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ABSTRACT

Measurement and estimation of packet loss characteristics are chal-
lenging due to the relatively rare occurrence and typically short du-
ration of packet loss episodes. While active probe tools are com-
monly used to measure packet loss on end-to-end paths, there has
been little analysis of the accuracy of these tools or their impact
on the network. The objective of our study is to understand how
to measure packet loss episodes accurately with end-to-end probes.
We begin by testing the capability of standard Poisson-modulated
end-to-end measurements of loss in a controlled laboratory envi-
ronment using IP routers and commodity end hosts. Our tests show
that loss characteristics reported from such Poisson-modulated probe
tools can be quite inaccurate over a range of traffic conditions. Mo-
tivated by these observations, we introduce a new algorithm for
packet loss measurement that is designed to overcome the deficien-
cies in standard Poisson-based tools. Specifically, our method cre-
ates a probe process that (1) enables an explicit trade-off between
accuracy and impact on the network, and (2) enables more accu-
rate measurements than standard Poisson probing at the same rate.
We evaluate the capabilities of our methodology experimentally by
developing and implementing a prototype tool, called BADABING.
The experiments demonstrate the trade-offs between impact on the
network and measurement accuracy. We show that BADABING re-
ports loss characteristics far more accurately than traditional loss
measurement tools.

Categories and Subject Descriptors: C.2.3 [Network Operations]:
Network monitoring, C.2.5 [Local and Wide-Area Networks]: In-
ternet (e.g., TCP/IP), C.4 [Performance of Systems]: Measurement
Techniques

General Terms: Algorithms, Design, Experimentation, Measure-
ment

Keywords: Active Measurement, BADABING, Network Conges-
tion, Network Probes, Packet Loss
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1. INTRODUCTION
Measuring and analyzing network traffic dynamics between end

hosts has provided the foundation for the development of many dif-
ferent network protocols and systems. Of particular importance is
understanding packet loss behavior since loss can have a signifi-
cant impact on the performance of both TCP- and UDP-based ap-
plications. Despite efforts of network engineers and operators to
limit loss, it will probably never be eliminated due to the intrinsic
dynamics and scaling properties of traffic in packet switched net-
work [19]. Network operators have the ability to passively monitor
nodes within their network for packet loss on routers using SNMP.
End-to-end active measurements using probes provide an equally
valuable perspective since they indicate the conditions that appli-
cation traffic is experiencing on those paths.

The most commonly used tools for probing end-to-end paths to
measure packet loss resemble the ubiquitous PING utility. PING-
like tools send probe packets (e.g., ICMP echo packets) to a target
host at fixed intervals. Loss is inferred by the sender if the response
packets expected from the target host are not received within a spec-
ified time period. Generally speaking, an active measurement ap-
proach is problematic because of the discrete sampling nature of
the probe process. Thus, the accuracy of the resulting measure-
ments depends both on the characteristics and interpretation of the
sampling process as well as the characteristics of the underlying
loss process.

Despite their widespread use, there is almost no mention in the
literature of how to tune and calibrate [28] active measurements
of packet loss to improve accuracy or how to best interpret the
resulting measurements. One approach is suggested by the well-
known PASTA principle [36] which, in a networking context, tells
us that Poisson-modulated probes will provide unbiased time av-
erage measurements of a router queue’s state. This idea has been
suggested as a foundation for active measurement of end-to-end de-
lay and loss [3]. However, the asymptotic nature of PASTA means
that when it is applied in practice, the higher moments of measure-
ments must be considered to determine the validity of the reported
results. A closely related issue is the fact that loss is typically a rare
event in the Internet [39]. This reality implies either that measure-
ments must be taken over a long time period, or that average rates
of Poisson-modulated probes may have to be quite high in order to
report accurate estimates in a timely fashion. However, increasing
the mean probe rate may lead to the situation that the probes them-
selves skew the results. Thus, there are trade-offs in packet loss
measurements between probe rate, measurement accuracy, impact
on the path and timeliness of results.



The goal of our study is to understand how to accurately mea-
sure loss characteristics on end-to-end paths with probes. We are
interested in two specific characteristics of packet loss: loss episode

frequency, and loss episode duration [39]. The commonly referred
to notion of loss rate [8, 27] can be estimated directly from these
two measurements. Our study consists of three parts: (i) empirical
evaluation of the currently prevailing approach, (ii) development of
estimation techniques that are based on novel experimental design,
novel probing techniques, and simple validation tests, and (iii) em-
pirical evaluation of this new methodology.

We begin by testing standard Poisson-modulated probing in a
controlled and carefully instrumented laboratory environment con-
sisting of commodity workstations separated by a series of IP routers.
Background traffic is sent between end hosts at different levels of
intensity to generate loss episodes thereby enabling repeatable tests
over a range of conditions. We consider this setting to be ideal for
testing loss measurement tools since it combines the advantages of
traditional simulation environments with those of tests in the wide
area. Namely, much like simulation, it provides for a high level
of control and an ability to compare results with “ground truth.”
Furthermore, much like tests in the wide area, it provides an abil-
ity to consider loss processes in actual router buffers and queues,
and the behavior of implementations of the tools on commodity
end hosts. Our tests reveal two important deficiencies with simple
Poisson probing. First, individual probes often incorrectly report
the absence of a loss episode (i.e., they are successfully transferred
when a loss episode is underway). Second, they are not well suited
to measure loss episode duration over limited measurement peri-
ods.

Our observations about the weaknesses in standard Poisson prob-
ing motivate the second part of our study: the development of a dif-
ferent approach for end-to-end loss measurement. There are three
key elements in this new approach. First, we design a probe pro-
cess that assesses the likelihood of loss experienced by other flows
that use the same path, rather than merely reporting its own packet
losses. Second, we design a new experimental framework with
estimation techniques that directly estimate the mean duration of
the loss episodes without estimating the duration of any individ-
ual loss episode. Our estimators are proved to be consistent, under
mild assumptions of the probing process. Third, we provide simple
validation tests (that require no additional experimentation or data
collection) for some of the statistical assumptions that underly our
analysis.

The third part of our study involves the empirical evaluation of
our new loss measurement methodology. To this end, we developed
a one-way active measurement tool called BADABING. BADABING

sends fixed-size probes at specified intervals from one measure-
ment host to a collaborating target host. The target system collects
the probe packets and reports the loss characteristics after a speci-
fied period of time. We also compare BADABING with a standard
tool for loss measurement that emits probe packets at Poisson inter-
vals. The results show that our tool reports loss episode estimates
much more accurately for the same number of probes.

The most important implication of these results is that there is
now a methodology and tool available for wide-area studies of packet
loss characteristics that enables researchers to understand and spec-
ify the trade-offs between accuracy and impact. Furthermore, the
tool is self-calibrating [28] in the sense that it can report when esti-
mates are poor. Practical applications could include its use for path
selection in peer-to-peer overlay networks and as a tool for network
operators to monitor specific segments of their infrastructures.

