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Improving Accuracy in Estimation of
Artery-Wall Displacement by Referring to

Center Frequency of RF Echo
Hideyuki Hasegawa, Member, IEEE, and Hiroshi Kanai, Member, IEEE

Abstract—Noninvasive measurement of mechanical prop-
erties, such as elasticity, of the arterial wall, is useful for di-
agnosis of atherosclerosis. The elasticity of the arterial wall
can be estimated by combining measurement of displace-
ment of the arterial wall with that of blood pressure. In
general, the displacement of the arterial wall is estimated
from the phase shift of radio frequency (RF) echoes between
two consecutive frames using a correlation estimator with
quadrature demodulated complex signals. Recently, digi-
tized data of broadband RF echoes are available in modern
diagnostic equipment. The Fourier transform can be used
to estimate the phase of the RF echo at each frequency
within the RF frequency bandwidth. Therefore, the phase
shifts between RF echoes of two consecutive frames can be
estimated at multiple frequencies. In this estimation, due
to object displacement, the RF echo is time shifted in com-
parison with that of the previous frame. However, the po-
sition of the time window for the Fourier transform is not
changed between two consecutive frames. This change in
relative position between the RF echo and the time window
has a strong influence on the estimation of the artery-wall
displacement, resulting in error. To suppress this error, the
phase shift should be estimated at the actual RF center
frequency. In this paper, this error suppression was inves-
tigated through simulation experiments and in vivo exper-
iments on the human carotid artery.

I. Introduction

Noninvasive measurement of mechanical properties of
the arterial wall, such as elasticity, is useful for diag-

nosing atherosclerosis because there are significant differ-
ences between the elastic moduli of normal arterial walls
and those affected by atherosclerosis [1], [2].

For assessment of mechanical properties, various meth-
ods have been proposed to measure the displacement of the
arterial wall. Elasticity, based on estimation of the pulse
wave velocity (PWV) [3]–[6], and homogeneity of distensi-
bility [7], which is evaluated by using the change in diame-
ter obtained from displacements of the near and far walls,
are noninvasively evaluated by measuring displacements at
multiple points along the axial direction of the artery. By
definition, one-point measurement of the change in diame-
ter is widely used for assessment of mechanical properties
of the arterial wall [8]–[10].
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In addition to the displacement distribution in the ax-
ial direction of the artery, the distribution in the radial
direction of the arterial wall has been measured with in-
travascular ultrasonography (IVUS) [11], [12]. In the cited
studies, the elasticity distribution of coronary atheroscle-
rotic plaque was obtained by the measured displacement
distribution in the radial direction. Comparison of such
measured elasticity distribution with the pathological im-
age suggested the potential for tissue characterization of
atherosclerotic plaque by measuring its elasticity.

As a transcutaneous approach, the displacement and
strain around carotid atherosclerotic plaque have been
measured using tissue Doppler imaging [13]. The inhomo-
geneity in displacements measured upstream and down-
stream of atherosclerotic plaque suggested that artery-wall
motion has potential for use in the evaluation of plaque
vulnerability.

We have been measuring the displacement and change
in thickness of the arterial wall caused by the heartbeat
with transcutaneous ultrasound [14]–[16]. Elasticity im-
ages of the human carotid artery have been obtained by
the measured displacement distribution, and the novel
potential for transcutaneous tissue characterization has
been shown by classifying the elasticity images using the
elasticity reference data obtained by in vitro experiments
[17], [18].

In the various methods described above, an autocor-
relation technique [19] is widely used for measurement
of velocities of blood flow and tissue motion. This tech-
nique was designed to estimate the phase shift, ∆θ(f0),
with respect to the center frequency, f0, of a radio fre-
quency (RF) echo using a complex signal, řf(t), which is
obtained by quadrature demodulation at a demodulation
frequency, fdem. Therefore, use of a conventional autocor-
relator requires knowledge of the actual center frequency,
f0, of an RF echo to obtain unbiased velocity estimates.
To overcome this problem, both the mean phase shift,
∆θ(f0), and the RF center frequency, f0, are estimated by
applying the two-dimensional (2-D) [time (depth)–frame]
Fourier transform to RF echoes, rf1(t) and rf2(t), of two
consecutive frames [20]. However, an autocorrelation tech-
nique with the quadrature demodulated complex signal,
řf(t), would be preferable because autocorrelation meth-
ods require lower sampling frequency in comparison with
the analysis of RF echoes. Therefore, use of a 2-D [time
(depth)–frame] autocorrelator with quadrature demodu-
lated signals, řf(t), has been proposed to estimate the mean
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Doppler frequency and the RF center frequency. Estima-
tion by the 2-D autocorrelator has been proven to be iden-
tical to that with the 2-D Fourier transform [21]. A 2-D
autocorrelator recently was applied to the measurement of
vessel wall displacement [22].

