Figure 3 shows an example

of the impact of the GPCE input on the 120-h cumula-

tive probabilities for a case fromHurricane Gustav from

the 2008 season. In this case, the GPCE values were

nearly all in the lower tercile, with a few in the middle

tercile near the end of the forecast. Figure 3 shows the

cumulative probabilities with GPCE minus those with-

out GPCE. The probabilities of 50-kt winds increase by

up to about 10% close to the NHC track, and decrease

by up to about 7% away from the track, resulting in

a distribution more tightly clustered about the official

forecast track.

Several tests of the version of the MC model with the

error distributions stratified by the GPCE parameter

were performed before that version was made opera-

tional in 2010. Postseason reruns of theGPCE version of

the MC model were made for 2008 Atlantic storms

within 1000 km of the U.S. coast and compared with the

operational version. The Brier score and threat score

(see section 4 below for details on these metrics) were

used to compare the two versions of the model. Results

FIG. 2. Along-track error distributions for the 72-h Atlantic forecasts from NHC for 2005–09,

stratified by the 72-h GPCE values.
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showed that the inclusion of GPCE improved the veri-

fication at the majority of time periods through 120 h. A

more comprehensive test was performed in 2009, where

the GPCE version was run in parallel for all cyclones in

all three basins. Verification results showed improve-

ments in the threat scores at all time periods in all three

basins for all wind radii. The improvements were as high

as 15%, with the largest in the Atlantic, and the smallest

in the East Pacific. The Brier score was also improved

for all forecast periods in the Atlantic and at most time

periods in the East and West Pacific. Based on these

results, NHC made the GPCE version operational be-

ginning in 2010. An evaluation of the impact of GPCE

on the operational runs of the MC model for the 2010

and 2011 seasons is described in section 4.

4. MC model verification

In this section the operational MC model probability

forecasts are evaluated. D09 evaluated the forecasts for

the years 2006 and 2007. Here, we will follow the same

methodology, but concentrate our analysis on the years

2008–11, producing similar graphics to those discussed

in D09 so that direct comparisons can more easily be

made. It should be noted that only the 2010–11 models

included the GPCE input as described in section 3.

a. Evaluation methodology

The MC model verification methodology is described

in detail in section 4a of D09. Basically, the 6-h cumu-

lative and incremental probabilities produced opera-

tionally on a 0.58 latitude–longitude grid are verified

against the NHC, CPHC, and JTWC best-track data.

The best-track positions and wind radii are used to

create verification grids, where the probabilities at each

point are assigned to be 1 (0) if the wind speed of inter-

est did (did not) occur within the time period of the

forecast. The entire best track is used for this purpose,

including the tropical, subtropical, and extratropical stages

of the cyclones. A bias correction is applied to the best-

track wind radii to account for the fact that they represent

the maximum in each quadrant (see D09 for details). The

FIG. 3. The difference in the 0–120-h cumulative probability of 50-kt winds for theMCmodel

run with and without the GPCE input for Hurricane Gustav initialized at 1200 UTC 30 Aug

2008. In this case, the GPCE values were nearly all in the lower tercile. Positive (negative)

values indicate that the probabilities were higher (lower) with the GPCE input.
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probabilities in the three basins are verified individually.

A verification of the combined basin forecasts is also

provided.

All operational MC model runs from 2008 to 2011

were included in the verification. Although the three

basins are verified separately, when multiple TCs are

present at the same time, sometimes contributions from

East Pacific storms appear in the Atlantic domain, and

vice versa. Therefore, it was necessary to include every

forecast period that had anAtlantic or East Pacific TC in

the verification samples for those two basins. There was

no overlap with the West Pacific domain, so those were

verified only for those times with a TC in that basin.

With these conditions, the Atlantic and East Pacific

samples include 1595 forecast cases and theWest Pacific

sample includes 1988 cases. The combined basin sample

includes 2278 cases.