The remainder of the paper is structured as follows. In Section 2,
we consider related work in the areas of loss measurement tech-

niques and loss measurement studies. In Section 3, we provide
definitions for loss episode frequency and duration which provide
critical context for our probe process. Our laboratory testbed con-
figuration and results of our tests of basic Poisson-modulated prob-
ing are reported in Section 4. Details on our new probe process
and an analytic treatment of the validity of the resulting loss esti-
mators is provided in Section 5. A description of the tool that we
built to implement our probe process and results of its evaluation
experiments are described in Section 6. We provide a discussion
of practical considerations for using our tool in Section 7. A con-
cluding summary and future directions for this work are provided
in Section 8.

2. RELATED WORK
It is well known that packet loss can have a substantial impact

on the performance of a wide range of Internet protocols and ap-
plications. Understanding the characteristics and impact of packet
loss led, for example, to the development of the NewReno [15] and
SACK [21] versions of TCP. Loss characteristics are also a funda-
mental component of TCP throughput modeling [10, 22, 24].

There have been many studies of packet loss behavior in the In-
ternet. Bolot [8] and Paxson [27] evaluated end-to-end probe mea-
surements and reported characteristics of packet loss over a selec-
tion of paths in the wide area. Yajnik et al. evaluated packet loss
correlations on longer time scales and developed Markov models
for temporal dependence structures [37]. Zhang et al. character-
ized several aspects of packet loss behavior in [39]. In particular,
that work reported measures of constancy of loss episode rate, loss
episode duration, loss free period duration and overall loss rates.
The authors in [25] used a sophisticated passive monitoring infras-
tructure inside Sprint’s IP backbone to gather packet traces and
analyze loss episodes frequency and duration. Finally, Sommers
and Barford pointed out some of the limitations in standard end-
to-end Poisson probing tools by comparing the loss rates measured
by such tools to loss rates measured by passive means in a fully
instrumented wide area infrastructure [6].

The foundation for the notion that Poisson Arrivals See Time Av-
erages (PASTA) was developed by Brumelle in [9], and later for-
malized by Wolff in [36]. Adaptation of those queuing theory ideas
into a network probe context to measure loss and delay character-
istic began with Bolot’s study in [8] and was extended by Paxson
in [27]. Of particular relevance to our work is Paxson’s recom-
mendation and use of Poisson-modulated active probe streams to
reduce bias in delay and loss measurements. Several studies in-
clude the use of loss measurements to estimate network properties
such as bottleneck buffer size and cross traffic intensity [4, 29] .
The Internet Performance Measurement and Analysis efforts [16,
17] resulted in a series of RFCs that specify how packet loss mea-
surements should be conducted. However, those RFCs are devoid
of details on how to tune probe processes and how to interpret the
resulting measurements. We are also guided by Paxson’s recent
work in [28] where he advocates rigorous calibration of network
measurement tools.

ZING is a tool for measuring end-to-end packet loss in one di-
rection between two participating end hosts [2, 20]. ZING sends
UDP packets at Poisson-modulated intervals with fixed mean rate.
Savage developed the STING [30] tool to measure loss rates in both
forward and reverse directions from a single host. STING uses a
clever scheme for manipulating a TCP stream to measure loss. All-
man et al. demonstrated how to estimate TCP loss rates from pas-
sive packet traces of TCP transfers taken close to the sender. A
related study using passive packet traces taken in the middle of the
network was presented in [7]. Network tomography based on using



B
B out

in

R

QN

Figure 1: Simple model for system under consideration. N

flows on input links with aggregate bandwidth Bin compete for

a single output link on router R with bandwidth Bout where

Bin > Bout . The output link has Q seconds of buffer capacity.

both multicast and unicast probes has also been demonstrated to
be effective for inferring loss rates on internal links on end-to-end
paths [11, 12].

Finally, controlled laboratory environments like the one used in
this paper have begun to emerge as effective arenas for network
protocol and system evaluation (e.g., [18]). Environments such as
WAIL [1], DETER [32], and Emulab [35] are openly available to
the research community, often include IP routers as well as general
purpose workstations, and are ideal for measurement tool testing.

3. DEFINITIONS OF LOSS

CHARACTERISTICS
There are many factors that can contribute to packet loss in the

Internet. We will describe some of these in detail as a foundation
for understanding our active measurement objectives. The envi-
ronment that we consider is modeled as a set of N flows that pass
through a router R and compete for a single output link with band-
width Bout as depicted in Figure 1. The aggregate input bandwidth
(Bin) must be greater than the shared output link (Bout ) in order for
loss to take place. The typical round trip time for the N flows is
M seconds. Router R is configured with Q bytes of packet buffers
to accommodate traffic bursts, with Q typically sized on the order
of M ×B [5, 34]. We assume that the traffic includes a mixture of
short- and long-lived TCP flows as is common in today’s Internet,
and that the value of N will fluctuate over time.

Figure 2 is an illustration of how the occupancy of the buffer
in router R might evolve over time. Congestion occurs when the
aggregate sending rate of the N flows exceeds the capacity of the
shared output link. The onset of congestion results in filling of
the output buffer which is seen as a positive slope in queue length
graph. The rate of increase of the queue length depends both on
the number N and on sending rate of each source. A loss episode

begins when the aggregate sending rate has exceeded Bout for a
period of time sufficient to load Q bytes into the output buffer of
router R (e.g., at times a and c in Figure 2). A loss episode ends
when the aggregate sending rate drops below Bout and the buffer
begins a consistent drain down to zero (e.g., at times b and d in
Figure 2). This typically happens when TCP sources sense a packet
loss and halve their sending rate, or simply when the number of
competing flows N drops to a sufficient level. In the former case,
the duration of a loss episode is related to M, depending whether
loss is sensed by a timeout or fast retransmit signal. We define loss

episode duration as the difference between start and end times (i.e.,

b−a and d − c). While this definition and model for loss episodes
is somewhat simplistic and dependent on well behaved TCP flows,
it is important for any measurement method to be robust to flows
that do not react to congestion in a TCP-friendly fashion.

This definition of loss episodes can be considered a “router-centric”
view since it says nothing about when any one end-to-end flow ac-

tually loses a packet or senses a lost packet. This contrasts with
most of the prior work discussed in Section 2 which consider only
losses of individual or groups of probe packets. In other words,
in our methodology, a loss episode begins when the probability of
some packet loss becomes positive. During the episode, there might
be transient periods during which packet loss ceases to occur, fol-
lowed by resumption of some packet loss. The episode ends when
the probability of packet loss stays at 0 for a sufficient period of
time (longer than typical RTT). Thus, we offer two definitions for
packet loss rate:

• Router-centric loss rate. With L the number of dropped
packets on a given output link on router R during a given
period of time, and S the number all successfully transmitted
packets through the same link over the same period of time,
we define the router-centric loss rate as L/(S +L).

