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ABSTRACT: The Met Office in the United Kingdom has developed a completely new probabilistic 
postprocessing system called IMPROVER to operate on outputs from its operational numerical 
weather prediction (NWP) forecasts and precipitation nowcasts. The aim is to improve weather 
forecast information to the public and other stakeholders while better exploiting the current and 
future generations of underpinning kilometer-scale NWP ensembles. We wish to provide seamless 
forecasts from nowcasting to medium range, provide consistency between gridded and site-specific 
forecasts, and be able to verify every stage of the processing. The software is written in a modern 
modular framework that is easy to maintain, develop, and share. IMPROVER allows forecast 
information to be provided with greater spatial and temporal detail and a faster update frequency 
than previous postprocessing. Independent probabilistic processing chains are constructed for each 
meteorological variable consisting of a series of processing stages that operate on predefined grids 
and blend outputs from several NWP inputs to give a frequently updated, probabilistic forecast 
solution. Probabilistic information is produced as standard, with the option of extracting a most 
likely or yes–no outcome if required. Verification can be performed at all stages, although it is 
only currently switched on for the most significant stages when run in real time. IMPROVER has 
been producing real-time output since March 2021 and became operational in spring 2022.

KEYWORDS: Ensembles; Forecasting techniques; Operational forecasting; Probability 
forecasts/models/distribution; Postprocessing

https://doi.org/10.1175/BAMS-D-21-0273.1
Corresponding author: Nigel Roberts, nigel.roberts@metoffice.gov.uk
In final form 22 September 2022

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 09/29/23 08:17 AM UTC

mailto:nigel.roberts@metoffice.gov.uk
http://www.ametsoc.org/PUBSReuseLicenses


A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M A R C H  2 0 2 3 E681

“P ostprocessing” is the term used here to describe the additional processing that 
is applied to output from numerical weather prediction (NWP) forecasts. It is an 
essential component of an optimal NWP forecast system and various types of 

postprocessing are applied to NWP output in national meteorological services (Hamill et al. 
2017; Ylinen et al. 2020). It has two principal aims. The first is to improve the skill of the 
forecasts using statistical (Wilks 2011; Vannitsem et al. 2021) or physical methods (Moseley 
2011; Howard and Clark 2007; Sheridan et al. 2010) to adjust for errors or deficiencies  
in the NWP forecasts. The second is to exploit the information contained in the forecasts in 
a more useful way for the users of the forecasts, which may include deriving new outputs, 
such as “feels-like” temperature (Steadman 1984; Osczevski and Bluestein 2005, 2008) or 
blending forecasts or utilizing ensemble information. To successfully meet these two aims, 
postprocessing must continually adapt to changes in NWP modeling and user requirements.

Recent years have seen a shift to kilometer-scale NWP and ensembles, which has 
changed the requirements for postprocessing. A clear benefit of going to finer resolution 
is that gridcell values become more equivalent to point locations leading to a reduction 
in representativeness errors (Göber et al. 2008; Ben Bouallègue et al. 2020). If the grid 
is sufficiently fine, it makes more sense to utilize the full gridded output directly rather 
than postprocess for selected locations and interpolate to other locations. The latter has 
been the preferred option for coarser resolutions. However, although representativeness 
and realism are improved, the unpredictable nature of small scales means that explicitly 
represented weather elements such as convective showers are very often misplaced in 
space and time, even in short-range forecasts (Mass et al. 2002; Roberts and Lean 2008; 
Clark et al. 2010). A forecast will often be wrong in detail even if the weather is generally 
well represented. As a result, kilometer-scale ensembles have been introduced by national 
meteorological services to use probabilities to account for local uncertainty (Gebhardt 
et al. 2011; Clark et al. 2016; Hagelin et al. 2017; Clark et al. 2018; Zhang 2018; Porson 
et al. 2020; Bouttier and Marchal 2020). If an ensemble is not available, spatial methods 
such as neighborhood processing (Roberts 2003; Theis et al. 2005; Schwartz and Sobash 
2017) can be used to generate probabilities instead. However, even if a kilometer-scale 
ensemble is available, the number of members is restricted by computational cost and the 
small-scale uncertainty is still undersampled; therefore, neighborhood methods remain 
essential to address that undersampling (Clark et al. 2011; Golding et al. 2016; Schwartz 
and Sobash 2017; Roberts et al. 2019).

High-resolution models/ensembles are typically run for shorter forecast lengths than  
their coarser-resolution counterparts because of computational expense, which creates a  
jump in resolution during the forecast period. To transition seamlessly from one forecast to 
another, requires suitable blending, possibly including prior calibration of each forecast. 
Blending should involve minimal loss of forecast information, which is most effectively 
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achieved by blending probability distributions rather than physical quantities, lending further 
weight to a probabilistic approach to postprocessing.