As described above, the 12-h probabilities are used in

some WFO applications, but most of the verification

results in this section are for the 6-h values. This is not

a problem for the cumulative values because the 12-h

values are a subset of the 6-h values. For the incremental

probabilities, the 12-h values (not shown) are generally

a little smoother than the 6-h values and usually lie be-

tween the verification curves for the 6-h incremental and

cumulative probabilities.

Hamill (1999) describes statistical significance testing

for probabilistic forecasts. One of the difficulties is the

estimation of the number of degrees of freedom. For

example, the Atlantic basin sample described above

contains 1595MC model runs. The Atlantic model grid

includes 21 681 probability values at each forecast time,

so more than 30 million values are included in the ver-

ification statistics for each wind threshold. However,

these are not all independent. Hamill (1999) indicates

that a conservative method for estimating the degrees

of freedom is to assign one degree of freedom per model

field. That method is used in the significance testing

described below. A common metric for evaluating prob-

abilistic forecasts is the Brier score, which is the aver-

age of the squared difference between the probabilistic

forecast and the observed value, where the observed

value is 1 if the event occurred and 0 if it did not. A

perfect forecast would have a Brier score of zero. Brier

scores by themselves are somewhat difficult to inter-

pret, especially for cases like the MC model where the

probabilities are zero over large portions of the domain.

The utility of Brier scores is enhanced when they are

compared with Brier scores from a reference forecast,

such as a simple climatological probability forecast.

Then, the percent improvement over the Brier score of

the reference model can be calculated to give a Brier

skill score (BSS). Several different reference models are

used in the evaluation results below. The use of the Brier

score from a reference forecast also provides the basis

for the statistical significance testing. Hamill (1999)

showed that the simple paired t test is appropriate for

comparing Brier scores between two models. In the com-

parisons described below, a Brier score difference is con-

sidered statistically significant if the null hypothesis that

there was no difference between the Brier score from the

MC model and the reference model could be rejected at

the 95% level.

b. Evaluation results

The purpose of verification is to answer specific

questions about the forecasts. To determine the gross

calibration of the model, the multiplicative biases (here-

after referred to as bias) are calculated [using Eq. (9)

of D09] as the ratio of the sum of all the probabilities

for a given location and time interval to the actual

number of events that occurred. If the bias is less than

(greater than) one, then the forecast probabilities are

too small (large), on average for that forecast period.

The biases are shown in Fig. 4 as a function of forecast

lead time for the Atlantic (18–508N, 1108–18W), the East

Pacific (18–408N, 1808–758W), theWest Pacific (18–508N,

1008E–1808), and the entire domain (combined; 18–608N,

1008E–18W).

Figure 4 shows that the cumulative probabilities have

relatively small biases for the entire domain. For the

Atlantic, the 34- and 50-kt cumulative probabilities have

very small biases, with somewhat of a high bias for the

64-kt probabilities. Positive biases are evident for all

almost all radii and times in the East Pacific, with low

biases in theWest Pacific. The biases for the incremental

probabilities tend to be higher than those for the cumu-

lative probabilities, especially for the 34-kt probabilities

in the East Pacific. These results are fairly similar to

those presented inD09 with a high bias in the East Pacific,

although themagnitude of the low bias in theWest Pacific

is a little larger for the more recent sample in Fig. 4.

Nonetheless, the biases of the combined domain in

Fig. 4 show good gross calibration, as was also seen in

D09 for the 2006–07 sample.

The biases in Fig. 4 at the initial time can only be

caused by biases in the operational intensity and radii

estimates relative to the final best-track values. Verifi-

cation of the official intensity forecasts showed that at

t 5 0, the Atlantic and East Pacific intensities biases

were near zero, but the West Pacific biases were nega-

tive, consistent with the results in Fig. 4. At the later

forecast times, the Atlantic and East Pacific official in-

tensity forecasts had a high bias, again consistent with

Fig. 4. The magnitudes of the Atlantic and East Pacific

official intensity forecast biases were generally less than
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about 5%, which is smaller than the biases in the prob-

abilities seen in Fig. 4 at the longer forecast periods.

However, the intensity biases are amplified by the MC

model. For those cases with intensities right at the wind

threshold of interest, a 1-kt increase in intensity in a re-

alization would increase the corresponding wind radii

from zero to a climatological value from the radii-CLIPER

model.