• End-to-end loss rate. We define end-to-end loss rate in ex-
actly the same manner as router-centric loss-rate, with the
caveat that we only count packets that belong to a specific
flow on interest.

It is important to distinguish between these two notions of loss
rates since packets are transmitted at the maximum rate Bout during
loss episodes. The result is that during a period where the router-
centric loss rate is non-zero, there may be flows that do not lose any
packets and therefore have end-to-end loss rates of zero. This ob-
servation is central to our study and bears directly on the design and
implementation of active measurement methods for packet loss.

4. SIMPLE POISSON PROBING FOR

PACKET LOSS
We begin by evaluating the capabilities of simple Poisson-modulated

loss probe measurements using the ZING tool [2, 20]. We tested
ZING in a series of experiments conducted in a laboratory environ-
ment consisting of commodity workstation end hosts and a series of
IP routers. We consider this to be an environment ideally suited to
understanding and calibrating end-to-end loss measurement tools.
Laboratory environments do not have the weaknesses typically as-
sociated with ns-type simulation (e.g., abstractions of measurement
tools, protocols and systems) [13], nor do they have the weaknesses
of wide area in situ experiments (e.g., lack of control, repeatability,
and complete, high fidelity end-to-end instrumentation). We ad-
dress the important issue of testing the tool under “representative”
traffic conditions by using a combination of the Harpoon IP traffic
generator [31] and Iperf [33] to evaluate the tool over a range of
cross traffic and loss conditions.

4.1 Testbed Setup
The laboratory testbed used in our experiments is shown in Fig-

ure 3. It consisted of commodity end hosts connected to a dumbbell-
like topology comprised of Cisco GSR 12000 routers. Both probe
and background traffic was generated and received by the end hosts.
Traffic flowed from the sending hosts on separate paths via Giga-
bit Ethernet to separate Cisco GSRs (hop B in the figure) where it
transitioned to OC12 (622 Mb/s) links. This configuration was cre-
ated in order to accommodate our measurement system, described
below. Probe and background traffic was then multiplexed onto a
single OC3 (155 Mb/s) link (hop C in the figure) which formed the
bottleneck where loss episodes took place. We used a hardware-
based propagation delay emulator on the OC3 link to add 50 mil-
liseconds delay in each direction for all experiments, and config-
ured the bottleneck queue to hold approximately 100 milliseconds
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Figure 3: Experimental testbed. Cross traffic scenarios consisted of constant bit-rate traffic, long-lived TCP flows, and Harpoon

web-like traffic. Cross traffic flowed across one of two routers at hop B, while probe traffic flowed through the other. Optical splitters

connected Endace DAG 3.5 and 3.8 passive packet capture cards to the testbed between hops B and C, and hops C and D. Probe

traffic flowed from left to right and the loss episodes occurred at hop C.

of packets. Packets exited the OC3 link via another Cisco GSR
12000 (hop D in the figure) and passed to receiving hosts via Giga-
bit Ethernet.

The probe and traffic generator hosts consisted of identically
configured workstations running Linux 2.4. The workstations had
2 GHz Intel Pentium 4 processors with 2 GB of RAM and Intel
Pro/1000 network cards. They were also dual-homed, so that all
management traffic was on a separate network than depicted in Fig-
ure 3.

One of the most important aspects of our testbed was the mea-
surement system we used to establish “ground truth” for our ex-
periments. Optical splitters were attached to both the ingress and
egress links at hop C and Endace DAG 3.5 and 3.8 passive monitor-
ing cards were used to capture traces of packets entering and leav-
ing the bottleneck node. DAG cards have been used extensively in
many other studies to capture high fidelity packet traces in live en-
vironments (e.g., they are deployed in Sprint’s backbone [14] and in
the NLANR infrastructure [23]). By comparing packet header in-
formation, we were able to identify exactly which packets were lost
at the congested output queue during experiments. Furthermore,
the fact that the measurements of packets entering and leaving hop
C were time-synchronized on the order of a single microsecond en-
abled us to easily infer the queue length and how the queue was
affected by probe traffic during all tests.

4.2 Performance of Poisson Probes
ZING is a tool for measuring packet delay and loss in one di-

rection on an end-to-end path. The ZING sender emits UDP probe
packets at Poisson-modulated intervals with timestamps and unique
sequence numbers and the receiver logs the probe packet arrivals.

Users specify the mean probe rate λ, the probe packet size, and the
number of packets in a “flight.”

To evaluate simple Poisson probing, we configured ZING using
the same parameters as in [39]. Namely, we ran two tests, one
with λ = 100ms (10 Hz) and 256 byte payloads and another with
λ = 50ms (20Hz) and 64 byte payloads. To determine the duration
of our experiments below, we selected a period of time that should
limit the variance of the loss rate estimator X̄ where Var(X̄n) ≈ p

n
for loss rate p and number of probes n.

We conducted three separate experiments in our evaluation of
simple Poisson probing. In each test we measured both the fre-
quency and duration of packet loss episodes. Again, we used the
definition in [39] for loss episode, namely, “a series of consecutive
packets (possibly only of length one) that were lost.” The first ex-
periment uses 40 infinite TCP sources with receive windows set to
256 full size (1500 bytes) packets. Figure 4 shows the time series of
the queue occupancy for a portion of the experiment; the expected
synchronization behavior of TCP sources in congestion avoidance
is clear. The experiment was run for a period of 15 minutes which
should have enabled ZING to measure loss rate with standard devi-
ation within 10% of the mean.

Results from the experiment with infinite TCP sources are shown
in Table 1. The table shows that ZING performs poorly in measuring
both loss frequency and duration in this scenario. For both probe
rates, there were no instances of consecutive lost packets, which
explains the inability to estimate loss episode duration.

In the second set of experiments, we used Iperf to create a series
of (approximately) constant duration (about 68 milliseconds) loss
episodes that were spaced randomly at exponential intervals with
mean of 10 seconds over a 15 minute period. The time series of the



queue length for a portion of the test period is shown in Figure 5.
Results from the experiment with randomly spaced, constant du-

ration loss episodes are shown in Table 2. The table shows that
ZING measures loss frequencies and durations that are closer to the
true values.

In the final set of experiments, we used Harpoon to create a se-
ries of loss episodes that approximate loss resulting from web-like
traffic. Harpoon was configured to briefly increase its load in order
to induce packet loss, on average, every 20 seconds. The variabil-
ity of traffic produced by Harpoon complicates delineation of loss
episodes. To establish baseline loss episodes to compare against,
we found trace segments where the first and last events were packet
losses, and queuing delays of all packets between those losses were
above 90 milliseconds (within 10 milliseconds of the maximum).
We ran this test for 15 minutes and a portion of the time series for
the queue length is shown in Figure 6.

