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ABSTRACT:

Automatic 3D point cloud registration is a main issue in computer vision and photogrammetry. The most commonly adopted solution

is the well-known ICP (Iterative Closest Point) algorithm. This standard approach performs a fine registration of two overlapping point

clouds by iteratively estimating the transformation parameters, and assuming that good a priori alignment is provided. A large body

of literature has proposed many variations of this algorithm in order to improve each step of the process. The aim of this paper is to

demonstrate how the knowledge of the optimal neighborhood of each 3D point can improve the speed and the accuracy of each of

these steps. We will first present the geometrical features that are the basis of this work. These low-level attributes describe the shape

of the neighborhood of each 3D point, computed by combining the eigenvalues of the local structure tensor. Furthermore, they allow

to retrieve the optimal size for analyzing the neighborhood as well as the privileged local dimension (linear, planar, or volumetric).

Besides, several variations of each step of the ICP process are proposed and analyzed by introducing these features. These variations

are then compared on real datasets, as well with the original algorithm in order to retrieve the most efficient algorithm for the whole

process. Finally, the method is successfully applied to various 3D lidar point clouds both from airborne, terrestrial and mobile mapping

systems.

1 INTRODUCTION

Lidar systems provide 3D point clouds with increasing accuracy

and reliability. When the same area of interest is acquired twice,

or more, over time or space, depending of the application, the

registration problem arises. For airborne or mobile platforms, the

use of an hybrid INS/GPS georeferencing system results in 3D

shifts between strips or surveys, that come from drifts of the iner-

tial measurement unit or GPS signal gaps. For terrestrial devices,

registration is required when several points of view of the same

object are acquired, facing the issue of putting them in correspon-

dence with few overlapping areas.

The Iterative Closest Point (ICP) algorithm is one of the most

widespread method to compute registration of two point clouds,

with the assumption of the existence of a good a priori alignment.

The simplicity of this method, introduced by (Chen and Medioni,

1992) and (Besl and McKay, 1992), is the reason for its extensive

use for a large variety of datasets and contexts. Nevertheless, due

to sensibility of the iterative method to noise and poor iteration,

many variants have been developed to improve all steps of the

ICP (Rusinkiewicz and Levoy, 2001). According to (Rodrigues

et al., 2002), no optimal solution exists, and the ICP method re-

mains a state-of-the-art algorithm (Salvi et al., 2007). In paral-

lel, many interesting local descriptors, based on the geometrical

point cloud analysis have been elaborated, and successfully used

on ICP variants. For instance, (Bae and Lichti, 2008) have re-

cently focused on the analysis of the geometrical curvature and

the position uncertainty of laser scanner measurement. The intro-

duction of features of interest seems indeed very effective, since

it allows to focus the registration process on the most reliable re-

gions. The ”reliability” may be evaluated according to planar cri-

teria or with scale-space analysis (Sharp et al., 2002). For more

complex environments with specifics patterns, other primitives

may be introduced: the method of (Rabbani et al., 2007), de-

signed for industrial areas, relies on various shapes such as planar

patches, spheres, cylinders and tori. More generally, Demantké

et al. (2011), similarly to Brodu and Lague (2012), have devel-

oped a multi-scale analysis of lidar points, based solely on the

3D information. Such analysis allowed them to retrieve for each

point the optimal neighborhood size and the prominent behaviour

of the vicinity (linear, planar, or volumetric). Our goal is there-

fore to introduce such geometric primitive knowledge in the ICP

registration procedure using this local geometrical analysis.

For the case of roughly aligned datasets, the ICP method provides

a rather robust, fast, and accurate result for fine alignment step.

Since we focus on pair-wise registration of datasets that do not

exhibit large changes (especially in rotation), the coarse 3D reg-

istration issue is beyond the scope of this article.

In this paper, the geometrical features of interest are first pre-

sented (Section 2). Then, the four steps of the ICP algorithm

are described in Section 3. For each step, the introduction of

the proposed features is discussed. After a short presentation of

the datasets in Section 4, the different variants of the ICP algo-

rithm are evaluated and compared in Section 5. Finally, an opti-

mized combination of ICP variants is proposed, and conclusions

are drawn in Section 6.

