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Abstract: Shotgun proteomics coupled with database

search software allows the identification of a large num-

ber of peptides in a single experiment. However, some

existing search algorithms, such as SEQUEST, use score

functions that are designed primarily to identify the best

peptide for a given spectrum. Consequently, when com-

paring identifications across spectra, the SEQUEST score

function Xcorr fails to discriminate accurately between

correct and incorrect peptide identifications. Several

machine learning methods have been proposed to ad-

dress the resulting classification task of distinguishing

between correct and incorrect peptide-spectrum matches

(PSMs). A recent example is Percolator, which uses

semisupervised learning and a decoy database search

strategy to learn to distinguish between correct and

incorrect PSMs identified by a database search algorithm.

The current work describes three improvements to Per-

colator. (1) Percolator’s heuristic optimization is replaced

with a clear objective function, with intuitive reasons

behind its choice. (2) Tractable nonlinear models are used

instead of linear models, leading to improved accuracy

over the original Percolator. (3) A method, Q-ranker, for

directly optimizing the number of identified spectra at a

specified q value is proposed, which achieves further

gains.
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1. Introduction

A shotgun proteomics mass spectrometry experiment pro-

duces, for a given biological sample, a collection of spectra,

each of which may be mapped back to its generating peptide

using either de novo or database search techniques (reviewed

in refs 25 and 26). Critical to any database search procedure is

the score function that evaluates the quality of the match

between an observed spectrum and a candidate peptide. This

function plays two complementary roles. First, the function

ranks candidate peptides relative to a single spectrum, produc-

ing a single, top-scoring peptide-spectrum match (PSM) for

each spectrum. Second, the function ranks the PSMs from

different spectra with respect to one another. This latter

absolute ranking task is intrinsically more difficult than the

relative ranking task. A perfect absolute ranking function is by

definition also a perfect relative ranking function, but the

converse is not true because PSM scores may not be well-

calibrated from one spectrum to the next.

A variety of approaches have been developed to learn PSM

scoring functions from real data. Typically, the input to these

PSM postprocessing methods is the relative score, as well as

properties of the spectrum, the peptide, and features that

represent the quality of the PSM. PeptideProphet,19 for ex-

ample, uses four statistics computed by the SEQUEST database

search algorithm as input to a linear discriminant analysis

classifier. The system is trained from labeled correct and

incorrect PSMs derived from a purified sample of known

proteins. Other approaches use alternative feature representa-

tions or classification algorithms, such as support vector

machines (SVMs)1 or decision trees.11

One drawback to these machine learning approaches is that

they often do not generalize well across different machine

platforms, chromatography conditions, etc. Consequently,

when the experimental conditions change, a new training set

must be acquired, and this acquisition and training can be

expensive.

To combat this problem, several methods have been de-

scribed that adjust the parameters of the model with respect

to each new data set. PeptideProphet, for example, uses a fixed

linear discriminant function but couples it with a postprocessor

that maps the resulting unitless discriminant score to an

estimated probability. In the original version of PeptidePro-

phet,19 this mapping function was learned from each data set

in an unsupervised fashion (i.e., without knowing which PSMs

are correct and which are incorrect) using the expectation-

maximization (EM) algorithm.9

Subsequently, several algorithms have been described that

use semisupervised learning to adjust model parameters with
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respect to each new data set. In contrast to supervised learning,

in which the given training set is fully labeled, a semisupervised

learner is provided with a partially labeled training set. In the

context of PSM scoring, these labels are created using a decoy

database.24 Each spectrum is searched once against the real

(“target”) protein database and once against a decoy database

composed of reversed,24 shuffled,20 or Markov-chain generated

proteins.6 Matches to the target database are unlabeledsthey

may or may not be correct (we expect 50-90% are false

positives), but matches to the decoy database can be confi-

dently labeled “incorrect”.

The semisupervised version of PeptideProphet5 uses decoy

PSMs to improve the mapping from discriminant scores to

probabilities. During the EM step, PeptideProphet includes

decoy PSMs, forcing them to be labeled “incorrect”. The

resulting probabilities are significantly more accurate than

probabilities estimated in an unsupervised fashion.