Results from the experiment with Harpoon web-like traffic are
shown in Table 3. For measuring loss frequency, neither probe rate
results in a close match to the true frequency. For loss episode
duration, the results are also poor. For the 10 Hz probe rate, there
were no consecutive losses measured, and for the 20 Hz probe rate,
there were only two instances of consecutive losses, each of exactly
two lost packets.

Table 1: Results from ZING experiments with infinite TCP

sources.

frequency duration µ (σ)
(seconds)

true values 0.0265 0.136 (0.009)
ZING (10Hz) 0.0005 0 (0)
ZING (20Hz) 0.0002 0 (0)

Table 2: Results from ZING experiments with randomly spaced,

constant duration loss episodes.

frequency duration µ (σ)
(seconds)

true values 0.0069 0.068 (0.000)
ZING (10Hz) 0.0036 0.043 (0.001)
ZING (20Hz) 0.0031 0.050 (0.002)

Table 3: Results from ZING experiments with Harpoon web-

like traffic.

frequency duration µ (σ)
(seconds)

true values 0.0093 0.136 (0.009)
ZING (10Hz) 0.0014 0 (0)
ZING (20Hz) 0.0012 0.022 (0.001)

5. PROBE PROCESS MODEL
The results from our experiments described in the previous sec-

tion show that simple Poisson probing is generally poor for mea-
suring loss episode frequency and loss episode duration. These
results, along with deeper investigation of the reasons for partic-
ular deficiencies in loss episode duration measurement, form the
foundation for a new measurement process.
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Figure 5: Queue length time series for a portion of the experi-

ment with randomly spaced, constant duration loss episodes.

5.1 General Setup
Our methodology involves dispatching a sequence of probes,

each of which contains one or more very closely spaced packets.
The aim of a probe is to get a snapshot of the congestion state of
the network at the instant of probing. To this end, the record for
each probe indicates whether or not it encountered congestion, as
indicated by either the loss or sufficient delay of any of the packets
within a probe, as described in § 6. The reason for using multi-
packet probes is that not all packets passing through a congested
link are subject to loss; using multiple packets enables a more ac-
curate determination to be made.

The probes themselves are organized into what we term basic

experiments, each of which comprises a number of probes sent in
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rapid succession. The aim of the basic experiment is to determine
the dynamics of transitions between the congested and uncongested
state of the network. Below we show how this enables us to esti-
mate the duration of congestion periods.

A full experiment comprises a sequence of basic experiments
generated according to some rule. The sequence may be termi-
nated after some specified number of basic experiments, or after
a given duration, or in an open-ended adaptive fashion, e.g., until
estimates of desired accuracy for a congestion characteristic have
been obtained, or until such accuracy is determined impossible.

We formulate the probe process as a discrete-time process. This
decision is not a fundamental limitation: since we are concerned
with measuring congestion dynamics, we need only ensure that
the interval between the discrete time slots is smaller than the time
scales of the congested episodes. A congested slot is simply a time
slot during which congestion occurs. A congestion episode is a
maximal set of consecutive slots that are congested.

There are three steps in the explanation of our loss measurement
method (i.e., the experimental design and the subsequent estima-
tion). First, we present the basic algorithm version of our design.
This model is designed to provide estimators of the frequency of
congested slots and the duration of congestion episodes. The fre-
quency estimator is unbiased, and under relatively weak statistical
assumptions, both estimators are consistent in the sense they con-
verges to their respective true values as the number of measure-
ments grows.

Second, we describe the improved algorithm version of our de-
sign which provides loss episode estimators under weaker assump-
tions, and requires that we employ a more sophisticated experi-
mental design. In this version of the model, we insert a mechanism
to estimate, and thereby correct the possible bias of the estimators
from the basic design.

Third, we describe simple validation techniques that can be used
to assign a level of confidence to loss episode estimates. This en-
ables open-ended experimentation with a stopping criterion based
on estimators reaching a requisite level of confidence.

5.2 Basic Algorithm
For each time slot i we decide whether or not to commence a

basic experiment; this decision is made independently with some
fixed probability p over all slots. We indicate this series of de-
cisions through random variables {xi} that takes the value 1 (if a
basic experiment is started in slot i) and 0 otherwise.

If xi = 1, we dispatch two probes to measure congestion in slots i

and i+1. The random variable yi records the reports obtained from
the probes as a 2-digit binary number, i.e., yi = 00 means “both
probes did not observe congestion”, while yi = 10 means “the first
probe observed congestion while the second one did not”, and so
on. Our methodology is based on the following fundamental as-
sumptions, which, in view of the probe and its reporting design (as
described in § 6) are very likely to be valid ones. These assumptions

are required in both algorithmic versions. The basic algorithm re-
quires a stronger version of these assumptions, as we detail later.

5.2.1 Assumptions

We do not assume that the probes accurately report congestion:
we allow that congestion present in a given time slot may not be
observed by any of the probe packets in that slot. However, we do
assume a specific structure of the inaccuracy, as follows.

Let Yi be the true congestion state in slot i, i.e., Yi = 01 means that
there is no congestion at t = i and there is congestion at t = i + 1.
Here, true means the congestion that would be observed were we
to have knowledge of router buffer occupancy, queueing delays and

packet drops. Of course, the value of Yi is not available to us. Our
specific assumption is that yi is correct, i.e., equals Yi, at probability
pk that is independent of i and depends only on the number k of 1-
digits in Yi. Moreover, if yi is incorrect, it must take the value 00.
Explicitly,

(1) If Yi = 00 (= no congestion occurs) then yi = 00, too (= no
congestion reported), with probability 1.

(2) If Yi = 01 (= congestion begins), or Yi = 10 (= congestion
ends), then P(yi = Yi|(Yi = 01)∪ (Yi = 10)) = p1, for some
p1 which is independent of i. If yi fails to match Yi, then
necessarily, yi = 00.

(3) If Yi = 11 (= congestion is on-going), then P(yi = Yi|Yi =
11) = p2, for some p2 which is independent of i. If yi fails
to match Yi, then necessarily, yi = 00.

5.2.2 Estimation

The basic algorithm assumes that p1 = p2 for consistent duration
estimation, and p1 = p2 = 1 for consistent and unbiased frequency
estimation. The estimators are as follows:
Congestion Frequency Estimation is straightforward. Denote the
true frequency of congested slots by F . We define a random vari-
able zi whose value is the first digit of yi. Our estimate is then

F̂ = ∑
i

zi/M,

with the index i running over all the basic experiments we con-
ducted, and M is the total number of such experiments.