Thinking more widely than purely NWP performance, the proliferation of frequently  
updated high-resolution forecasts may result in information overload for operational  
meteorologists, leaving the possibility of key signals being missed. Unless the most salient 
information can be presented at a glance, some ensemble information is likely to be ignored. 
It is therefore helpful to consolidate the large number of forecasts into a single probability 
distribution. A further challenge is adaptation to the way forecasts are disseminated and 
used in the modern world. Weather forecasts were once provided via television, radio, and 
newspapers for general geographical areas every few hours. Nowadays the public expect 
hourly forecasts (at least) for their location of interest on their mobile phones, along with 
timely warnings of severe weather. The Met Office is required to produce frequently updated 
automated weather forecasts for any location in the United Kingdom along with warnings of 
severe weather via operational meteorologists. There is also a requirement for targeted outputs 
for specific customers and for forecasts around the globe.

In the Met Office, postprocessing has evolved as needs have arisen, which has meant in-
dependent systems being developed to meet the needs of different users or to exploit new or 
evolving NWP outputs. Our previous postprocessing generated automated weather forecasts 
for a large set of site locations. These were produced independently of gridded outputs for 
meteorologists and the media, which were separate again from ensemble processing. Running 
separate systems in that way is not only expensive, in terms of maintenance and duplication 
of effort, but leads to inconsistencies that can confuse the forecast message.

We are served better by having a single postprocessing framework that allows new post-
processing methods to be added as the science evolves. Such a framework needs a software 
infrastructure that enables code to be easily plugged in or taken out and can adapt to changing 
IT environments, such as the need for highly parallel processing. The postprocessing should 
operate primarily on the grid, be fully probabilistic, and be able to employ both spatial neigh-
borhood and calibration methods. It should also be capable of handling both deterministic 
and ensemble forecasts with differing resolutions, and seamlessly blend them together. 
A verification capability is required to measure the benefit of each individual component.

Based on the reasoning above, a strategy for future postprocessing in the Met Office was 
endorsed by the Met Office Scientific Advisory Committee (MOSAC) in late 2015. The new 
probabilistic postprocessing system called IMPROVER (Integrated Model post-PROcessing 
and VERification) has been under development at the Met Office since 2016 and an opera-
tionally supported demonstration system was introduced in March 2021. IMPROVER became 
operational in April 2022.

The rest of this article will describe IMPROVER as configured for postprocessing in the Met 
Office before outlining the generic processing steps and some of the methods used.

What is IMPROVER?
IMPROVER is the new probabilistic postprocessing system running operationally at the Met 
Office, in which postprocessing steps are applied in sequence to individual nowcasts and NWP 
forecasts on a common grid before blending to provide a seamless probabilistic forecast for 
each processed variable (Fig. 1). IMPROVER ingests forecasts as soon as they are available 
and is designed to exploit the latest high-resolution models and ensembles. It is comprised 
of an open-source Python code repository (Evans et al. 2020) that contains a collection of 
postprocessing algorithms. The postprocessing algorithms are run within an internal “suite” 
workflow orchestration infrastructure (Oliver et al. 2018, 2019). This chains together the 
postprocessing tasks and schedules when they are run and allows both a real-time running 
configuration and trial mode assessments. The configuration discussed in this article only 
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operates on outputs from the forecast models run at the Met Office, but forecasts from external 
models can be included.

A set of key principles has been followed when developing the code and constructing 
the suites:

1) A flexible modular framework with independent processing chains is used for each 
variable.

2) Verification is incorporated at every processing stage.
3) Processing is done on common grids with forecasts at site locations extracted at the end, 

ensuring consistency in forecast outputs.
4) Meteorological variables are represented and postprocessed as probability distributions.
5) New forecasts are processed as they become available and forecasts from different models 

are probabilistically blended to provide a rapidly updating seamless forecast.
6) Outputs are probabilistic by default, consisting of a set of probabilities and percentiles, 

from which single outcomes can be extracted if needed.

The modular framework provides the flexibility to apply physical and statistical adjust-
ments in the order that best suits each variable. It is highly adaptable, enabling it to orches-
trate the processing across source models, variables, and lead times as required. For instance, 
each chain groups together a number of steps, which correspond to plug-ins in the open-source 
repository. These chains can then be reused for multiple lead times and models, and the steps 
can be combined in different ways to make up new processing chains. When a new step/chain 
is added, a pull request is set up on the suite repository and a review process operates in line 
with the open-source repository policy of having at least two reviewers before any code is 
merged. Each pull request made to either repository passes through the continuous integra-
tion (CI) workflow, which runs unit and acceptance tests and, in the suite repository, runs 
through the full graph orchestration for every model. Additionally, each night, all the suites 
are run for 6 h using code in the master branch and any errors are recorded in a dashboard.