The Percolator algorithm17 takes the semisupervised ap-

proach one step further. Rather than using a fixed discriminant

function and employing semisupervised learning as a postpro-

cessor, Percolator solves the entire problem in a semisupervised

fashion, learning a function that consistently ranks the decoy

PSMs below a subset of high-confidence target PSMs. Percola-

tor uses an iterative, SVM-based algorithm, initially identifying

a small set of high-scoring target PSMs, and then learning to

separate these from the decoy PSMs. The learned classifier is

applied to the entire set, and if new high-confidence PSMs are

identified, then the procedure is repeated. Critical to the

success of the algorithm is a statistical scoring procedure, based

on estimated false discovery rates,2 that prevents explosion of

the high-confidence set of PSMs.

A subsequent version of PeptideProphet10 extends that

algorithm in a similar fashion. Like Percolator, the newest

version of PeptideProphet adjusts the parameters of the dis-

criminant function to reflect specific features of the data set

and allows the algorithm to use more than one PSM for the

identification of the best scoring peptide. In addition, the

algorithm uses a measure of spectrum quality in its model.

Despite the good performance of Percolator, the algorithm

itself is somewhat heuristic; indeed, it is unclear what exactly

Percolator optimizes and whether the algorithm’s iterative

optimization process provably converges. The current work

proposes a novel, well-founded approach to this problem.

Although only some of the matches to the target database are

positive examples, we opt to treat this problem as a fully

supervised classification problem with noisy labels; that is, we

label all the target PSMs “correct” (but some of these are

mislabeled) and all the decoy PSMs “incorrect”. However, we

define a loss function that does not severely penalize examples

that are far from the decision boundary. In this way, incorrect

target PSMs do not strongly affect the learning procedure. We

show how this choice of loss is superior to more classical

choices of loss function and in the linear case how this yields

results similar to the original semisupervised Percolator algo-

rithm. An important benefit of using a fully supervised ap-

proach is that, in contrast to Percolator, the new approach

defines a clear, intuitive objective function whose minimization

is known to converge. Furthermore, the resulting classifier can

be trained with tractable nonlinear models which then signifi-

cantly improve the results of Percolator. Subsequently, we

propose a modification of our algorithm that directly optimizes

the number of PSMs relative to a user-specific statistical

confidence threshold. This ability to specify the desired con-

fidence threshold a priori is useful in practice and leads to

further improvement in the results. The new algorithm, called

Q-ranker, is implemented in Crux version 2.0, which is available

with source code at http://noble.gs.washington/proj/crux.

2. Materials and Methods

2.1. Data Sets. We used four previously described data sets

to test our algorithms.17 The first is a yeast data set containing

69 705 target PSMs and twice that number of decoy PSMs.

These data were acquired from a tryptic digest of an unfrac-

tionated yeast lysate and analyzed using a 4 h reverse-phase

separation. Throughout this work, peptides were assigned to

spectra by using SEQUEST with no enzyme specificity and with

no amino acid modifications enabled. The next two data sets

were derived from the same yeast lysate but treated by different

proteolytic enzymes: elastase and chymotrypsin. These data

sets, respectively, contain 57 860 and 60 217 target PSMs and

twice that number of decoy PSMs. The final data set was

derived from a Caenorhabditis elegans lysate proteolytically

digested by trypsin and processed analogously to the yeast data

sets.

Each PSM was represented using the 17 features listed in

Table 1. Note that, originally, Percolator used 20 features. In

this work, we removed three features that exploit protein-level

information because of the difficulty of accurately validating,

via decoy database search, methods that use this type of

information. We also defined 20 additional features for each

peptide, also defined in Table 1, corresponding to the counts

of amino acids in the given peptide. Using these additional

features yields a feature vector of length 37.