This estimator is unbiased, E[F̂ ] = F , since the expected value
of zi is just the congestion frequency F . Under mild conditions, the
estimator is also consistent. For example, if the durations of the
congestion episodes and congestion-free episodes are independent
with finite mean, then the proportion of congested slots during an
experiment over N slots converges almost surely, as N grows, to the
congestion frequency F , from which the stated property follows.
Congestion Duration Estimation is more sophisticated. Recall
that a congestion episode is one consecutive occurrence of “k con-
gestions” preceded and followed by “no congestion”, i.e., its binary
representation is written as:

01 . . .10.

Suppose that an oracle provides us with the state of the router’s
buffer at all possible time slots in our discretization. We then count
all congestion episodes and their durations and find out that for
k = 1,2, . . ., there were exactly jk congestion episodes of length k.
Then, congestion occurred over a total of

A = ∑
k

k jk

slots, while the total number of congestion episodes is

B = ∑
k

jk.

The average duration D of a congestion episode is then defined as

D := A/B.

In order to estimate D, we observe that, with the above structure
of congestion episodes in hand, there are exactly B time slots i for
which Yi = 01, and there are also B time slots i for which Yi = 10.
Also, there are exactly A + B time slots i for which Yi 6= 00. We
therefore define

R := #{i : yi ∈ {01,10,11}},



and

S := #{i : yi ∈ {01,10}}.
Now, let N be the total number of time slots. Then P(Yi ∈{01,10})=
2B/N, hence P(yi ∈ {01,10}) = 2p1B/N.
Similarly, P(Yi ∈{01,10,11})= (A+B)/N, and P(yi ∈{01,10,11})=
(p2(A−B)+2p1B)/N. Thus,

E(R)/E(S) =
p2(A−B)+2p1B

2p1B
.

Denoting r := p2/p1, we get then

E(R)/E(S) =
r(A−B)+2B

2B
=

rA

2B
− r/2+1.

Thus,

D =
2

r
×

(
E(R)

E(S)
−1

)
+1.

In the basic algorithm we assume r = 1, the estimator D̂ of D is
then obtained by substituting the measured values of S and R for
their means:

D̂ := 2× R

S
−1.

Note that this estimator is not unbiased for finite N, due to the
appearance of R in the quotient. However, it is consistent under
the same conditions as those stated above for F̂ , namely that con-
gestion is described by an alternating renewal process with finite
mean lifetimes D and D′ for the congested and uncongested peri-
ods, respectively. In this case (with r = 1) R/N converges almost
surely, as N grows, to p(D + 1)/(D + D′) while S/N converges to

2p/(D+D′), and hence D̂ converges almost surely to D.

5.3 Improved Algorithm
The improved algorithm is based on weaker assumptions than

the basic algorithm: we no longer assume that p1 = p2. In view
of the details provided so far, we will need, for the estimation of
duration, to know the ratio r := p1/p2. For that, we modify our
basic experiments as follows.

As before, we decide independently at each time slot whether to
conduct an experiment. With probability 1/2, this is a basic experi-
ment as before; otherwise we conduct an extended experiment com-
prising three probes, dispatched in slots i, i+1, i+2, and redefine yi

to be the corresponding 3-digit number returned by the probes, e.g.,

yi = 001 means “congestion was observed only at t = i + 2”, etc.
As before Yi records the true states that our ith experiment attempts
to identify. We now make the following additional assumptions.

5.3.1 Additional Assumptions

We assume that the probability that yi misses the true state Yi

(and hence records a string of 0’s), does not depend on the length
of Yi but only on the number of 1’s in the string. Thus, P(yi = Yi) =
p1 whenever Yi is any of {01,10,001,100}, while P(yi = Yi) = p2

whenever Yi is any of {11,011,110} (note that we ignore the states
010 and 101, but address them below).

We claim that these additional assumptions are realistic, but de-
fer the discussion until after we describe the reporting mechanism
for congestion.

With these additional assumptions in hand, we denote

U := #{i : yi ∈ {011,110}},
and

V := #{i : yi ∈ {001,100}}.

The combined number of states 011,110 in the full time series is
still 2B, while the combined number of states of the form 001,100
is also 2B. Thus, we have

E(U)

E(V )
= r,

hence, with U/V estimating r, we employ (5.2.2) to obtain

D̂ :=
2V

U
×

(
R

S
−1

)
+1.

5.4 Validation
When running an experiment, our assumptions require that sev-

eral quantities have the same mean. We can validate the assump-
tions by checking those means.

In the basic algorithm, the probability of yi = 01 is assumed to
be the same as that of yi = 10. Thus, we can design a stopping
criterion for on-going experiments based on the ratio between the
number of 01 measurements and the number of 10 measurements.
A large discrepancy between these numbers (that is not bridged
by increasing M) is an indication that our assumptions are invalid.
Note that this validation does not check whether r = 1 or whether
p1 = 1, which are two important assumptions in the basic design.

In the improved design, we expect to get similar occurrence rate
for each of yi = 01,10,001,100. We also expect to get similar oc-
currence rate for yi = 011,110. We can check those rates, stop
whenever they are close, and invalidate the experiment whenever
the mean of the various events do not coincide eventually. Also,
each occurrence of yi = 010 or yi = 101 is considered a violation
of our assumptions. A large number of such events is another rea-
son to reject the resulted estimations. Experimental investigation
of stopping criteria is future work.

5.5 Modifications
There are various straightforward modifications to the above de-

sign that we do not address in detail at this time. For example, in
the improved algorithm, we have used the triple-probe experiments
only for the estimation of the parameter r. We could obviously
include them also in the actual estimation of duration, thereby de-
creasing the total number of probes that are required in order to
achieve the same level of confidence.

Another obvious modification is to use unequal weighing be-
tween basic and extended experiments. In view of the expression
we obtain to D̂ there is no clear motivation for doing that: a miss in
estimating V/U is as bad as a corresponding miss in R/S (unless the
average duration is very small). Basic experiments incur less cost
in terms of network probing load. On the other hand, if we use the
reports from triple probes for estimating E(S)/E(R) then we may
wish to increase their proportion. Note that in our formulation, we
cannot use the reported events yi = 111 for estimating anything,
since the failure rate of the reporting on the state Yi = 111 is as-
sumed to be unknown. A topic for further research is to quantify
the trade-offs between probe load and estimation accuracy involved
in using extended experiments of 3 or more probes.

6. PROBE TOOL IMPLEMENTATION

AND EVALUATION
To evaluate the capabilities of our loss probe measurement pro-

cess, we built a tool called BADABING1 that implements the basic

1Named in the spirit of past tools used to measure loss including
PING, ZING, and STING. This tool is approximately 800 lines of
C++ and is available to the community for testing and evaluation.



algorithm from § 5. We then conducted a series of experiments
with BADABING in the same laboratory environment and with the
same test traffic scenarios described in § 4.