2 GEOMETRICAL FEATURES

In order to retrieve robust features that can be introduced in the

ICP procedure, we follow the method proposed in (Demantké et

al., 2011). It aims to find, for each 3D point, the optimal neigh-

borhood size. For that purpose, the simple knowledge of the three

geographical coordinates are sufficient, and allows the method to

be applied to any kind of lidar point cloud. This is a two-step ap-

proach. In a first time, dimensionality features (1D, 2D, 3D) are

proposed for a given neighborhood size of spherical shape. Then,

the size of the neighborhood is adjusted in order to minimize an

entropy function, that provides the most salient scale of analysis

and the associated dimension.
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2.1 Dimensionality features

For a given radius r, and its associated spherical neighborhood

Vr , a Principal Component Analysis is performed to obtain three

eigenvalues (λ1, λ2, λ3), such as λ1 ≥ λ2 ≥ λ3 ≥ 0, and three

eigenvectors (−→v1 ,−→v2 ,−→v3). One can notice that −→v3 provides a ro-

bust value of the normal of the 3D point, noted −→n . The standard

deviation along an eigenvector i is denoted by:

∀ i ∈ [1, 3], σi =
√
λi. (1)

The shape of Vr is then represented by an oriented ellipsoid.

Three geometrical features are introduced in order to describe the

linear (a1D), planar (a2D) or scatter (a3D) behaviors within Vr:

a1D =
σ1 − σ2

σ1
, a2D =

σ2 − σ3

σ1
, a3D =

σ3

σ1
. (2)

These three features are normalized so that a1D+a2D+a3D = 1.

This allows to consider them as the probabilities of each point to

be labeled as linear (1D), planar (2D) or volumetric (3D). These

low-level primitives are considered to be sufficient to coarsely

describe the main behaviours within a point cloud. Since the

method is designed to be independent to any information about

the acquisition process (objects, point density, scan pattern etc.),

additional geometrical description would introduce noise in the

process and make the process less general. For the specific case

of airborne laser scanning, the reader should refer to (Jutzi and

Gross, 2009) where a more complete analysis is performed on

which kinds of geometrical behaviours can be detected and la-

beled. The dimensionality labeling (1D, 2D, or 3D) of Vr is de-

fined by:

d
∗(Vr) = argmax

d∈[1,3]
[adD]. (3)

If σ1 ≫ σ2, σ3, then a1D is greater than the two other features,

and the dimensionality label d∗(Vr) results to 1. This corre-

sponds to edges between planar surfaces, poles, traffic lights, tree

trunks etc. Conversely, in case of planar surface or slightly curved

areas, σ1, σ2 ≫ σ3, and a2D will prevail. Finally, σ1 ≃ σ2 ≃ σ3

implies d∗(Vr) = 3 (vegetation, spatially scattered objects etc.).

2.2 Optimal neighborhood radius

The dimensionality features are computed for increasing radii

values between a lower bound rmin to an upper bound rmax, us-

ing a square factor. Demantké et al. (2011) describe how these

bounds can be automatically retrieved and how the [rmin, rmax]
space can be efficiently discretized.

For each radius r, and for each point P , a measure of unpre-

dictability is given by the Shannon entropy of the discrete proba-

bility distribution (a1D, a2D, a3D):

Ef (Vr
p) = −a1D ln(a1D)− a2D ln(a2D)− a3D ln(a3D). (4)

Then, the optimal neighborhood radius is obtained as the mini-

mum the entropy function Ef (cf. Figure 1):

r
∗
P = argmin

r∈[rmin, rmax]

Ef (Vr
P ). (5)

The optimal neighborhood V∗, associated to r∗ is finally used

to compute a dimensionality labeling d∗(Vr∗

P ), noted d∗ in the

following sections.

2.3 Features of interest

Various features have been computed in the previous sections,

and several other can be derived from these ones. One main fea-

ture of interest is the omnivariance V (Gross and Thoennessen,

2006), which is the product of the σi, thus proportional to the

ellipsoid volume. It allows to characterize the shape of the neigh-

borhood, and, in particular, to enhance whether one or two eigen-

values are prominent.