For theWest Pacific, the intensity biases of the official

forecasts were small out to about 36 h and became

positive beyond 36 h. Although the West Pacific biases

in Fig. 4 increase slightly with time, they still remain

FIG. 4. The multiplicative biases associated with the 2008–11MC model verification in the

North Atlantic (18–508N, 1108–18W), East Pacific (18–408N, 1808–758W),West Pacific (18–508N,

1008E–1808), and the combined multibasin domain (18–608N, 1008E–18W) are shown in the

panels starting from the top, respectively. Biases for the cumulative probabilities are given by

solid lines and for the incremental probabilities they are given by dashed lines. Blue, red, and

green lines correspond to the biases associated with the 34-, 50-, and 64-kt wind probabilities,

respectively.
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negative, so the behavior cannot be fully explained by

the intensity biases of the official forecasts. Another

source of bias during the forecast period is the radii-

CLIPER model. Verification results showed that the

radii-CLIPER model did have a low bias for the West

Pacific for the 2008–11 sample, which helps to explain

the low bias during the forecast period, despite a high

bias in the official intensity forecasts. The radii-CLIPER

model is also contributing to the high biases in the East

Pacific for the longer forecast periods, since it did have

a slight high bias for the 34-kt wind radii forecasts.

To determine whether the MC model forecasts have

skill relative to the deterministic forecast, the BSS was

computed using the deterministic forecast as the skill

reference. A probability for the deterministic forecast is

set to either 1 or 0, depending on whether that grid point

came within the forecast radii for each wind threshold.

Because the operational wind radii forecasts only extend

to 72 h for 34 and 50 kt and to 36 h for 64 kt, the wind

radii-CLIPER model was used to extend the official

radii forecasts out to 120 h. The Brier score was calcu-

lated from the MC model probabilities and from the

deterministic forecasts converted into a binary proba-

bility, as described above. A perfect Brier score is zero,

so skill is measured by the percent reduction in the MC

model Brier score relative to the deterministic forecast

Brier score, where BSSs . 0 indicate skill. The results

of this comparison (Fig. 5) depict a favorable interpre-

tation of the MC model. The MC model forecasts are

superior (BSS. 0) to the deterministic forecasts beyond

6 h in all regions and for all wind thresholds except the

West Pacific, where skill is evident beyond 24 h. The skill

generally increases with time for both the cumulative

and incremental probabilities. This is because the de-

terministic forecast (converted to a binary probability)

is a very unreliable measure of the uncertainty at the

longer time periods. The paired t test showed that the

improvement of the MC model over the deterministic

forecast was statistically significant at every forecast

time for the Atlantic and East Pacific, as well as all

forecast times after 36 h for the West Pacific.

The next question addressed in the verification con-

cerns the calibration of the MC model forecasts. A

common way of assessing how well a probabilistic

forecast is calibrated is through the use of reliability

diagrams (sometimes referred to as calibration func-

tions) and refinement distributions. The former display

the forecast probabilities as a function of observed fre-

quency and the latter provide the relative frequency of

various probability forecasts. Figure 6 shows the re-

liability diagrams and refinement distributions associ-

ated with the MC model forecasts for 34-, 50-, and 64-kt

winds at 36, 72, and 120 h for the combined model

domain. The model is well calibrated because the reli-

ability diagrams show nearly a perfect 1:1 correspondence

along the 458 diagonal. The refinement distributions in

Fig. 6 show that most of the forecasted probabilities are

very low (noting that y axes of the inset figures are on

a log scale) as expected due to the very large domain of

the gridded product. However, the probability forecasts

between about 0.25 and 0.95 are fairly uniformly dis-

tributed, indicating that the MC model can produce

high probability predictions. Furthermore, Fig. 6 is di-

rectly comparable to Fig. 10 in D09 and generally shows

that biases found in 2006–07 have lessened to some

degree in the 2008–11 samples. This improvement is

probably due to the larger sample sizes in the current

verification, and to the improvements made to the

model since 2007.