The objective of our lab-based experiments was to validate our
modeling method and to evaluate the capability of BADABING over
a range of loss conditions. We report results of experiments focused
in three areas. While our probe process does not assume that we al-
ways receive true indications of loss from our probes, the accuracy
of reported measurements will improve if probes more reliably in-
dicate loss. With this in mind, the first set of experiments was de-
signed to understand the ability of an individual probe (consisting
of 1 to N tightly-spaced packets) to accurately report an encounter
with a loss episode. The second is to examine accuracy of BAD-
ABING in reporting loss episode frequency and duration for a range
of probe rates and traffic scenarios. In our final set of experiments,
we compare the capabilities of BADABING with simple Poisson-
modulated probing.

6.1 Accurate Reporting of Loss Episodes by
Probes

An important component of our probe process is dealing with in-
stances where individual probes (where a probe consists of a series
of N packets) do not report loss accurately. In other words, ideally,
a given probe Pi should report the following:

Pi =

{
0 : if a loss episode is not encountered
1 : if a loss episode is encountered

It should be noted that this requirement is only for a probe, not
necessarily the individual packets within a probe. Satisfying this
requirement is problematic because, as noted in § 3, many pack-
ets are successfully transmitted during loss episodes. Thus, we
hypothesized that we might be able to increase the probability of
probes correctly reporting a loss episode by increasing the num-
ber of packets in an individual probe. We also hypothesized that,
assuming FIFO queueing, using one-way delay information could
further improve the accuracy of individual probe measurements.

We investigated the first hypothesis in a series of experiments
using the infinite TCP source background traffic and constant-bit
rate traffic described in § 4. For the infinite TCP traffic, loss event
duration were approximately 150 milliseconds. For the constant-
bit rate traffic, loss episodes were approximately 68 milliseconds
in duration. We used a modified version of BADABING to generate
probes at fixed intervals of 10 milliseconds so that some number of
probes would encounter all loss episodes. We experimented with
probes consisting of between 1 and 10 packets. Packets in an in-
dividual probe were sent back to back per the capabilities of the
measurement hosts (i.e., with approximately 30 microseconds be-
tween packets). Probe packet sizes were set at 600 bytes2.

Figure 7 shows the results of these tests. We see that for the
constant-bit rate traffic, longer probes have a clear impact on the
ability to detect loss. While about half of single-packet probes do
not experience loss during a loss episode, probes with just a couple
more packets are much more reliable indicators of loss. For the
infinite TCP traffic, there is also an improvement as the probes get
longer, but the improvement is relatively small. Examination of the
details of the queue behavior during these tests demonstrates why
the 10 packet probes do not greatly improve loss reporting ability

2This packet size was chosen to exploit an architectural feature of
the Cisco GSR so that probe packets had as much impact on inter-
nal buffer occupancy as maximum-sized frames. Investigating the
impact of packet size on estimation accuracy is a subject for future
work.
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Figure 7: Results from tests of ability of probes consisting of N

packets to report loss when an episode is encountered.

for the infinite source traffic. As shown in Figure 8, longer probes
begin to have a serious impact on the queuing dynamics during loss
episodes.

This observation, along with our hypothesis regarding one-way
packet delays, led to our development of an alternative approach for
identifying loss events. Our new method considers both individual
packet loss with probes and the one-way packet delay as follows.
For probes in which any packet is lost, we consider the one-way
delay of the most recent successfully transmitted packet as an es-
timate of the maximum queue depth (OWDmax). We then consider
a loss episode (or, more generally, a congestion episode) to be de-
limited by probes within τ seconds of an indication of a lost packet
(i.e., a missing probe sequence number) and having a one-way de-
lay greater than (1−α)×OWDmax. Using the parameters τ and α,
we mark probes as 0 or 1 according to § 5 and form estimates of
loss episode frequency and duration.

This formulation of probe-measured congestion assumes that queu-
ing at intermediate routers is FIFO. Also, we can keep a number of
estimates of OWDmax, taking the mean when determining whether
a probe is above the (1−α)×OWD threshold or not. Doing so
effectively filters loss at end host operating system buffers or in
network interface card buffers, since such losses are unlikely to be
correlated with end-to-end network congestion and delays.

We conducted a series of experiments with constant-bit rate traf-
fic to assess the sensitivity of the loss threshold parameters. Using
a range of values for probe send probability (p), we explored a
cross product of values for α and τ. For α, we selected 0.025, 0.05,
0.10, and 0.20, effectively setting a high-water level of the queue
of 2.5, 5, 10, and 20 milliseconds. For τ, we selected values of 5,
10, 20, 40, and 80 milliseconds. Figure 9(a) shows results for loss
frequency for a range of p, with τ fixed at 80 milliseconds, and α

varying between 0.05, 0.10, and 0.20 (equivalent to 5, 10, and 20
milliseconds). Figure 9(b) fixes α at 0.10 (10 milliseconds) while
letting τ vary over 20, 40, and 80 milliseconds. We see, as expected,
that with larger values of either threshold, estimated frequency in-
creases. There are similar trends for loss duration (not shown). We
also see that there is a trade-off between selecting a higher probe
rate and more “permissive” thresholds. It appears that the break-
even point for τ comes around the expected time between probes
plus one or two standard deviations. The best α appears to depend
both on the probe rate and on the traffic process and level of mul-



11.66 11.68 11.70 11.72 11.74

0
.0

9
8

0
0

.0
9

9
0

0
.1

0
0

0
0

.1
0

1
0

no probe traffic

time (seconds)

q
u

e
u

e
 l
e

n
g

th
 (

s
e

c
o

n
d

s
)

xx x x xx xx x x xx xx x xxx xxxx x xxxxx x

x
cross traffic packet

cross traffic loss

15.20 15.22 15.24 15.26 15.28 15.30

0
.0

9
8

0
0

.0
9

9
0

0
.1

0
0

0
0

.1
0

1
0

probe train of 3 packets

time (seconds)

q
u

e
u

e
 l
e

n
g

th
 (

s
e

c
o

n
d

s
)

oo

oo
o oo

o
oo

oo
o

oo
o o

oo
o

oo
o oo

oo
o

xx xx xx xxxxx xx x xx x x x x x x x xx xx x x xx x x x xx xxx xx

+ + ++ +

x

o
+

cross traffic packet

cross traffic loss

probe

probe loss

14.80 14.82 14.84 14.86 14.88 14.90

0
.0

9
8

0
0

.0
9

9
0

0
.1

0
0

0
0

.1
0

1
0

probe train of 10 packets

time (seconds)

q
u

e
u

e
 l
e

n
g

th
 (

s
e

c
o

n
d

s
)

x x xx xxxxx x x xx xxxxx x xxx x x xx x xx xxxxxxxxxxxxxx xx xxxxxxxxxxxx xx

oo
oo
oo
o
oo
o

oo
o
oo
ooo

oo
oo
oo
o
oo

o
o
o
oo
oo
oo
o

o
o
oo
o
o
oo

oo
oo
oo
oo
oo

o
o
oo
oo
oo
o

oo
oo
oo
o
oo oo

o

o
oo
oo
o
oo
o

o
oo
oo
oo
o
oo

++ + ++ + + +++++++ +

x

o
+

cross traffic packet

cross traffic loss

probe

probe loss

Figure 8: Queue length during a portion of a loss episode for

different size loss probes. The top plot shows infinite source

TCP traffic with no loss probes. The middle plot shows infi-

nite source TCP traffic with loss probes of three packets, and

the bottom plots shows loss probes of 10 packets. Each plot is

annotated with TCP packet loss events and probe packet loss

events.

tiplexing, which determines how quickly a queue can fill or drain.
Considering such issues, we discuss parameterizing BADABING in
general Internet settings in § 7.