Nowcast

NWP

UKV

MOGREPS-UK

MOGREPS-G

Input forecasts

IMPROVER

Blended probabilities

Set of 
thresholds

Set of 
percentiles

Blended percentiles

Gridded and locations
(UK and globe)

Extract 
probability 
> threshold

Extract 
median 
value

Fig. 1. Diagram to depict how IMPROVER ingests nowcasts and NWP forecasts and produces a set of 
probabilities and percentiles for each variable from which single values such as the median or 90th 
percentile can be extracted to give a best estimate or plausible high value. See Table 1 for information 
about input forecasts.
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Postprocessing stages
When configured for operational 
postprocessing at the Met Office, 
each of the postprocessing chains 
follows a sequence of processing 
stages, shown by Fig. 2, that are 
applied to each individual meteo-
rological variable. A sequential 
approach to postprocessing has 
also been applied in other centers 
(Kober et al. 2012; Bouttier and 
Marchal 2020). The following 
sections will outline the purpose 
of each stage and briefly describe 
some of the postprocessing meth-
ods used within them.

The IMPROVER postprocess-
ing stages shown in Fig. 2 will 
now be described.

Inputs. IMPROVER takes as input 
gridded NWP forecasts from the 
UKV (U.K. deterministic model) 
(Tang et al. 2013), MOGREPS-G 
(global ensemble) (Inverarity 
et al. 2023), and MOGREPS-UK 
(U.K. ensemble) (Hagelin et al. 
2017; Porson et  al. 2020), as 
well as gridded observations-based precipitation nowcasts using optical flow (Bowler et al. 
2004), as described in Table 1. Further NWP configurations or models can be added in future.

All the forecasts used by IMPROVER have first been standardized to a predetermined set 
of grids and forecast times. This acts to decouple the NWP models from downstream systems 
allowing both to be upgraded independently. The grids and forecast times were pragmatically 
determined by choosing resolution, domain and forecast times close to the NWP outputs that 
are manageable in terms of data volumes and processing speed. At present, two different map 
projections are used to cover the globe and the U.K. area. The global grid is an equirectangular 
latitude–longitude projection with a grid spacing of approximately 20 km over midlatitudes. 
The U.K. grid uses a Lambert azimuthal equal-area (LAEA) projection with a uniform grid 
spacing of 2 km. IMPROVER needs to regrid the coarser-resolution MOGREPS-G ensemble 
forecasts to the 2 km U.K. grid, to support subsequent blending between models for U.K. 
forecasts. This is done using nearest-neighbor interpolation and includes the option to choose 
the nearest point of matching surface type to be coastline aware.

New variables and physical adjustments. Any new variables required by users or needed 
for physical adjustments of other variables are computed for each ensemble member. This 
includes parameters such as the temperature lapse rate, the feels-like temperature, cloud 
texture diagnosis, and the snow melting level. We also introduce a common unsmoothed 
orography, which is closer to the true orography than the smoothed versions used in the 
NWP models, allowing the same adjustments across models. Physical adjustments are then 
applied to improve realism or accuracy which are distinct from later statistical adjustments 

Inputs

New variables
Physical adjustments

Create probabilities
Combine members

Process probabilities
Time-lag

Statistical calibration

Blend models

Weather types
Spot forecasts

Input forecasts from 
individual NWP models / 
ensembles / nowcast

Calculate new variables and 
apply physical adjustments 
including downscaling

Convert to binary 
probabilities and combine 
ensemble members

Apply spatial post processing 
methods and include older 
forecasts (time lag)

Apply statistical post 
processing methods

Blend probabilities from 
different models

Generate weather types
Output gridded and 
spot forecasts

Fig. 2. Flow diagram of the IMPROVER processing stages 
applied to each variable.
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in that they follow physical principles rather than learned statistical relationships. At 
present we have the capability to adjust the temperature, wind speed, wind gust, and 
precipitation phase (rain, mixed phase, snow). The adjustments of temperature and pre-
cipitation phase are briefly outlined below.