For real-life mitigation activities it is usually necessary

to make a yes–no decision. For this type of application,

a probability threshold is determined based on risk and

lead time analysis, and an action would be triggered

when the threshold was exceeded at a given location for

the lead time when it was still possible to complete the

action. To provide verification metrics for these appli-

cations, a probability threshold was specified and used to

divide a yes from a no event at each grid point for each

lead time and wind speed threshold. Two by two con-

tingency tables were then generated, which contain

counts of the number of cases when the event (the oc-

currence of 34-, 50-, or 64-kt winds during the time in-

terval of interest) was forecast to occur and did occur,

was forecast to occur but did not occur, was not forecast

to occur but did occur, and was forecast not to occur and

did not occur. These tables were generated for a range of

threshold probabilities from 0% to 100% with an in-

crement of 1%. Many forecast metrics can be calculated

from these contingency tables (Wilks 2006). In D09,

threat scores and relative operating characteristic (ROC)

skill scores, which provide a measure of how well the

MC model discriminates events from nonevents, were

calculated. While not shown for succinctness, ROC

scores for the 2008–11 samples showed substantial im-

provements when compared to those of 2006–07, par-

ticularly for the incremental probabilities.

The threat score (TS) can be interpreted as the ratio of

the intersection of the area where an event was pre-

dicted to occur and the area where an event did occur to

the union of those two areas. An advantage of the TS

compared to the ROC score for the MC model verifi-

cation is that the TS does not consider the number of

correct nonevents (the event was not forecast to occur

and did not occur). The number of nonevents is very

large when the sample includes the entire forecast do-

main and can inflate the verification statistics. The TS
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was calculated for each probability threshold from 0%

to 100%. For simplicity, only those thresholds that

maximized the TS are examined further.

Figure 7 shows the maximum TSs associated with the

cumulative and incremental 34-, 50-, and 64-kt wind

probabilities and Fig. 8 shows the threshold probabili-

ties that maximize the TSs. The results in Figs. 7 and 8

for the 2008–11 sample generally show smoother tem-

poral transitions, higher TSs, and slightly higher thresh-

old probabilities overall, compared with the 2006–07

FIG. 5. The BSSs associated with the 2008–11MC model verification in which the de-

terministic forecast is used as the reference for the North Atlantic (18–508N, 1108–18W), East

Pacific (18–408N, 1808–758W), West Pacific (18–508N, 1008E–1808), and the combined multi-

basin domain (18–608N, 1008E–18W) are shown in the panels starting from the top, respectively.

Solid (dashed) lines indicate cumulative (incremental) probabilities. Blue, red, and green lines

are for 34-, 50-, and 64-kt wind probabilities, respectively.
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sample from Figs. 11 and 12 inD09. This is not surprising

given the continued maturation and improvements of

the MC model, including the implementation of the

GPCE version in 2010. It should be noted that the

threshold probabilities in Fig. 8 provide a reasonable

basis for a yes–no decision in cases where the cost of an

incorrect ‘‘no’’ forecast is similar to that of an incorrect

‘‘yes’’ forecast, since they maximize the overlap of pre-

dicted and observed areas of occurrence. However, as

described above, the real-world application of proba-

bility thresholds should account for factors such as loss

and risk tolerance. For example, in high-cost or low-risk

tolerance situations, lower-probability thresholds for

yes–no decisions would likely be more appropriate than

those in Fig. 8.

To get a better idea of the impact of the GPCE on the

MC model performance, the forecasts for 2010 and

2011 for the Atlantic basin were rerun without the

GPCE input. The sample included 820 forecast cases.

This was straightforward because the error distribu-

tions for the full 5-yr samples are still calculated for use

as a backup in case the GPCE parameter was not

available in real time. This almost never occurred in

real time so the reruns without theGPCE input provide

a good benchmark for evaluating the impact on the

real-time runs. The percent reduction in the Brier score

with the GPCE input was calculated for the cumulative

and incremental 34-, 50-, and 64-kt probabilities and

the results showed an improvement of 1%–4% at all

times from 24 to 120 h for all wind radii, with larger

improvements for the incremental probabilities. There

was a very slight degradation at 12 h for the 50- and

64-kt thresholds. The optimal TSs were also calculated

for the no GPCE version of the model. Figure 9 shows

the increase in the optimal TS for the GPCE version.