6.2 Measuring Frequency and Duration
The formulation of our new loss probe process in Section 5 calls

for the user to specify two parameters, N and p, where p is the
probability of sending a probe at a given interval. In the next set
of experiments, we explore the effectiveness of BADABING to re-
port loss episode frequency and duration for a fixed N, and p using
values of 0.1, 0.3, 0.5, 0.7, and 0.9 (implying that probe traffic con-
sumed between 0.2% and 1.7% of the bottleneck link). With the
time discretization set at 5 milliseconds, we fixed N for these exper-
iments at 180,000, yielding an experiment duration of 900 seconds.
We also examine the loss frequency and duration estimates for a
fixed p of 0.1 and N of 720,000 from an hour-long experiment.

In these experiments, we used three different background traffic
scenarios. In the first scenario, we used Iperf to generate random

loss episodes at constant duration as described in Section 4. For
the second, we modified Iperf to create loss episodes of three dif-
ferent durations (50, 100, and 150 milliseconds), with an average
of 10 seconds between loss episodes. In the final traffic scenario,
we used Harpoon to generate web-like workloads as described in
§ 4. For all traffic scenarios, BADABING was configured with probe
sizes of 3 packets and with packet sizes fixed at 600 bytes. The
three packets of each probe were sent back-to-back, according to
the capabilities of our end hosts (approximately 30 microseconds
between packets). For each probe rate, we set τ to the expected
time between probes plus one standard deviation. For α, we used
0.2 for a probe rate of 0.1, 0.1 for probe rates of 0.3 and 0.5, and
0.5 for probe rates of 0.7 and 0.9.

For loss episode duration, results from our experiments described
below confirm the validity of the assumption made in § 5.4 that the
probability yi = 01 is very close to the probability yi = 10. That is,
we appear to be equally likely to measure in practice the beginning
of a loss episode as we are to measure the end. We therefore use
the mean of the estimates derived from these two values of yi.

Table 4 shows results for the constant bit rate traffic with loss
episodes of uniform duration. For values of p other than 0.1, the
loss frequency estimates are close to the true value. For all values
of p, the estimated loss episode duration was within 25% of the
actual value.

Table 5 shows results for the constant bit rate traffic with loss
episodes randomly chosen between 50, 100, and 150 milliseconds.
The overall result is very similar to the constant bit rate setup with
loss episodes of uniform duration. Again, for values of p other than
0.1 (i.e., very low-impact probing), the loss frequency estimates are
close to the true values, and all estimated loss episode durations
were within 25% of the true value.

Table 6 displays results for the setup using Harpoon web-like
traffic to create loss episodes. Since Harpoon is designed to gen-
erate average traffic volumes over relatively long time scales [31],
the actual loss episode characteristics over these experiments vary.
For loss frequency, just as with the constant bit rate traffic scenar-
ios, the estimates are quite close except for the case of p = 0.1. For
loss episode durations, all estimates except for p = 0.3 fall within
a range of 25% of the actual value. The estimate for p = 0.3 falls
just outside this range.

In Tables 4 and 5 we see, over the range of p values, an increas-
ing trend in loss frequency estimated by BADABING. This effect
arises primarily from the problem of selecting appropriate param-
eters α and τ, and is similar in nature to the trends seen in Fig-
ures 9(a) and 9(b). It is also important to note that these trends are
peculiar to the well-behaved CBR traffic sources: such an increas-
ing trend in loss frequency estimation does not exist for the signif-
icantly more bursty Harpoon web-like traffic, as seen in Table 6.
We also note that no such trend exists for loss episode duration
estimates. Empirically, there are somewhat complex relationships
among the choice of p, the selection of α and τ, and estimation ac-
curacy. While we have considered a range of traffic conditions in a
limited, but realistic setting, we have yet to explore these relation-
ships in more complex multi-hop scenarios, and over a wider range
of cross traffic conditions. We intend to establish more rigorous
criteria for BADABING parameter selection in our ongoing work.

Finally, Table 7 shows results from an experiment designed to
understand the trade-off between an increased value of p, and an
increased value of N. We chose p = 0.1, and show results using two
different values of τ, 40 and 80 milliseconds. The background traf-
fic used in these experiments was the simple constant bit rate traffic
with uniform loss episode durations. We see that there is only a
slight improvement in both frequency and duration estimates, with
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Figure 9: Comparison of the sensitivity of loss frequency estimation to a range of values of α and τ.

most improvement coming from a larger value of τ. Empirically
understanding the convergence of estimates of loss characteristics
as N grows larger is a subject for future experiments.

Table 4: BADABING loss estimates for constant bit rate traffic

with loss episodes of uniform duration.
p loss frequency loss duration

(seconds)
true BADABING true BADABING

0.1 0.0069 0.0016 0.068 0.054
0.3 0.0069 0.0065 0.068 0.073
0.5 0.0069 0.0060 0.068 0.051
0.7 0.0069 0.0070 0.068 0.051
0.9 0.0069 0.0078 0.068 0.053

Table 5: BADABING loss estimates for constant bit rate traffic

with loss episodes of 50, 100, or 150 milliseconds.
p loss frequency loss duration

(seconds)
true BADABING true BADABING

0.1 0.0083 0.0023 0.097 0.034
0.3 0.0083 0.0076 0.097 0.076
0.5 0.0083 0.0098 0.097 0.090
0.7 0.0083 0.0102 0.097 0.074
0.9 0.0083 0.0105 0.097 0.059

6.3 Comparing Loss Measurement Tools
Our final set of experiments compares BADABING with ZING

using the constant-bit rate and Harpoon web-like traffic scenarios.
We set the probe rate of ZING to match the link utilization of BAD-
ABING when p = 0.3 and the packet size is 600 bytes, which is
about 876 kb/s, or about 0.5% of the capacity of the OC3 bottle-
neck. Each experiment was run for 15 minutes. Table 8 summa-
rizes results of these experiments, which are similar to the results
of § 4. (Included in this table are BADABING results from row 2 of
Tables 4 and 6.) For the CBR traffic, the loss frequency measured
by ZING is somewhat close to the true value, but loss episode dura-
tions are not. For the web-like traffic, neither the loss frequency nor