2.2. Statistical Confidence Estimates. Throughout this work,

we use the q value28 as a statistical confidence measure

assigned to each PSM. If we specify a score threshold t and

refer to PSMs with scores better than t as accepted PSMs, then

the false discovery rate (FDR) is defined as the percentage of

accepted PSMs that are incorrect (i.e., the peptide was not

present in the mass spectrometer when the spectrum was

produced). The q value is defined as the minimal FDR threshold

at which a given PSM is accepted. Note that the q value is a

general statistical confidence metric that is unrelated to the

Qscore method for evaluating SEQUEST results.24

We calculate q values by using decoy PSMs,18 derived by

searching each spectrum against a database of shuffled protein

sequences. Denote the scores of target PSMs f1,f2, ..., fmf
and

the scores of decoy PSMs d1,d2, ..., dmd
. For a given score

threshold t, the number of accepted PSMs (positives) is P(t) )

|(fi > t;i ) 1, ..., mf)|. The estimated number of false positives

among the positives is given by E(FP(t)) ) π0(mf)/(md)|(di > t;i

) 1, ..., md)|, where π0 is the estimated proportion of target

PSMs that are incorrect. In this work, as previously,17 we use a

fixed π0 ) 0.9. We can then estimate the FDR at a given

threshold t as

The q value assigned to score fi is then

E{FDR(t)} )

π0

mf

md

|{di > t;i ) 1, ..., md}|

|{fi > t;i ) 1, ..., mf}|

q(fi) ) min
fiefi

E{FDR(fi)}
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3. Results

3.1. Supervised Algorithm for Target-Decoy Discrimina-

tion. Given a set of examples (PSMs) (x1, ..., xn) (where the bold

face denotes a vector) and corresponding labels (y1, ..., yn), the

goal is to choose a discriminant function f(x), such that

To find f(x), we first choose a parametrized family of functions

and then search for the function in the family that best fits the

empirical data. The quality of the fit is measured using a loss

function L(f(x),y) which quantifies the discrepancy between the

values of f(x) and the true labels y.

Initially, we consider the family of functions that are

implemented by a linear model:

The possible choices of weights define the members of the

family of functions.

To find the function that best minimizes the loss, we choose

to use gradient descent, so the loss function itself must be

differentiable. This requirement prevents us from simply

counting the number of mistakes (mislabeled examples), which

is called the zero-one loss. Typical differentiable loss functions

include the squared loss, often used in neural networks,22 the

hinge loss, which is used in support vector machines,8 and the

sigmoid loss. These loss functions are illustrated in Figure 1.

In general, choosing an appropriate loss function is critical

to achieving good performance. Insight into choosing the loss

function comes from the problem domain. In the current

setting, we can safely assume that a significant proportion of

the PSMs produced by a given search algorithm are incorrect,

either because the score function used to identify PSMs failed

to accurately identify the correct peptide or because the

spectrum corresponds to a peptide not in the given database,

to a peptide with post-translational modifications, to a het-

erogeneous population of peptides, or to nonpeptide contami-

nants. Therefore, in this scenario, a desirable loss function will

be robust with respect to the multiple false positives in the data.

In other words, a desirable loss function will not strongly

penalize misclassified examples if they are too far away from

the separating hyperplane. Considering the loss functions in

Figure 1, the sigmoid loss is the only function with the desired

property: when yif(x) < -5, the gradient is close to zero. The

squared loss, on the other hand, has a larger gradient for

misclassified examples far from the boundary than for examples

close to the boundary, whereas the hinge loss penalizes

examples linearly (it has a constant gradient if an example is

Table 1. Features Used to Represent PSMsa

1 XCorr cross correlation between calculated and observed spectra
2 ∆Cn fractional difference between current and second best XCorr
3 ∆Cn

L fractional difference between current and fifth best XCorr
4 Sp preliminary score for peptide versus predicted fragment ion

values
5 ln(rSp) the natural logarithm of the rank of the match based on the Sp

score
8 mass the observed mass [M + H]+

6 ∆M the difference in calculated and observed mass
7 abs(∆M) the absolute value of the difference in calculated and observed

mass
9 ionFrac the fraction of matched b and y ions
10 ln(NumSp) the natural logarithm of the number of database peptides within

the specified m/z range
11 enzN Boolean: is the peptide preceded by an enzymatic (tryptic) site?
12 enzC Boolean: does the peptide have an enzymatic (tryptic)

C-terminus?
13 enzInt number of missed internal enzymatic (tryptic) sites
14 pepLen the length of the matched peptide, in residues
15-17 charge 1-3 three Boolean features indicating the charge state
18-37 A, ..., Y counts of each of the 20 amino acids

a The first 10 features are computed by SEQUEST. Features 18-37 are used in section 3.6.