TemperaTure adjusTmenT. To match the unsmoothed orography, temperatures are adjusted  
according to altitude on the U.K. grid using the local lapse rate (Sheridan et al. 2010). This 
entails calculating a local mean vertical temperature gradient at each point in each forecast by 
sampling all data points in a seven-gridpoint radius and computing the regression of the 
variation of 1.5 m temperature with altitude. This is constrained to be within the dry adiabatic 
lapse rate (−0.01 K m−1) and an inverted rate 3 times greater (+0.03 K m−1). The temperature 
gradient is then used to adjust the 1.5 m temperature to the unsmoothed orography.

precipiTaTion phase adjusTmenT. IMPROVER outputs probabilities of the precipitation phases;  
rain, mixed phase, and snow, requiring knowledge of what the phase would be at each  
grid square even where there is no precipitation. Because that information is not directly 
available from the forecasts, it needs to be derived.

We have implemented a scheme that finds the altitude of the phase change levels from 
snow to mixed phase and mixed phase to rain based on the effective melting depth defined 
as an integral of the difference between the wet-bulb temperature and the melting point 
over atmospheric depth. These levels are used to produce continuous surfaces across the 
postprocessing domain from which probabilities of rain, mixed phase, and snow are derived.

Create binary probabilities and combine members. Once the necessary adjustments have 
been made to the physical quantities in each forecast, we convert to probabilities. A cumula-
tive probability distribution is constructed, by obtaining binary probabilities (1 or 0) of 
exceeding a set of thresholds for each variable, at every grid square and every forecast time. 
For temperature, we set thresholds at 1 K intervals over most of the temperature range and 
for wind speed it is every 1 m s−1. For precipitation, the thresholds are spaced logarithmically 
(powers of 2), with the addition of a few high-impact values.

For some variables, we also generate binary probabilities based on whether a threshold is 
exceeded within a specified vicinity of each grid square. This provides the binary neighbor-
hood probability (BNP) for each threshold defined by Schwartz and Sobash (2017).

The ensemble probabilities are then computed in the conventional way by  calculating 
the mean of the binary probabilities from each ensemble member (hence creating an 
 ensemble   cumulative distribution). The same can be done to the BNPs. When applied 
to  the BNPs, the neighborhood maximum ensemble probability (NMEP) is obtained 

Table 1. Table showing the models providing input data for IMPROVER. Note that there are some 
longer UKV forecasts not used.

Models (end of 2022) Grid spacing
Forecast 

frequency Members Forecast length

Radar extrapolation  
(precipitation only)

2 km 15 min 1 6 h

UKV (U.K. deterministic) Raw 1.5 km 1 h 1 12 h

Reprojected 2 km

MOGREPS-UK (U.K. ensemble) Raw 2.2 km 1 h 3 5 days

Reprojected 2 km

MOGREPS-G  
(global ensemble)

Raw ~20 km 6 h (0000, 0600, 
1200, 1800 UTC)

18 7 days

Reprojected ~20 km
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(Schwartz and Sobash 2017), which can be thought of as the probability of an occurrence 
within a square vicinity of each grid square. The NMEP is more appropriate for rarer, more local-
ized, or extreme weather, for which gridscale probabilities may be very low. The probabilities 
for the nowcast and UKV remain binary at this stage because they are deterministic forecasts.

Process probabilities including neighborhood methods and time-lagging. Various forms 
of spatial and temporal neighborhood processing, spatial filtering, and time-lagging are 
applied to the probabilities produced in the previous step.

The basic neighborhood processing (Roberts 2003; Theis et al. 2005; Roberts and Lean 
2008; Schwartz et al. 2010; Clark et al. 2011; Schwartz and Sobash 2017) generates a new 
probability at each grid square by computing the mean of the probabilities within a square 
neighborhood of predefined length (km) surrounding each grid square. Schwartz and Sobash 
(2017) refer to this as the neighborhood probability (NP) when applied to the binary probabili-
ties from a single forecast, or the neighborhood ensemble probability (NEP) when applied to 
ensemble probabilities. When considering a deterministic forecast, the purpose of neighbor-
hood processing is to account for positional error brought about by the lack of predictability at 
small scales. For an ensemble, it effectively increases the ensemble size, enabling a reduction 
of the undersampling and noisiness at small scales that might otherwise give false confidence 
in small-scale forecast outcomes. Given an appropriate neighborhood size, the skill of both 
deterministic and ensemble forecasts can be improved (Theis et al. 2005; Roberts and Lean 
2008; Clark et al. 2011; Ben Bouallègue and Theis 2014). Variables with a typically higher 
spatial correlation, such as temperature and wind speed, need smaller neighborhoods than 
less spatially correlated variables such as precipitation, cloud, visibility, and lightning. Highly 
related variables such as cloud and precipitation require the same sized neighborhood. The 
same mean-in-neighborhood method can also be applied to the NMEPs to provide smoothing  
and account for larger-scale positional uncertainty if the NMEP neighborhood is small.