Table 6: BADABING loss estimates for Harpoon web-like traffic

(Harpoon configured as described in § 4).
p loss frequency loss duration

(seconds)
true BADABING true BADABING

0.1 0.0044 0.0017 0.060 0.071
0.3 0.0011 0.0011 0.113 0.143
0.5 0.0114 0.0117 0.079 0.074
0.7 0.0043 0.0039 0.071 0.076
0.9 0.0031 0.0038 0.073 0.062

Table 7: Comparison of loss estimates for p = 0.1 and two dif-

ferent values of N and two different values for the τ threshold

parameter.
N τ loss frequency loss duration

(seconds)
true BADABING true BADABING

180,000 40 0.0059 0.0006 0.068 0.021
180,000 80 0.0059 0.0015 0.068 0.053
720,000 40 0.0059 0.0009 0.068 0.020
720,000 80 0.0059 0.0018 0.068 0.041

the loss episode durations measured by ZING are good matches to
the true values. Comparing the ZING results with BADABING, we
see that for the same traffic conditions and probe rate, BADABING

reports loss frequency and duration estimates that are significantly
closer to the true values.

7. USING BADABING IN PRACTICE
There are a number of important practical issues which must be

considered when using BADABING in the wide area:

• The tool requires the user to select values for p and N. Let us
assume for the sake of the current discussion that the num-
ber of loss events is stationary over time. (Note that we al-
low the duration of the loss events to vary in an almost ar-
bitrary way, and to change over time. One should keep in
mind that in our current formulation we estimate the aver-

age duration and not the distribution of the durations.) Let



Table 8: Comparison of results for BADABING and ZING with

constant-bit rate (CBR) and Harpoon web-like traffic. Probe

rates matched to p = 0.3 for BADABING (876 kb/s) with probe

packet sizes of 600 bytes. (BADABING results copied from row

2 of Tables 4 and 6.)
traffic tool loss frequency loss duration

scenario true measured true (sec) measured (sec)

CBR BADABING 0.0069 0.0065 0.068 0.073
ZING 0.0069 0.0041 0.068 0.010

Harpoon BADABING 0.0011 0.0011 0.113 0.143
web-like ZING 0.0159 0.0019 0.119 0.007

L be the mean number of loss events that occur over a unit
period of time. For example, if an average of 12 loss events
occur every minute, and our discretization unit is 5 millisec-
onds, then L = 12/(60× 200) = .001 (this is, of course, an
estimate of the true the value of L). With the stationarity as-
sumption on L, we expect the accuracy of our estimators to
depend on the product pNL, but not on the individual values
of p, N or L3. Specifically, a reliable approximation of the
standard deviation in our estimation of duration is given by:

StdDev(duration) ≈ 1√
pNL

Thus, the individual choice of p and N allow a trade off be-
tween timeliness of results and impact that the user is will-
ing to have on the link. Prior empirical studies can provide
initial estimates of L. An alternate design is to take mea-
surements continuously, and to report an when our validation
techniques confirm that the estimation is robust. This can be
particularly useful in situations where p is set at low level.
In this case, while the measurement stream can be expected
to have little impact on other traffic, it may have to run for
some time until a reliable estimate is obtained.

• Our estimation of duration is critically based on correct esti-
mation of the ratio B/M (cf. § 5). We estimate this ratio by
counting the occurrence rate of yi = 01, as well as the oc-
currence rate of yi = 10. The number B/M can be estimated
as the average of these two rates. The validation is done by
measuring the difference between these two rates. This dif-
ference is directly proportional to the expected standard devi-
ation of the above estimation. Similar remarks apply to other
validation tests we mention in both estimation algorithms.

• The recent study on packet loss via passive measurement re-
ported in [25] indicates that loss episodes in backbone links
can be very short-lived (e.g., on the order of several mi-
croseconds). The only condition for our tool to successfully
detect and estimate such short durations is for our discretiza-
tion of time to be finer, even in a slight way, than the or-
der of duration we attempt to estimate. Such a requirement
may imply that commodity workstations cannot be used for
accurate active measurement of end-to-end loss characteris-
tics in some circumstances. A corollary to this is that ac-
tive measurements for loss in high bandwidth networks may
require high-performance, specialized systems that support
small time discretizations.

• Our classification of whether a probe traversed a congested
path concerns not only whether the probe was lost, but how

3Note that estimators that average individual estimations of the du-
ration of each loss episode are not likely to perform that well at low
values of p.

long it was delayed. While an appropriate τ parameter ap-
pears to be dictated primarily by the value of p, it is not yet
clear how best to set α for an arbitrary path, when charac-
teristics such as the level of statistical multiplexing or the
physical path configuration are unknown. Examination of
the sensitivity of τ and α in more complex environments is a
subject for future work.

• To accurately calculate end-to-end delay for inferring con-
gestion requires time synchronization of end hosts. While
we can trivially eliminate offset, clock skew is still a con-
cern. New on-line synchronization techniques such as re-
ported in [26] or even off line methods such as [38] could be
used effectively to address this issue.

8. SUMMARY, CONCLUSIONS AND

FUTURE WORK
The purpose of our study was to understand how to measure

end-to-end packet loss characteristics accurately with probes and
in a way that enables us to specify the impact on the bottleneck
queue. We began by evaluating the capabilities of simple Poisson-
modulated probing in a controlled laboratory environment consist-
ing of commodity end hosts and IP routers. We consider this testbed
ideal for loss measurement tool evaluation since it enables repeata-
bility, establishment of ground truth, and a range of traffic condi-
tions under which to subject the tool. Our initial tests indicate that
simple Poisson probing is relatively ineffective at measuring loss
episode frequency or measuring loss episode duration, especially
when subjected to TCP (reactive) cross traffic.

These experimental results led to our development of a probe
process that provides more accurate estimation of loss characteris-
tics than simple Poisson probing. The experimental design is con-
structed in such a way that the performance of the accompanying
estimators relies on the total number of probes that are sent, but
not on their sending rate. Moreover, simple techniques that allow
users to validate the measurement output are introduced. We im-
plemented this method in a new tool, BADABING, which we tested
in our laboratory. Our tests demonstrate that BADABING, in most
cases, accurately estimates loss frequencies and durations over a
range of cross traffic conditions. For the same overall packet rate,
our results show that BADABING is significantly more accurate than
Poisson probing for measuring loss episode characteristics.

While BADABING enables superior accuracy and a better under-
standing of link impact versus timeliness of measurement, there
is still room for improvement. For example, we have considered
adding adaptivity to our probe process model in a limited sense.
We are also considering alternative, parametric methods for infer-
ring loss characteristics from our probe process. Another task is
to estimate the variability of the estimates of congestion frequency
and duration themselves directly from the measured data, under a
minimal set of statistical assumptions on the congestion process.
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