Figure 1. Three types of loss function. Each panel plots the loss as a function of the difference between the true and predicted label.

The squared loss L(f(x),y) ) (f(x) - y)2 is often used in regression problems and also in classification.22 The hinge loss L(f(x),y) )

max(0,1 - yf(x)) is used as a convex approximation to the zero-one loss in support vector machines.8 The sigmoid loss L(f(x),y) )

1/exp(1 + f(x)) is perhaps less commonly used but is discussed in, for example, refs 23 and 27.

f(xi) > 0 if yi ) 1

f(xi) < 0 if yi ) -1

f(x) ) ∑
i

wixi + b
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incorrectly classified). We therefore conjecture that the sigmoid

loss function should work much better than the alternatives.

3.2. Supervised Learning Yields Performance Comparable

to Percolator. We test this conjecture by measuring the

performance of the learned scoring function using a target-

decoy search strategy. For this experiment, we use a collection

of spectra derived via microcapillary liquid chromatography

MS/MS of a yeast whole cell lysate. These spectra were searched

using SEQUEST13 against one target database and two inde-

pendently shuffled decoy databases, producing a collection of

PSMs. For a given ranking of target PSMs, we use the corre-

sponding collection of decoy PSMs to estimate q values (section

2.2). Our goal is to correctly identify as many PSMs as possible

for a given q value. Therefore, in Figure 2, we plot the number

of identified PSMs as a function of q value threshold.

To ensure a valid experiment, we split the target and decoy

PSMs into two equal parts. We train on the data set composed

of the first half of positives and negatives, and we use the

second half of the data as a testing set. The q value estimates

are derived from the test set, not the training set. This approach

is more rigorous than the methodology employed in ref 17, in

which the positive examples were used both for training and

for testing. However, the similarity between Figure 2A and B

indicates that overfitting is not occurring. Nonetheless, in

subsequent experiments, we retain a full separation of the train

and test sets.

Figure 2 compares the performance of ranking by XCorr,

Percolator, and a linear model trained using three different loss

functions. The figure shows that, for example, the Percolator

algorithm identifies 5917 PSMs at a q value threshold of 0.01.

As expected, the sigmoid loss dominates the other two loss

functions that we considered, square loss and hinge loss.

In fact, the linear model with the sigmoid loss achieves

almost identical results to the Percolator algorithm. This

concordance can be explained in the following way. Percolator

also uses a linear classifier (a linear SVM) with a hinge loss

function. However, on each iteration, only a subset of the

positive examples is used as labeled training data according to

the position of the hyperplane. The rest of the positive examples

that have a small value of yif(xi) are ignored during training.

Consequently, one can say that their gradient is zero; hence,

the hinge loss function is “cut” at a certain point so that it no

longer linearly penalizes mistakes at any distance, as shown

in Figure 3. A cut hinge loss is effectively a piece-wise linear

version of a sigmoid function. Indeed, such a cut hinge loss

has been used before and is referred to as a ramp loss.7 By

using a sigmoid loss function, we have thus developed a

method that explains the heuristic choices of the Percolator

algorithm but instead implements a direct, intuitive objective

function. Hereafter, we refer to this method as “direct clas-

sification”.

3.3. Nonlinear Families of Discriminant Functions Yield

Improved Performance. Having established that direct clas-

sification using a linear model performs as well as Percolator

on this data set, we next consider a nonlinear family of

functions by considering two-layer neural networks

Figure 2. Comparison of loss functions. Each panel plots the number of accepted PSMs for the yeast (A) training set and (B) test set

as a function of the q value threshold. Each series corresponds to one of the three loss functions shown in Figure 1, with series for

Percolator and SEQUEST included for comparison.

Figure 3. “Cutting” the hinge loss makes a sigmoid-like loss called the ramp loss. Making the hinge loss have zero gradient when z )

yif(x) < s for some chosen value s effectively makes a piece-wise linear version of a sigmoid function.

technical notes Spivak et al.
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where hk(x) is defined as tanh((wk)Tx + bk), and wk and bk index

the weight vector and threshold for the kth hidden unit.