The probabilities of precipitation falling as rain, mixed phase, or snow are found by multi-
plying the neighborhood processed probabilities of precipitation by the conditional probabili-
ties of rain, mixed phase, or snow at the grid-square altitude derived from the phase change 
levels. This multiplication is applied to each individual member of an ensemble to retain the 
multivariate dependency between wet-bulb temperature and precipitation in each realiza-
tion, such as the simulated relationship between the melting level and precipitation intensity. 
Consequently, the neighborhood processing of precipitation, unlike for most other variables, 
is performed on each member individually before the ensemble probabilities are computed.

exTensions To spaTial neighborhood processing. The mean-in-neighborhood calculation as-
sumes that an occurrence is equally likely anywhere in the neighborhood, which may not be 
appropriate for variables like temperature, visibility, and wind speed that vary considerably 
with altitude. Hence, we have introduced a topographic neighborhood approach that gives 
more weight to grid squares of similar altitude to the central grid square to make the neigh-
borhood more representative. Figure 3 shows the effect of incorporating topography into the 
neighborhood processing.

Square neighborhoods are used for computational speed and simplicity. A weighted circle 
or Gaussian kernel may be more physically justifiable, but they are much slower to compute. 
As an alternative, we introduce a recursive filter (Hayden and Purser 1995; Roberts 2003) 
in addition to the square neighborhood. This is fast and the result is similar to applying a 
Gaussian kernel for smoothing. Further topographic awareness can be incorporated by ap-
plying less filtering across steep topographic gradients or across coastlines. The result is a 
Gaussian-kernel alternative that does not smear out topographic variations and can be used 
in conjunction with the topographically weighted NEP neighborhood.

Unauthenticated | Downloaded 09/29/23 08:17 AM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M A R C H  2 0 2 3 E687

Temporal neighborhood processing. Probabilistic forecasts should take account of the fore-
cast uncertainty in time as well as space (Theis et al. 2005; Duc et al. 2013). We have intro-
duced the capability to include temporal neighborhoods (time windows) that are analogous 
to their spatial counterparts and can be implemented sequentially alongside them. The time 
window symmetrically spans the time of interest and is used to update the probability at 
the central point by taking the average over the probabilities in the time window, with the 
option of linearly weighting more toward the center. The maximum value within a time win-
dow can also be found, providing the probability of occurrence sometime within the time 
window. Different neighborhood methods or combinations provide different time–space 
definitions to the resulting probabilities, which must be carefully defined from the outset.

Time-lag blending. Time-lagging is the process of blending forecasts with different initiation 
times. It has been shown to improve the skill of both deterministic and ensemble forecasts 
(Mittermaier 2007; Osinski and Bouttier 2018) and reduces “flip-flopping” (Griffiths et al. 
2019) between forecast cycles. It is essential for MOGREPS-UK, which was designed as a 
time-lagged ensemble constructed of several cycles of three members per hour (Porson et al. 
2020). Time-lagging is also applied to the UKV and MOGREPS-G. It can be applied to the full 
set of probabilities before or after neighborhood processing because these steps are commu-
tative. Options are available for applying different weights to each forecast length, although 
at present, equal weighting is used.

Statistical calibration.  Statistical calibration uses information about the performance of 
past forecasts to try to correct systematic errors in the current forecast (Wilks 2011; Hamill 
and Scheuerer 2018; Vannitsem et al. 2021). These corrections aim to improve character-
istics such as bias, ensemble spread, or the reliability component of an ensemble forecast 
(Richardson 2000). Applying these corrections to the full ensemble, rather than individual 
ensemble members, avoids artificially deflating ensemble spread (Gneiting 2014). Ensemble 
calibration is applied after process probabilities and time-lagging to utilize the resulting 
fuller probability distribution. Two ensemble calibration methods have been introduced 
so far and are described below. These calibrations are performed on the grid using UKV 
 analyses as the best available gridded truth. Residual errors arising from the UKV analysis not  
being a perfect “truth” will therefore remain after calibration (Feldmann et al. 2019; Allen  
et  al. 2021a). The statistical calibration uses historic forecasts that have undergone the  

Fig. 3. An example of neighborhood processing (NEP) for a temperature threshold with and without the 
inclusion of topography. (a) Probabilities after downscaling MOGREPS-G to the 2 km U.K. grid, (b) the 
effect of standard neighborhood processing smearing out topographic variation, and (c) the ability of 
the topographic neighborhood to retain topographic variation while smearing out blockiness elsewhere.
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same temporal and spatial processing as the forecasts being corrected. Similarly, the truth  
is representative of the forecast, so the meaning is not altered.