Figure 9 shows that the TS improved at all forecast

times for all wind radii for both the incremental and

cumulative probabilities, confirming that the GPCE

input is improving the performance of the operational

MC model.

The statistical significance of the improvements of the

GPCE over non-GPCE version of the MC model was

evaluated using the paired t test described above. The

improvements were significant at all forecast times for

the cumulative and incremental 34-kt probabilities. For

the 50-kt probabilities, the improvements in the in-

cremental (cumulative) values were significant at 36–

120 h (60–120 h). For the 64-kt incremental (cumulative)

probabilities the improvements were significant at 24–

120 h (48–120 h).

In summary, the verification results indicate that the

MC model forecasts are skillful compared to the deter-

ministic forecasts provided by NHC, CPHC, and JTWC,

FIG. 6. Reliability diagrams and embedded refinement distribu-

tions for (top) 36, (middle) 72, and (bottom) 120 h associated with

34- (blue), 50- (red), and 64-kt (green) probability forecasts over

the entire MC model domain (18–608N, 1008E–18W).
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are well fairly well calibrated to observed frequencies

based on best-track information, and show skill in dis-

criminating yes–no events based on the TS. Further-

more, the verification metrics indicate that the MC

model continues to be a stable tool for providing tropical

cyclone probability estimates for decision making. The

verification shows that the probabilities do have some

overall low and high biases for individual basins that are

related to biases in the official intensity forecasts and the

radii-CLIPER model, especially for the West Pacific,

but are still much better than using the deterministic

forecast as a binary probability. The GPCE version of

the MC model shows significant improvement over the

version without the GPCE input.

FIG. 7. The maximum conditional TSs (3100) associated with the 2008–11MC model veri-

fication for the North Atlantic (18–508N, 1108–18W), East Pacific (18–408N, 1808–758W), West

Pacific (18–508N, 1008E–1808), and the combined multibasin domain (18–608N, 1008E–18W) are

shown in the panels starting from the top, respectively. Solid (dashed) lines indicate cumulative

(incremental) probabilities. Blue, red, and green lines are for 34-, 50-, and 64-kt wind proba-

bilities, respectively.
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5. The wind speed probability table

As described in the introduction, the operational

WSPT product was modified in 2008 to utilize input

from the MC model. This product is available for the

Atlantic and East Pacific and estimates the probability

that the cyclone intensity will be within each of nine

categories (dissipated, tropical depression, tropical

storm, hurricane, and the five Saffir–Simpson hurricane

wind scale categories) at several forecast lead timed out

to 5 days. The probability of the combined hurricane

categories is also provided. The probabilities are calcu-

lated from the 1000 intensity realizations generated

by the MC model. The previous version of the product

FIG. 8. The probability thresholds associated with the maximum conditional TSs shown in

Fig. 7 and based on the 2008–11MC model verification for the North Atlantic (18–508N, 1108–

18W), East Pacific (18–408N, 1808–758W), West Pacific (18–508N, 1008E–1808), and the com-

bined multibasin domain (18–608N, 1008E–18W) are shown in the panels starting from the top,

respectively. Solid (dashed) lines indicate cumulative (incremental) probabilities. Blue, red,

and green lines are for 34-, 50-, and 64-kt wind probabilities, respectively.
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estimated the probabilities from a fixed 10-yr period

(1986–95), which had not been updated in more than

10 yr, and only included information out to 72 h. The

generation of the WSPT from the MC model provided

increased consistency between NHC probabilistic prod-

ucts, and ensured that the underlying error distributions

were updated each year.

Figure 10 shows an example of the WSPT product for

Tropical Storm Igor just before it became a hurricane.