We can choose the capacity of our nonlinear family of

discriminant functions by increasing or decreasing the number

of hidden units of our neural network. On the basis of

preliminary experiments with the yeast training data set, we

chose the first layer to have five linear hidden units. An

experimental comparison in Figure 4 shows that a nonlinear

classifier outperforms the linear model on the same data set

as before. For every q value in the plot, the nonlinear model

(the solid blue line with the label “direct classification (linear)”)

produces as many or more PSMs than its linear counterpart

(solid black line labeled “direct classification (nonlinear)”).

3.4. Q-ranker Algorithm for Optimizing Relative to a

Specified q Value. We have established that framing our

problem as a supervised classification task, utilizing nonlinear

models, yields slightly improved results compared with Per-

colator’s semisupervised approach. We now show that refor-

mulating the problem as a ranking task, rather than as a

classification task, leads to even better performance.

Generally speaking, the goal of many shotgun proteomics

experiments is to identify as many proteins as possible at a

given q value threshold. For the peptide identification problem,

this task corresponds to finding a ranking of PSMs that

maximizes the number of accepted PSMs for a specified q value

threshold. To solve this ranking problem directly, we therefore

assume that the user specifies a particular desired q value

threshold a priori. We then search for a ranking that is optimal

with respect to the given q value. A standard formulation for

solving the ranking problem is the ranking SVM,15,16 which can

be stated as follows:

subject to

This algorithm reorders the examples so that larger values of

wTx correspond to positive examples. Note that, compared to

the classification problem posed before, this formulation no

longer has a threshold b because a class label is no longer

predicted, only an ordering. The ranking formulation is equiva-

lent to optimizing the area under the receiver operating

characteristic (ROC) curve14 and hence would optimize all q

values at once. The optimization tries to satisfy every pairwise

ordering constraint. Again, as in the classification problem,

because we expect 50-90% of the positive examples are false

positives, the objective function will pay too much attention

to these examples.

However, if optimization of only a certain q value is desired,

then reordering of examples far beyond the q value threshold

point on either side of the boundary will not have an effect on

the q value of interest. Therefore, we instead focus on a subset of

examples in the vicinity of the q value cutoff and seek to reorder

the examples specifically in this region.

The proposed algorithm is thus as follows. We first find a

general discriminant f(x) using the direct classification algo-

rithm described in the previous section. We then specify a q

value to be optimized and focus sequentially on several

intervals in the data set chosen in the vicinity of the specified

q value. The selection of intervals is heuristic and in our case

involves defining a set Q̂ of q value thresholds 0 to 0.1 with a

step size of 0.01 and iterating over these steps. The interval ǫ

is set to equal twice the number of peptides up to the threshold

point. In the course of training, we record the best result for

the specified q value after each epoch. A pseudocode descrip-

tion of the direct ranking algorithm for specified q values (Q-

ranker) is given in Algorithm 1.

Q-ranker can be extended trivially to search for optimal

solutions to several q values at once by recording the best

network for each of the specified q values after each epoch.

In all the experimental runs presented below, the set Q̂ of

threshold q values also served as a set of specified q values.

In practice, because Q-ranker focuses on a subset of the

training set, we found that use of regularization techniques to

control for the model complexity improves our results. In this

work, we use the standard weight decay procedure, which

optimizes the error function:

where wi are all the weights of the discriminant function f(x)

that we are attempting to learn, µ is a weight decay parameter,

and E is the original error function. Before training the network,

we perform a three-fold cross-validation procedure to choose

the learning rate and µ.

Q-ranker generalizes the ranking SVM formulation in two

ways: (i) this formulation is nonlinear (but does not use

kernels); and (ii) if ǫ is very large, then the algorithms are

equivalent, but as ǫ is reduced, our algorithm begins to focus

on given q values.

Interestingly, choosing examples from a certain region of

the data set is also roughly equivalent to placing the region

of the sigmoid with high gradient over the region of interest

about the threshold q value. Because examples further than

ǫ are not picked, this approach is equivalent to making a

loss function which has gradient zero in those regions. This

means that we are able to replace the sigmoid loss function

used for training the general neural net with an even more

intuitive choice of loss. In particular, here we use a linear

f(x) ) ∑
i

wihi(x) + b

min ||w||
2 (1)

wTxi g wTxj + 1 if yi ) 1 and yj ) -1 (2) E′ ) E + µ
1
2 ∑

i

wi
2
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loss L(f(x),y) ) |f(x) - y| which effecively becomes a “ramp

loss” (cf. Figure 3) centered around the q value threshold

with flat parts at (ǫ. Because we are solving a ranking

problem in the nonlinear case, we now choose a network

with the following architecture:

That is, we no longer have a final bias output.