emos. EMOS, otherwise known as nonhomogeneous regression (NR), following Gneiting  
et al. (2005), is a widely used technique for calibrating ensemble forecasts using the assump-
tion that the future state of a weather variable can be represented using a single paramet-
ric distribution. It involves estimating four coefficients, when using the ensemble mean by 
minimizing or maximizing a scoring rule such as the Continuous Ranked Probability Score 
(CRPS; Gneiting et al. 2005), along with an appropriate assumption for the distribution of 
the variable. EMOS has been applied to MOGREPS-UK temperature and wind speed forecasts 
using a normal (Gneiting et al. 2005) and truncated normal (Thorarinsdottir and Gneiting 
2010) distribution, respectively. For gridded forecasts, EMOS is currently configured to oper-
ate on all grid points at once or use a split between land and sea based on ancillary infor-
mation. This land–sea localization yields better results as demonstrated in Fig. 4, showing 
the potential benefit of further localization (Thorarinsdottir and Gneiting 2010). We use a 
rolling training period of 15 days, which can be adjusted. The ability to use a short training 
period is a benefit of operating on the large number of gridded values and applying the same 
coefficients to large groupings of points. The predictors used for EMOS are the ensemble 
mean and variance, which are extracted from the cumulative distribution function defined 
by the probability forecasts. The calibrated distribution produced by EMOS is sampled at a 
set of thresholds to produce calibrated probability forecasts.

reliabiliTy calibraTion. We have also introduced the reliability calibration technique presented  
in Flowerdew (2014), similar to Zhu et al. (1996) for precipitation and cloud. In this tech-
nique, an aggregated “reliability table” is populated that relates the forecast probabilities 
to the truth event frequencies for each grid square, lead time, threshold, and forecast prob-
ability bin over a sample of previous forecasts. The objective is to adjust the future forecast 
probabilities so that they agree with the previous event frequencies. For example, whenever 
the forecast probability of an event is 60%–70% the event should have occurred 60%–70% 
of the time. If it only occurred 30%–40% of the time in the training data, the future fore-
cast probabilities should be adjusted accordingly. Treating each lead time separately facili-
tates the capturing of diurnal variability with the expectation that the reliability tables vary 
 relatively smoothly between lead times. We use a rolling training period of 30 days, with  
a short training period favored from an operational perspective. As in Flowerdew (2014), 

Fig. 4. Example of differences in the ensemble-mean screen temperature for a reduced area around 
Scotland when EMOS is computed using (a) all grid points within the domain (EMOS-all) and (b) only 
land points within the domain (EMOS-land only), and (c) the difference between the two.
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a minimum sample count for the forecast probability bins prevents calibration being applied 
for events at extreme, poorly sampled thresholds.

Reliability calibration is a conceptually simple, nonparametric technique that is adept at 
correcting variables with particularly non-Gaussian distributions. Since it naturally operates 
in probability space, it is a particularly useful correction technique for probabilistic forecasts 
that can be used in conjunction with neighborhood processing (Kober et al. 2012; Johnson 
and Wang 2012; Bouttier and Marchal 2020). Improvement to the reliability of cloud forecasts 
is demonstrated in Fig. 5.

Since reliability calibration makes the probability distributions from two different models/
ensembles more reliable and hence more alike, the later blending between them becomes  
more seamless. This is particularly beneficial when two ensembles have very different  
behaviors such as ~2 km MOGREPS-UK and the ~20 km MOGREPS-G.

Fig. 5. An example of reliability diagrams prior to and after the application of reliability calibration 
for NEP total cloud amount forecasts from MOGREPS-G for T + 48 h for a selection of thresholds. The 
verification period is February and March 2020. Lines closer to the diagonal show better reliability.
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Model blending. After calibration, the models/ensembles are blended. This is done to im-
prove skill (Beck et al. 2016) and to allow the final blended forecast to transition between 
different models or ensembles. The blending is done using probabilities to transition seam-
lessly between different models used for different forecast periods and preserve the full dis-
tribution of physical values that may otherwise be averaged out. Figure 6 shows the forecast 
periods over which the models/ensembles are currently blended on the U.K. domain, along 
with the weights applied. The weights are chosen to represent the relative skill of each model 
for key variables (precipitation, temperature, wind speed and direction, cloud cover, and 
visibility) and to seamlessly deal with the transitions between available models imposed by 
different forecast horizons. These weights can be adjusted as new models are included, or 
as model skill evolves. The weights are given by Pblended = wm1Pm1 + wm2Pm2 + … + wmnPmn, where 
Pblended is the blended probability, wm1 is the weighting for model 1 applied to Pm1 (probability 
for model 1) through to wmn (weight for model n) applied to Pmn (probability for model n). The 
weights add up to 1 such that wm1 + wm2 + … + wmn = 1.