As described in D09, the MC model applies a bias cor-

rection to the official forecast that is a function of the

forecast wind speed. For this reason, the highest prob-

abilities are not always in the same category as the of-

ficial forecasted intensity, which is shown along the

bottom of the table. For example, at 72 h in Fig. 10, the

NHC official forecasted intensity was 100mi h21 (cate-

gory 2, 1mi h21
5 0.447m s21), but the highest proba-

bility (37%) at 72 h was for a category 1 storm. The

overland correction can also result in the highest prob-

ability occurring in a different category from that of the

official forecast because some of the realizations make

landfall at times when the official forecast does not, and

vice versa.

Verification of the WSPT for all 2008–11 Atlantic and

East Pacific tropical cyclones was performed using re-

liability diagrams. Forecast probabilities at each lead time

(e.g., 12h, 24h, etc.) for each intensity category were

cataloged. To increase the sample size, the forecast prob-

abilities were grouped into bins at 10% intervals. The

observed frequencies for each forecast probability bin,

intensity category, and lead time were computed using the

cyclone status from the final NHC best-track data.

Since the methodology for computing the intensity

probabilities does not make a distinction between tropi-

cal cyclones and other types of cyclones in the best track

(extratropical, remnant low, etc.), the verification was

performed regardless of whether or not the system was

a tropical cyclone at the verifying time, similar to the

verification of the MC model described in section 4. For

FIG. 9. The increase in theTS for the 2010–11AtlanticMCmodel

forecasts for the case when the GPCE input was included com-

pared with the runs without the GPCE input.

FIG. 10. An example of the wind speed probability table product for Advisory 11 fromAtlantic

Tropical Cyclone Igor.

JUNE 2013 DEMAR IA ET AL . 599



example, a 20-kt remnant low would be counted in the

tropical depression category, and a 50-kt extratropical

cyclone would be counted as a tropical storm for our

verification purposes. Dissipated forecasts were con-

sidered correct when a best-track point for that cyclone

was not available at the verifying time. Probabilities is-

sued with so-called special advisories were verified to

help increase the sample size.

Despite verifying all WSPT forecasts for four seasons,

the sample sizes for some forecast categories and bins

were quite small, particularly for the individual Saffir–

Simpson hurricane scale categories. For this reason, only

the results for the tropical storm and combined hurri-

cane intensity categories are discussed here. In addition,

the probabilities for 12–48 and 72–120 h were combined

in the reliability diagrams and BSS calculations. When

combined in this way, the verification sample sizes range

from 385 for the 72–120-h East Pacific hurricane cases to

2409 for the 12–48-h Atlantic tropical storm cases.

For the Atlantic, the probability forecasts of tropical

storm intensity at lead times of 12–48 h show good re-

liability, as the observed frequency steadily increases

with the forecast probability (Fig. 11, top). However, the

technique somewhat overforecasts the occurrence of

tropical storms at these lead times in the 5%–35% bins.

Above the 35% bin, the technique works well for trop-

ical storms, with the reliability curve very close to the

one-to-one line. For the longer lead times, the tropical

storm results in the top of Fig. 11 are similar to those for

the shorter lead times, although there are no cases where

the forecast probability was above 50%.

For the hurricane intensity category in the Atlantic

(Fig. 11, top), the forecasts are fairly reliable for both the

short and long lead times, with curves close to the one-

to-one line. There is some tendency for the hurricane

probabilities to be overestimated in the 5%–45% bins

and underestimated in the 55%–95% bins.

As a bulk evaluation of the Atlantic reliability curves

in Fig. 11, the average absolute value of the difference

between the forecasted and observed probability for

each bin was calculated and then the sample weighted

average of the bin errors was calculated. For simplicity

the short- and long-term forecast cases were combined

but the calculation was performed separately for the

tropical storm and hurricane cases. This calculation is

referred to as mean absolute error (MAE) of the re-

liability diagrams, which can also be interpreted as the

sample weighted-average distance of all the points on

the reliability diagram from the one-to-one line. The

MAE of the Atlantic reliability curves was 4.4% for

tropical storms and 4.1% for the hurricanes. As a basis

for comparison, the MAE calculations were repeated,

but with the WSPT probability forecasts replaced by

the climatological probabilities of a tropical cyclone

being a tropical storm (40%) or hurricane (31%) for this

same 2008–11 sample. Results showed that the MAE of

the climatological probability forecasts was 21% for the

tropical storms and 31% for hurricanes. The MAE of

the WSPT is about a factor of 5 smaller than those using

a climatological probability forecast for tropical storms,

and a factor of 8 smaller for hurricanes. Thus, by this

measure, the WSPT has considerable skill relative to

climatology.