V =
∏

i∈[1,3]

σi. (6)

Finally, each 3D point of the cloud can be described by the fol-

lowing features:

{λ1, λ2, λ3,
−→v1 ,−→v2 ,−→v3 , a1D, a2D, a3D, d

∗
, r

∗
, E

∗
f , V }, (7)

with E∗
f = Ef (V

r∗

p ) and −→v3 = −→n .

In practice, only the features considered as the most discrimina-

tive have been retained for ICP. They are:

(−→n , d
∗
, r

∗
, E

∗
f , V ). (8)

One can note that −→n and V have been computed from the optimal

neighborhood, and thus also benefit from the described method.−→n provides a robust approximation of the point normal. V allows

a global description of the shape of the neighborhood. Since the

λi are correlated, they are not conserved.

Figure 1 gives an illustration of the entropy feature for a building

facade acquired with a Mobile Mapping System.

Figure 1: Entropy E∗
f : 0 (light blue)→1 (dark blue).

3 OPTIMIZING ICP

3.1 ICP steps

The purpose of Iterative Closest Point algorithm is to perform

the registration of two coarsely aligned point clouds (a mobile

point cloud registered on a reference point cloud). The algorithm

is composed of four steps. First, a reduced number of points is

selected to find suitable candidates for registration. Then, match-

ing points are found between the two points clouds, and each

corresponding pair is weighted. Furthermore, an error metric is

traditionally designed with respect to the context and the area of

interest, and finally minimized, providing transformation param-

eters (translation and rotation). For each step, various existing

variants exist (Rusinkiewicz and Levoy, 2001).

Selection aims to sample the initial point cloud in order to reduce

computation time caused by large data sets. Efforts on efficient

selection will be performed here.

Matching deals with the search for (robust) corresponding point

pairs. The simplest and the most widely adapted one is to find

the closest point in the reference point cloud. Since this solution

may be sensitive to noise, other methods use surfaces/meshes to

compute point-to-surface matching. Then, a compatibility metric

can be designed to refine the matching, for example using color

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume I-3, 2012 
XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia

112



(Godin et al., 1994) or normals (Pulli, 1999). Since, no underly-

ing surface can be considered in our datasets, we have adopted

the point-to-point strategy, and did not modify it.

Weighting / Rejecting consists in adding some contextual knowl-

edge for each corresponding pair of interest. Firstly, each of them

can be weighted with respect to the neighborhood or the global

point cloud. Our features of interest are likely to be relevant for

this step. Secondly, the worst pairs may be rejected using, most

of the times, statistics on the whole point cloud. Improvements

will also be proposed here.

Minimizing. Given a set of matching points C = {(Pmob
i , P ref

i )}i
of two point clouds (mobile & reference) weighted with wi, the

purpose to the last step of the ICP algorithm is to find the transfor-

mation T minimizing the sum of the squared distances between

each couple of points. The two most frequently adapted distances

in the literature are the point-to-point distance, and the point-to-

plane distance using the normal of each point. Since the local

normal vector is assumed to be reliable thanks to the adopted

multi-scale analysis, the second option is adopted. The optimal

transformation T ∗ is computed as follows:

T ∗ = argmin
T

∑

i∈C

wi((T ∗ Pmob
i − P

ref
i ) �−→ni)

2
. (9)

No further improvement is proposed.

3.2 Selection step

A naive strategy is to randomly subsample the point cloud so

that the general distribution of the points is preserved (Turk and

Levoy, 1994). As a multi-scale analysis, different samples can

also be performed at each iteration (Masuda et al., 1996).

Another strategy is to select points with high intensity gradient if

color or intensity is available (Godin et al., 1994). Rusinkiewicz

and Levoy (2001) prefer selecting points so as to preserve a dis-

tribution of normals as large as possible.

As alternatives, two solutions based on our geometrical features

of interest are proposed. Two features allow to focus the selection

step on the most reliable areas for accurate registration. An area

is considered as ”unreliable” if it corresponds to (1) the bound-

ary between several objects or surfaces, or to (2) a geometrically

complex object. In such cases, since the acquisition processes

of the two point clouds may be distinct, the local geometries are

likely to be dissimilar. Lines are traditional strong cues for regis-

tration, but with the adopted method, they will be discarded.