3.5. Q-ranker Yields Even Better Performance. We tested

our direct classification and Q-ranker algorithms on the tryp-

tically digested yeast data set in Figure 4. It is clear from this

figure that, although the linear Q-ranker algorithm does not

improve over the direct classification algorithm, using a

nonlinear architecture leads to a large improvement, especially

for larger q values. Other choices of nonlinear architectures

(number of hidden units) are given in Supporting Information

Figure 1, each leading to improved performance relative to

Percolator.

Compared to the direct classification approach described in

section 3.1, Q-ranker also yields more consistent training

behavior when observed for any given q value. To illustrate this

phenomenon, we fix the interval ǫ for the Q-ranker algorithm

to be defined by the single threshold corresponding to the

specified q value. Figure 5A shows how the results for different

specified q values change during the course of training the

direct classification model. The number of PSMs over lower q

value thresholds (for example, 0.0075, 0.01) reach their peak

early during training and then become suboptimal, while the

best results for higher q value thresholds take longer to achieve.

This means that, during the course of training, different q value

thresholds are being optimized depending on the number of

iterations. In contrast, as shown in Figure 5B, the Q-ranker

algorithm learns the best decision boundary for a specified q

value threshold and does not substantially diverge from the

best result during further training. This behavior indicates that

the algorithm in fact optimizes the desired quantity. In the

following experiments, we therefore adopt Q-ranker as our

Figure 4. Comparison of Percolator, direct classification, and Q-ranker. The figure plots the number of accepted PSMs as a function of

q value threshold for the yeast data set. Each series corresponds to a different ranking algorithm, including Percolator, as well as

linear and nonlinear versions of the direct classification algorithm and Q-ranker. The nonlinear methods use five hidden units.

Figure 5. Comparison of training optimization methods (iteration vs error rate). The Q-ranker optimization starts from the best result

of direct optimization achieved during the course of training and continues for a further 300 iterations. These results are on the training

set. Note that for each q value choice, Q-ranker improves the training error over the best result from the classification algorithm.

f(x) ) ∑
i

wihi(x), where hk(x) ) tanh((wk)Tx + bk)
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algorithm of choice, and we compare it further to Percolator

and PeptideProphet.

3.6. Comparison of Algorithms across Multiple Data

Sets. For our final round of experiments, we compare the

performance of Q-ranker, Percolator, and two versions of

PeptideProphetsthe original parametric version,19 which assumes

that the decoy scores are distributed according to a γ distribution

and the target scores acording to a Gaussian distribution, and a

newer, semiparametric approach,4 which uses a mixture model

of kernel functions to model the two distributions. For both sets

of PeptideProphet results, we use the semisupervised version of

the algorithm.5 The same set of decoy PSMs is provided to

Percolator, Q-ranker, and PeptideProphet. For Percolator and

Q-ranker, we use 50% of the PSMs for training and 50% for testing,

as before. PeptideProphet does not provide the ability to learn

model parameters on one set of data and apply the learned model

to the second; therefore, PeptideProphet results are generated by

applying the algorithm to the entire data set. This difference gives

an advantage to PeptideProphet because that algorithm learns

its model from twice as much data and is not penalized for

overfitting.

We report results using either 17 or 37 features, as described

in Table 1, for both Percolator and Q-Ranker. Figure 6 shows

the results of this experiment, conducted using the four data

sets described in section 2.1. Across the four data sets, Q-ranker

consistently outperforms PeptideProphet across all q value

thresholds. The left half of Table 2 shows a detailed comparison

of Percolator and Q-ranker on all four data sets using 17

features as input. At q values of 0.05 or 0.10, Q-ranker yields

more accepted target PSMs than either Percolator or Pep-

tideProphet, whereas Percolator performs slightly better for q

< 0.01.