For the East Pacific (Fig. 11, bottom) the WSPT

forecasts are less reliable than those in the Atlantic, al-

though there is still a general tendency for the observed

frequencies to increase with the forecasted probabilities.

The exceptions are the tropical storm probabilities in

the 5%–25% bins, the 95% bin for the longer-range

hurricane probabilities, and the 65% bin for the long-

range tropical storm probabilities. This result indicates

that the WSPT product may be less useful for the East

Pacific, especially for tropical storms with low probability

FIG. 11. Reliability diagram of 2008–11 tropical storm forecasts

at lead times of 12–48h (gray solid line), tropical storm forecasts

at lead times of 72–120 h (dashed gray line), hurricane forecasts at

lead times of 12–48 h (solid black line), and hurricane forecasts at

lead times of 72–120 h (dashed black line) for the (top)Atlantic and

(bottom) East Pacific. The forecast probability is shown along the x

axis, and the observed frequency is shown along the y axis.
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forecasts. The MAEs of the East Pacific reliability

curves were 10.7% for tropical storms and 3.6% for

hurricanes. Using climatological probabilities, the MAEs

were 20% for tropical storms and 26% for hurricanes.

Thus, although the reliability for East Pacific tropical

storms is less than for the Atlantic, the MAEs are still

a factor of 2 smaller than those from a climatological

probability forecast for tropical storms and a factor of 7

smaller for hurricanes.

TheWSPT product is designed to provide uncertainty

information to complement the deterministic official

intensity forecasts. Similar to the MCmodel verification

results in section 4, the skill of the WSPT information

can be determined by comparing it with the determin-

istic forecast converted to a binary probability in each

category (0%–100%). For this purpose, the BSS was

computed as the percent reduction of the Brier score

from the WSPT relative to that for the NHC official

forecast in probabilistic form. Figure 12 shows that for the

Atlantic and East Pacific, the WSPT have skill at all lead

times for both the tropical storm and hurricane cate-

gories. The tropical storm probabilities have greater skill

than the hurricane probabilities at most forecast times.

The statistical significance of the WSPT skill relative

to the deterministic forecast (the BSS values in Fig. 12)

was evaluated using the paired t test. Results showed

that skill was significant at the 95% level at every fore-

cast time from 12 to 120 h in both basins.

In summary, the WSPT product is fairly reliable, es-

pecially for the Atlantic basin. In both the Atlantic and

East Pacific, the probability estimates for the tropical

storm and hurricane categories are accurate to within

4%–11% and have considerable skill relative to clima-

tological probability forecasts. Themain limitation is for

low-probability forecasts of East Pacific tropical storms.

Nevertheless, the WSPT probabilities improve signifi-

cantly over determining the intensity category directly

from the official intensity forecasts, as indicated by the

BSS results shown in Fig. 12.

6. Concluding remarks

Modifications to the operational MC wind speed

probability model since 2007 were described. These

included updating the underlying error distributions

prior to the start of each hurricane season, a change to

the underlying model time step, intensity bias correc-

tions for storms over land, a method for eliminating

unrealistically large track perturbations, and the in-

clusion of ensemble information through the GPCE

parameter beginning in 2010. The MC model was veri-

fied for 2008–11 using a number of standard metrics for

probabilistic forecasts. Results showed that the wind

speed probabilities add value to the deterministic fore-

casts, and are generally reliable in all three basins where

the wind speed probability model is run (Atlantic, East

Pacific, and West Pacific). To isolate the impact of the

inclusion of theGPCE input, the Atlantic forecasts from

2010 and 2011 were rerun without the GPCE input.