For precipitation, we combine a radar-based extrapolation nowcast with the UKV and 
MOGREPS-UK over the first few hours. Each has had NEP neighborhood processing applied, with 
a smaller neighborhood size used for the radar extrapolation at very short lead times because of 
its greater spatial accuracy. The benefit of blending probabilities rather than physical values is 
schematically demonstrated in Fig. 7 along with an example of the nowcast blending. Later in 
the forecast MOGREPS-UK is blended with downscaled and calibrated MOGREPS-G. The com-
bination of neighborhood-processed, time-lagged, and blended probabilities reduces spurious 
jumpiness from one time to the next and overconfidence in the weather at a particular place.

Here, the nowcast is weighted the highest giving the sharpest blended probabilities in the 
areas where it is available and this seamlessly blends into the other parts of the domain where 
the MOGREPS-UK ensemble probabilities dominate. For other lead times, a similar blend is 
produced using the weights in Fig. 6.

Weather symbols and site extraction. Weather symbols are a prominent feature of auto-
mated weather forecasts provided to the public. Their purpose is to succinctly communicate 
the important weather affecting a location (Reed and Senkbeil 2020, 2021). IMPROVER uses 
a decision tree to generate a most probable weather type (e.g., sunny or heavy rain shower) 
from the probabilities for every 2 km grid square over the United Kingdom, and each grid cell 

Fig. 6. Schematic of the blending weights at time of writing. The global ensemble starts being intro-
duced from T + 48 h (not shown).
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Fig. 7. (a) A schematic depiction of how two forecasts with heavy rain in different locations (dark blue areas) 
can lead to reduced rainfall intensity when blended giving a zero probability of heavy rain. (b) When the heavy 
rain is turned into probabilities (described as high, medium, and low) and then blended, probabilities 
of heavy rain are retained. (c) A real example of blending the most recent NEP precipitation probability 
fields for a given validity time. The rightmost panel shows the resulting blended forecast produced by 
IMPROVER when combining all three available forecasts for a T + 1 h lead time.
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over the globe. The decision tree compares the probabilities of different weather elements to 
arrive at the weather type that best represents each combination of probabilities. These can 
be displayed as weather symbols. This generation of weather types directly from the grid 
enforces consistency across spatial areas without the need for interpolation. An example of 
the gridded weather types is shown in Fig. 8. They are verified by comparison with SYNOP 
weather codes, allowing for refinement to help improve the forecast.

A deficiency of traditional weather symbols is that they only provide a single symbol show-
ing one type of weather without alternative possibilities. The use of probabilities will make 
it possible in future to generate multiple weather symbols, with for example, primary and 
secondary symbols used to describe the most likely weather (e.g., sunny) along with other 
less likely possibilities (e.g., a thunderstorm).

Site extraction. To ensure a consistent forecast is presented in both gridded and site-specific 
products, site-specific forecasts are generated at the end of the chain from the gridded proba-
bilities, percentiles and weather types. IMPROVER utilizes the intelligent gridpoint selection 
(IGPS) technique (Moseley 2011) by choosing the most representative grid square from either; 
the nearest grid square, the nearest land-point grid square, the nearest minimum-height- 
error grid square, or the minimum-height-error land-point grid square. The nearest grid 
square is the most appropriate for variables less directly influenced by the topography such 
as cloud and precipitation. The other options are more suitable for more topographically 
constrained variables such as visibility and temperature.

Temperature adjustments are made to account for the altitudes of the spot locations us-
ing the lapse rates derived on the grid. Additionally, EMOS as described in the statistical 
calibration section, is applied to calibrate spot temperatures. This includes an additional 

Fig. 8. (left) The model blended probability of precipitation in a 10 km vicinity (NMEP) exceeding 0.1 mm h−1, with the 50% prob-
ability contour shown as a red dashed line. The hatched area shows where the probability of frozen precipitation (sleet or snow) 
is higher than the probability of rain. The probabilities provide inputs to a decision tree, as depiction in a simplified way above 
the panels, to determine the weather type shown in the right-hand panel. In this example, the areas inside the hatched region 
and red contour have a frozen precipitation weather type; elsewhere within the red contour the weather type is liquid precipita-
tion. (right) A subset the 32 available classifications for ease of visualization. The other weather types such as cloud, fog, and 
lightning are also derived within the larger decision tree from the relevant probabilities.
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predictor within EMOS to account for the difference in altitude between the nearest grid  
point and the site location. The use of both lapse rate and EMOS corrections gives more  
accurate temperatures for hilltops or valleys that are not well resolved even on the 2 km grid. 
Altitude adjustment is not yet used for other variables, with precipitation type the highest 
priority for future work.