Theoretically, a nonlinear network could yield a larger benefit

than a linear model when the input feature space is increased,

as long as the model does not overfit. We therefore experi-

mented with extending the PSM feature vectors, adding 20 new

features corresponding to the counts of amino acids in the

peptide. The results of running Q-ranker with these extended

vectors are shown in Figure 6, labeled “Q-ranker 37”. Increasing

the number of features gives a larger boost to the performance

of the nonlinear version of Q-ranker. The effect is particularly

evident on data sets derived from yeast lysate digested with

chymotrypsin and elastase. After this extension, Q-ranker

identifies more spectra than either of the other algorithms, even

at q < 0.01 (right half of Table 2).

Finally, we further investigated the behavior of Q-ranker by

measuring the performance of networks trained for a specified

q value on other q values. We focused on specified q values

0.01, 0.05, and 0.1. Table 3 shows that, when all 37 features

are employed, a network trained for a specified q value is

Figure 6. Comparison of PeptideProphet, Percolator, and Q-ranker on four data sets. Each panel plots the number of accepted target

PSMs as a function of q value. The series corresponds to the three different algorithms, including two variants of Q-ranker that use 17

features and 37 features.
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consistently better or equal to the performance on this q value,

compared with networks trained for other specified q values.

4. Discussion

In this work, we have performed all of our analyses using a

combination of SEQUEST and Percolator. However, the con-

clusions that we draw here have implications for researchers

who do not employ these particular software systems. First,

the conclusions likely generalize across search engines. For

example, Percolator has previously been demonstrated to work

well with the Inspect17 and MASCOT search engines,3 so it

seems likely that Q-ranker will also generalize to these search

engines. Second, we have demonstrated the utility of shifting

from a semisupervised framework to a supervised framework

with a modified loss function, both in terms of improved

understanding of the objective function being maximized and

improved discriminative power. A similar shift should be

straightforward to apply, for example, to the semisupervised

version of PeptideProphet and may result in similar benefits.

Throughout our evaluations, we have focused on maximizing

the number of spectra that are correctly assigned a peptide (i.e.,

the number of accepted PSMs). It is conceivable that a given

algorithm might be biased in the types of peptides it can

identify. In this case, the relative performance of two peptide

identifications could depend on whether we count the number

of accepted PSMs or the number of distinct peptides that are

identified from a set of spectra. Supporting Information

Figure 2 demonstrates that this bias is not occurring in our

results: the relative performance of the algorithms that we

considered does not change significantly when we count the

number of distinct peptides identified.

One surprising result from our experiments is the relatively

large benefit provided by amino acid composition features. We

hypothesize that this information allows the classifier to learn

to expect certain characteristics of a spectrum. For example,

the presence of a proline implies a pair of high-intensity peaks

corresponding to the cleavage N-terminal to the proline; the

presence of many basic residues leads to more +2 ions, and

the presence of many hydrophobic residues leads to more

singly charged +1 ions.21 However, previous experiments with

Percolator using amino acid composition features did not yield

significant performance improvements. The difference, in the

current setting, is that we have switched from a semisupervised

to a fully supervised setting. This switch allows us to use a more

complex, nonlinear model. In general, a complex model has

more opportunity to improve over a simpler model if the

feature space is rich. Thus, although a simple linear model such

as the one in Percolator cannot fully exploit the richer,

37-dimensional feature space, the nonlinear model can. This

conclusion is supported by the observation that adding com-

positional features also improves the performance of the direct

classification method (results not shown).

An alternative, possible explanation for the added discrimina-

tive power provided by the amino acid composition feature is that

they provide the algorithm with a way to “cheat”. In our experi-

ments, we did not guarantee that the training set and the test set

contain disjoint sets of peptides. Hence, an algorithm might overfit

on the amino acid composition features and successfully identify

the recurrence of a peptide in the train and test sets. To eliminate

this alternative explanation, we performed a follow-up experiment

in which we prevented the same peptide from occurring in the

training and test set. The results, shown in Supporting Information

Figure 4 show that the improved performance of Q-ranker over

Percolator still holds.