Results showed that the GPCE version had 1%–4%

improvements in the Brier and threat scores.

The probabilities also showed some biases, with the

largest high biases in the East Pacific and largest low

biases in the West Pacific. These biases can be ex-

plained by biases in the official intensity forecasts for

the specific time period of the verification, and to biases

in the underlying wind radii-CLIPER model. It is ex-

pected that the biases would be reduced for a large

sample, as was seen for the case where all the basins are

combined. These results also suggest that the radii-

CLIPER model should be updated to include a larger

sample of cases.

The existing operational wind speed probability table

(WSPT) product was modified in 2008 to use the in-

tensity information from the MC model. A verification

of the WSPT’s ability to distinguish between tropical

storms and hurricanes showed that it has skill in the

Atlantic and East Pacific relative to climatology and

the NHC official forecast. The reliability was generally

greater in the Atlantic than the East Pacific.

It is anticipated that theMCmodel will continue to be

run operationally for the next several years. One limi-

tation of the current version of the model is that the

horizontal grid is too coarse. As described in D09, the

wind speed probabilities are calculated on an evenly

FIG. 12. Percent reduction in Brier score from theWSPT relative

to the NHC official forecasts for Atlantic tropical storms (black

dashed line), East Pacific tropical storms (gray dashed line), At-

lantic hurricanes (black solid line), and East Pacific hurricanes

(gray solid line) for 2008–11.
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spaced 0.58 latitude–longitude grid, which is then in-

terpolated onto a 5-km grid for use in the National

Digital Forecast Database (NDFD). The probabilities

are also calculated on a specified set of points near the

coast for use in a text product. It was found that in re-

gions with large spatial gradients, the probabilities in the

text product can differ from those in the NDFD by up to

25% in an absolute sense, although the average errors

due to the interpolation were much smaller. To alleviate

this problem, plans are under way to decrease the spac-

ing of that latitude–longitude calculation grid to reduce

the interpolation errors on the finer NDFD grid, and

make the gridded product more consistent with the text

product.

The incorporation of track ensemble information

through the GPCE parameter improved the skill of the

MC model for the 2010–11 sample. This track un-

certainty information is included in a very conservative

way, where the official track errors are stratified into

terciles based on the GPCE values. As ensemble sys-

tems become more mature, it should eventually be

possible to replace the random sampling of track errors

with a set of tracks generated directly from a dynamical

ensemble modeling system. In the longer term, the in-

tensity and wind structure information could also come

from a dynamical model ensemble system. The rela-

tively simple statistically based MC model probabilities

and the validation system described in section 4 could be

used as a baseline for the transition to a dynamical en-

semble. Bias corrections might be needed to ensure

consistency with the official forecast if dynamical models

were used to generate the realizations.

As described above, the WSPT product was adapted

to use input from the MC model. This change provides

consistency between that product and those generated

from the MC model. NHC also provides a graphical

product that shows the cone of uncertainty about the

official forecast track. The size of the cone depends on

the 67th percentile of the NHC official track errors from

the previous 5 yr. In principle, the 67th percentile of the

track errors could be generated directly from the MC

model output. This would make the error cone consis-

tent with the probabilistic forecast products from the

MCmodel, similar to theWSPT. Due to the inclusion of

the GPCE parameter in the MC model, it would also

make the size of the cone a function of the ensemble

model spread, rather than a fixed size based on the

previous 5 yr of track errors. Preliminary tests of this

idea showed that the 67th percentiles from the MC

model do not exactly match those used in the probability

cone, even though both are based on the previous 5 yr of

official track forecast errors. This discrepancy is partially

due to the differing verification samples used to define

the cone (the operational product includes only the

tropical and subtropical storm stages while the MC

model includes all cases regardless of the storm classi-

fication). Another factor is the method used to include

the serial correlation of track errors in the MC model,

which introduces a slight high bias in the track error

distributions at the longer forecast intervals. Methods to

reconcile these differences are being developed, and, if

adequate solutions can be found, the NHC uncertainty

cone might also be determined from the MC model

output in the future.
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