• High-entropy selection: As described in Section 2.2, the

larger E∗
f , the more prominent a single dimension. This

means that the local geometry is simple enough to take a

strong decision, thus designing salient regions of the 3D

point cloud (Figure 1).

• Dimensionality-based selection: Linear behaviours corre-

spond to border between surfaces and thin objects (Demantké

et al., 2011). It is preferred to remove them from the follow-

ing steps of the ICP algorithm. The same conclusion can

be drawn with scattered objects, such as vegetation that will

not have the same sampling, depending on the point of view.

3.3 Weighting step

After searching corresponding pairs, each of them is weighted.

Several weighting functions of two points (P1, P2) exist in the lit-

erature (Godin et al., 1994). The basic one is the constant weight-

ing function wC(P1, P2) = w0, w0 being arbitrarily set.

Another strategy consists in adding a weighting function d:

wD(P1, P2) = 1 − d(P1,P2)
dmax

, where dmax is the maximum value

of this function for the set of pairs.

The Euclidian norm d(.) = d2(.) = ‖.‖ is often used. Since

specific geometrical features have been introduced, an omnivari-

ance compatibility metric dV (p1, p2) is first proposed. It is based

on the difference of the ellipsoid volumes V . Thus, a weighting

function wV (P1, P2) is designed as follows:

wV (P1, P2) = 1− dV (P1, P2)

dmax

, (10)

where:

dV (P1, P2) = |VP1
− VP2

|. (11)

Furthermore, normal compatibility can be inserted to define an-

other weighting function: wN (P1, P2) = −→n1.
−→n2. Since normal

computation has been improved using the method of (Demantké

et al., 2011), this solution is also tested.

3.4 Rejecting step

The literature generally proposes to reject the worst correspond-

ing pairs, based on various distance criteria:

• distance threshold;

• distance more than 2.5 times the standard deviation of dis-

tances of pairs (Masuda et al., 1996);

• rank filter: n% with the greatest distance (Pulli, 1999).

The rejection distance is not necessary the same as for the match-

ing step. Here, dV is adopted in order to discard the worst corre-

sponding pairs:

• n% with the greatest distance, using dV .

4 DATASETS

Three kinds of lidar datasets are exploited in order to assess the

relevance and performance of each proposed variant of the algo-

rithm. These datasets have various point densities, point distri-

bution, and points of view since they have been acquired with

different lidar systems: airborne (ALS), terrestrial static (TLS),

and mobile mapping systems (MMS).

ALS This dataset has been acquired over a dense urban area

(city center with low-elevated buildings, cf. Figure 2). Two strips

from two different dates are used. Furthermore, each strip was ac-

quired with distinct airborne lidar scanners, resulting in two dif-

ferent ground patterns. The proposed method will be tested on an

overlapping area. The first acquisition (ALS 03) was completed

in 2003 (point density of 5 pts/m2, 400, 000 pts, very irregular

spatial sampling) with a Toposys fiber scanner. The second ac-

quisition (ALS 08) occurred in 2008 (point density of 2 pts/m2,

90, 000 pts, oscillating mirror) with an Optech 3100 EA device.

In such a case, the registration allows to compute high accuracy

change map, and is a key step for 3D change detection methods.

TLS The second dataset (TLS) concerns an indoor environment

(point density of 0.3 pts/cm2, 20, 000 pts). Two points of view

of the same area (office desk covered with various objects) were

consecutively acquired with the same Trimble system (Figure 3).

MMS This dataset covers one building in an urban area (Fig-

ure 4). The mobile mapping system acquired two times the same

area the same day. The challenges are that: (1) not exactly the

same parts of the buildings are sampled, and (2) a 3D shift be-

tween both point clouds naturally exists, due to georeferencing

process (drift during the inertial measurement as well as GPS
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Figure 2: ALS dataset. Left: ALS 03. Right: ALS 08, colored

with respect to the altitude (low (blue)→high (red)).