A drawback to using a nonlinear discriminative classifier is the

difficulty in interpreting the learned model. In this work, we have

focused on optimizing error rate, not interpretability; sometimes it

is hard to have both. Indeed, as shown in Supporting Information

Figure 5, simply switching to a linear SVM in the direct classification

setting yields markedly decreased performance. However, even with

a nonlinear model, it is still possible to gain some insight into the

relative contributions of the various features by “knocking out” each

Table 2. Comparison of Percolator and Q-ranker on 17 and 37 Feature Data Setsa

17 features 37 features

data set q value Percolator Q-ranker Percolator Q-ranker

yeast trypsin 0.01 5917 5885 5983 6072
0.05 6793 6940 6813 7501
0.1 7168 7610 7200 8430

yeast elastase 0.01 1389 1380 1491 1615
0.05 1806 1851 1958 2140
0.1 2103 2196 2301 2561

yeast chymotrypsin 0.01 2077 2086 2158 2312
0.05 2576 2620 2680 2844
0.1 2914 2961 3057 3214

worm trypsin 0.01 5116 5031 5192 5238
0.05 5864 6119 5830 6419
0.1 6169 6730 6146 7128

a Each entry in the table indicates the number of accepted PSMs for the given algorithm (column) on the given data set at the given specified q value
(row). Entries in boldface indicate that this algorithm performed better than the other algorithm for this data set and q value threshold.

Table 3. Q-ranker successfully optimizes the specified q valuea

yeast trypsin worm trypsin yeast elastase yeast chymotrypsin

specified 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

0.01 6072 7453 8360 5238 6412 7098 1615 2054 2395 2312 2843 3199
0.05 6032 7501 8426 5238 6419 7047 1615 2140 2561 2302 2844 3198
0.10 6030 7500 8430 5213 6418 7128 1615 2140 2561 2300 2830 3214

a Each entry in the table lists the number of accepted PSMs at a given q value (column) obtained by Q-ranker with 37 features when optimizing a
specified q value (row). Entries in boldface indicate the maximum value within each column. Note that, for each data set, all diagonal entries are in
boldface.
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feature individually and measuring the performance of the resulting

classifier. Supporting Information Table 1 shows the percent reduc-

tion in the number of identified PSMs at q < 0.01 when we knock

out each feature of Q-Ranker with 17 features. Not surprisingly, the

enzymatic features are most significant, followed by the score

features (XCorr and ∆Cn). The relatively small percentage decrease

for many features suggests that many provide redundant informa-

tion. A more detailed interpretation of the model could be derived

via further knockout experiments aimed at groups of related features,

as was done in ref 17.

It is worth noting that the relative performance of the

methods that we considered does not change when we use an

alternative q value estimation scheme. Elias et al.12 advocate

estimating the FDR using target-decoy competition (i.e., search-

ing each spectrum against a concatenated database of targets

and decoys and only retaining the single top-scoring peptide)

and estimating FDRs with respect to the combined collection

of target and decoy PSMs. To show that our results do not

depend upon our q value estimation procedure, we report in

Supporting Information Figure 3 results analogous to those

given in Figure 6, but using FDRs estimated by following the

protocol of Elias et al. Even in this case, the Q-ranker algorithm

outperforms Percolator and both versions of PeptideProphet.

In general, using a large feature space generally requires a

concomitantly large number of training examples. For smaller

collections of spectra, or for lower quality spectra in which the

effective number of positive examples is small, we would expect

a larger feature space to lead to overfitting. In the current version

of the software, the user must check for overfitting explicitly and

select the regularization parameter explicitly. One focus of our

future work will be the implementation and validation of robust

methods for avoiding such overfitting, either by adjusting the

regularization parameter or reducing the complexity of the model.

5. Conclusions

We have described a series of algorithms that improve in

various ways upon the Percolator algorithm. Given unlabeled

target PSMs and negatively labeled decoy PSMs, Percolator treats

the problem as a semisupervised classification problem. In this

work, we instead use a supervised approach to the same problem.

This change allows us to state an explicit objective function and

also allows us to generalize to more powerful, nonlinear models.

Finally, if the user is willing to specify a desired confidence

threshold, then the Q-ranker algorithm finds an optimal ranking

with respect to the specified threshold, yielding consistently

improved performance relative to either Percolator or PeptidePro-

phet. Both the direct classification and the Q-ranker algorithms

are implemented in the Crux toolkit, which is available with source

code from http://noble.gs.washington.edu/proj/crux.
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