Verification and trialing
IMPROVER incorporates verification at every stage for both real-time running and examining 
periods in the past. Verification allows components to be tuned, alternative methods to be 
compared, and priorities for future work identified. The verification of each science compo-
nent means that they can be independently assessed and optimized, retaining only those 
that improve forecast performance. At present, the verification supports a range of standard 
ensemble verification metrics computed within the Met Office verification system (VER). Ad-
ditional deterministic measures of forecast performance at site locations are also included. 
Figure 9 gives examples of verification graphs showing changes in skill coming from the use 
of a temporal neighborhood and different calibration methods. Several trials have shown that 
the steps we currently include improve forecast skill to differing degrees depending on the 
variable. Before initial operational implementation, we set a condition that, for the majority 
of locations, the final IMPROVER outputs should at least match the previous postprocessing. 
We do not provide comprehensive verification results here because of the limited space.

Usage and future plans
Usage. The initial implementation of the IMPROVER system has been designed with ge-
neric functionality to meet a range of user requirements. The first operational release has 
targeted two major generic use cases: to provide seamless forecasts of surface weather for 
automated public forecasts (as displayed on the Met Office website and app), and to deliver 
probabilistic detection of hazardous or extreme weather for operational  meteorologists. 
The first of these will be met when IMPROVER feeds into the automated forecasts pro-
vided to the public. This will initially require that a single value such as the median is 
taken from the probabilistic information to give a most likely outcome to ensure compat-
ibility with existing feeds, which can then evolve into a greater use of the probabilistic 
information. The second use case is an ongoing process involving dialogue with meteo-
rologists and others interested in hazard management to request and develop IMPROVER 
outputs to best meet their needs. An internal testbed in 2022 allowed IMPROVER outputs 
to be assessed by operational meteorologists that provided useful feedback on future 
requirements.

The aim is for IMPROVER to be the source of new and innovative probabilistic forecast 
information to better exploit our convective-scale ensemble forecasts for a wide variety of 
users. It is recognized that IMPROVER outputs will not meet the bespoke needs of every user 
but can support the downstream generation of more bespoke products, for example, for in-
dustry use. IMPROVER is now being used by the Australian Bureau of Meteorology, who are 
collaborating on research toward applications that meet their user needs.

Future plans. The most immediate scientific focus is the incorporation of ECMWF ensemble 
forecasts to extend the forecast range from 7 to 14 days. We will continue enhancing the cali-
bration methods to improve forecast skill and blending. Although the processing of variables 
individually is effective for our purposes, some users may require more coupling between 
variables. This would mean creating more joint-variable probabilities or using methods such 
as ensemble copula coupling (ECC) (Schefzik et al. 2013) to reinstate multivariate relation-
ships that are lost in a univariate approach. Neighborhood processing and other spatial 

Unauthenticated | Downloaded 09/29/23 08:17 AM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M A R C H  2 0 2 3 E694

methods can be further enhanced to improve skill. The IMPROVER framework lends itself to 
the introduction of methods for diagnosing phenomena or regimes to improve calibration or 
provide more useful outputs (Allen et al. 2021b) as well as the introduction of newer forms 
of machine learning, which has already started (Rasp and Lerch 2018). Increasing the expo-
sure of probabilistic information from IMPROVER through the use of testbeds or surveys will 
allow more feedback on its future development needs.

Fig. 9. Two example verification plots demonstrating assessment of processing chains and different 
calibration methods. (top) The RPSS performance of NEP 10 m wind speed forecasts from their inges-
tion into IMPROVER (unprocessed), through successive processing steps to the final EMOS-calibrated 
postprocessed product. (bottom) The mean error of NEP temperature forecasts prior to calibration, and 
subsequent to two calibration configurations, allowing the best configuration to be found.
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We have an unprecedented opportunity within the IMPROVER framework to collaborate 
with partners, including the Australian Bureau of Meteorology, on new postprocessing 
methods and broader applications. On the technical side, work will continue to improve 
infrastructure efficiency, design, and optimization. We need the infrastructure to be able to 
incorporate the next generation of NWP models, including city-scale models, and to be able 
to operate on multiple platforms, including making use of the code modularity to move the 
processing to the cloud.
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