Figure 3: TLS dataset, with two points of view, colored using

ambient occlusion.

masks). Thus, a registration is required. The point cloud den-

sity is very variable, even inside the same point cloud, depending

on the angle of incidence of the variable distance between ob-

jects and the MMS. However, the typical density on the facades

of the buildings is near 100 pts/m2 (around 200, 000 pts per point

cloud). This fluctuating density is another challenge for the reg-

istration step.

Figure 4: MMS dataset colored using ambient occlusion: two

acquisitions of the same area, but with a temporal shift.

5 EXPERIMENTS

Firstly, the comparison protocol will be detailed. Then, it will be

applied at each proposed variant of the ICP algorithm, in order to

evaluate each of them, and find the best proposition. Therefore,

fifteen different solutions have been tested on three datasets. All

of them are presented and commented, but variants with the worst

results are not illustrated.

5.1 Comparison method

Point cloud registrations can be compared by straightforwardly

computing, for each mobile point cloud, the mean of the distances

of the closest points in the reference point cloud. Nevertheless,

non-overlapping areas may exist: this value is thus not relevant

for that purpose.

To address this issue, the n-resolution Rn of a point cloud is de-

fined by the mean distance of the n-closest points in the same

cloud. In our experiments, the value n = 5 is selected, even if

the selection of the optimal neighbors would have been a better

solution. Then, a distance threshold t = 10×Rn has been intro-

duced, and the mean of the distances smaller than t (noted t̄) is

computed. Finally, the performance of each variant is evaluated

through a graph of the variations of t̄ with respect to the number

of iterations (i.e., the convergence speed), computed on a Intel

Core2 2.83GHz CPU with 4GB of RAM. These results are com-

pared with a default configuration, considered at each stage of the

registration process. Such a configuration is:

• Selection: all 3D points;

• Matching: closest point;

• Weighting: constant weight wC ;

• Rejecting: none, all corresponding pairs;

• Minimizing: point-to-point distance, without normal com-

putation.

5.2 Selecting

Four variations discussed in Section 3.2 have been selected, and

are analyzed here. The point cloud is first randomly sampled

(random): 10% of the points are conserved. Then, only the 3D

points with high entropy values (E∗
f ) are selected. Two thresh-

olds are tested: E∗
f > 0.6, and E∗

f > 0.7. Finally, points with

locally linear and scattered behaviours are discarded, resulting in

an additional variant: points with d∗ = 2. Results are presented

in Figure 5.

Figure 5: Results of the Selection step.

The first conclusion is that faster and more accurate registrations

can be achieved with proposed selection variants. In this step, the

most effective attribute is, for the three datasets, the dimension-

ality feature d∗, which allows to focus on planar surfaces. Both

improvements are noticed for the ALS and TLS datasets. For the

MMS dataset, there are only slight differences with the default

configuration, which is still a valid solution.

The random subsampling of the point clouds often achieves the

worst results, and should be discarded. Finally, the entropy-based

selection improves the convergence time by a factor of 5 to 7, de-

pending on the value of the threshold. However, the accuracy is

sometimes lower than the default configuration.

Therefore, the E∗
f feature should be introduced for registration

problems where a trade-off between accuracy and speed has to

be found. For highly sampled objects (TLS and MMS datasets),

E∗
f is all the more relevant as it allows to tune how confident on

the local analysis we are. It is directly related to how well a sur-

face is described with the available point density. Thus, when the

point density is not sufficient, such as for the ALS dataset, this

solution is less efficient.
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5.3 Weighting

Two different weighting functions have been proposed and com-

pared to the default configuration : the normal compatibility wN ,

and the omnivariance-based weight wV . Results are shown in

Figure 6. The ALS dataset has been ignored because all the pro-

posed variants failed to improve the registration with respect to

default procedure. Concerning TLS and MMS datasets, the de-

fault weighting provides the best results both in terms of accuracy

and speed. The normal compatibility wN provides correct results

but worse than the omnivariance-based weight wV , which allows

to achieve performance almost similar to the default weighting.

Figure 6: Weighting step results.

5.4 Rejecting

Finally, for the rejection step, five configurations have been pro-

posed, and tested on each dataset.

• Rank filter: only the best matches are kept. Two distances

are used:

– The Euclidian distance d2, rejecting 70% of the pairs

(d702 ).

– The omnivariance-based distance dV , rejecting 50%

(d50V ), 70% (d70V ), or 90% (d90V ) of the pairs.

• Distance threshold, that has to be inferior to 2.5 times the

standard deviation of the pair distances: 2.5σd.

The rejection step allows to improve the accuracy of the regis-

tration. However this step has no influence on the convergence

speed of the algorithm. The omnivariance-based method gives

the same results as the default method for the ALS dataset with

90% of rejection, and poorer results are achieved with a smaller

percentage of rejection (Figure 7). Nevertheless, this rejecting

method allows to improve the registration accuracy in both TLS

and MMS datasets.

The Euclidian distance d2 rejection and distance threshold of

2.5σd, are less accurate than the default rejecting method on the

MMS, whereas they give better results on the ALS datasets. Con-

versely, they fail on the TLS dataset, that is why results are omit-

ted for TLS in Figure 7.

5.5 Proposal of an optimal variant

As detailed in the three last sections, the selecting step can be im-

proved by focusing on high entropy points. Besides, the weight-

ing step has no influence on the performance of ICP. Furthermore,

rejecting points using an omnivariance criterion provides satisfac-

tory results, illustrated in Figures 10 and 12. This is particularly

visible in Figure 13, where no change exists between both sur-

veys. Figures 9 and 11 enhance the relevance of accurate regis-

tration for change or mobile object detection since slight changes

can be noticed (vegetation in ALS), and the method is less sensi-

tive to low overlap between both acquisitions (TLS dataset). The

main limitation of the proposed approach is the failure of im-

provement of ALS strip registration. This may come from the

Figure 7: Rejecting step results.

fact that with low point densities (about 2 pts/m2), optimal local

supports are difficult to retrieve. Additional conclusion require

to test the method with ALS datasets with higher point densi-

ties. Finally, the optimal variant, suitable both for TLS and MMS

datasets, is therefore:

• Selecting only points with E∗
f > 0.7;

• Weighting: constant weight;

• Rejecting: keep only the 70% best matches using dV .

However, ALS dataset can be successfully registered using d702
rejection and d∗ = 2 selection (Figure 8).

✻
Z ✲✛2m

Figure 8: Illustration of the registration procedure for the ALS

dataset (default configuration, one color per strip, focus on a

building corner, profile view). Left: before registration. Right:

after registration.

Figure 9: Registration accuracy for the ALS dataset (default con-

figuration), colored according to t̄ (0 m (blue)→ 5 m (red)).
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Figure 10: Illustration of the proposed ICP optimal variant for

the TLS dataset, colored using ambient occlusion. Left: before

registration. Right: after registration. No shift can be noticed.

Figure 11: Registration accuracy for the TLS dataset (optimal

configuration), colored according to t̄ (0 m (blue)→ 1 cm and

more (red)).

6 CONCLUSION

In this paper, we have demonstrated how the standard and well-

known Iterative Closest Point algorithm can be improved by us-

ing geometrical features which optimally describe the neighbor-

hood of each 3D point. Our method, which both takes into ac-

count the neighborhood shape and how confident in the estimate

of this shape we are, allowed to simply improve two of the four

steps of the method. Since the computation of the features of

interest only requires the knowledge of the position of the 3D

points, the method has been tested for various lidar datasets. Sat-

isfactory results have been obtained for terrestrial static and mo-

bile mapping system datasets, both in terms of accuracy and speed.

No improvement has been noticed for the airborne dataset.

Future work will focus on three main issues. Firstly, the geomet-

ric features should allow to speed up the matching step by intro-

ducing a specific distance function. Secondly, the neighborhood

analysis of a point should not be reduced to its supposed optimal

scale since, in reality, several scales of interest exist. Multi-scale

features have to be designed (Sharp et al., 2002). Finally, these

features of interest may be used in order to find key points in the

3D point cloud that would allow to compute a first coarse regis-

tration when this step is mandatory.
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