Recently, digitized data of broadband RF echoes have
become available in modern diagnostic equipment. For ve-
locity (displacement) estimation, the Fourier transform
can be used to extract the phase information of RF echoes
at multiple frequencies within the frequency bandwidth of
an RF echo. In the phase-shift estimation with the Fourier
transform, the position of the time window for the Fourier
transform relative to an RF echo changes frame by frame
due to object displacement. Such a change in relative po-
sition influences the estimated phase shift of the RF echo
at frequencies other than the RF center frequency. In the
present study, this problem was investigated through sim-
ulation experiments and in vivo experiments on the human
carotid artery.

II. Methods

A. Velocity Estimation from the Phase Shift of

RF Echoes with Wall Tracking

Let us define the time series and the frequency spectrum
of the transmitted ultrasonic pulse by s(t) and S(f), re-
spectively. The received RF echo has a specific time delay
depending on the distance between the ultrasonic probe
and the object. When the object is displaced, time delays
of RF echoes measured at two consecutive frames differ.
By defining time delays at the n-th and (n + 1)-th frames
(n = 1, 2, . . . , N −1) by τn and τn+1, received RF echoes at
the n-th and (n+1)-th frames are expressed as s(t−τn) and
s(t−τn+1), respectively. The frequency spectra of s(t−τn)
and s(t−τn+1) are obtained by applying the Fourier trans-
form, FT[·], as follows:

Ŝn(f) ≡ FT[s(t − τn)] = S(f) · e−j2πfτn , (1)

Ŝn+1(f) ≡ FT[s(t − τn+1)] = S(f) · e−j2πfτn+1 .
(2)

Therefore, the change in time delay, τn+1 − τn, which
corresponds to the object displacement between the n-th
and (n + 1)-th frames, can be estimated from the phase,
∆θn(f), of the cross-spectrum, S∗

n(f) · Sn+1(f), at a fre-
quency, f , as follows:

Ŝn

∗
(f) · Ŝn+1(f) = |Ŝn(f)||Ŝn+1(f)| · ej∆̂θn(f)

= |S(f)|2 · e−j2πf(τn+1−τn),
(3)

where ∗ represents the complex conjugate.

By defining the sound speed as c0, distances dn and
dn+1 between the ultrasonic probe and the object at n-th
and (n + 1)-th frames are given by:

dn =
c0τn

2
, (4)

dn+1 =
c0τn+1

2
. (5)

Describing object displacement between the n-th and
(n+1)-th frames by ∆dn = dn+1−dn, object displacement,
∆dn, between two consecutive frames is obtained from the

phase shift, ∆̂θn(f), at a frequency, f , estimated by (3) as
follows:

∆d̂n = dn+1 − dn =
c0(τn+1 − τn)

2
= −

c0 · ∆̂θn(f)

4πf
.
(6)

From the estimated displacement, ∆d̂n, between two
consecutive frames, the velocity of the object is obtained
using the frame interval, T , as follows:

v̂n =
∆d̂n

T
= −

c0 · ∆̂θn(f)

4πfT
. (7)

In this process, the wall position, dn, is tracked by in-
tegrating the estimated velocity, vn, as follows [14]:

d̂n+1 = d0 +
n∑

1

v̂n · T, (8)

where d0 is the initial wall position manually assigned at
the initial frame.

B. Principle for Simulating RF Echoes

Fig. 1 illustrates the time shift of the RF echo due to
object displacement. When a short time window is used to
obtain the phase of the received signal, a portion of the du-
ration in the period shown by the region with oblique lines
is excluded due to the time shift of the RF echo caused by
object displacement. This change in the relative position
between the echo and the time window causes an error in
estimation of the time shift of the RF echo. In this study,
the error caused by the change in relative position between
the echo and the time window was investigated using RF
echoes simulated in the following way. A digitized ultra-
sonic RF echo, rfn(m), from an interface or a point scat-
terer of the n-th frame at a time t = mTs (m = 1, 2, 3, . . . ;
Ts: sampling interval) is defined by a sinusoidal wave at a
center angular frequency of ω0 = 2πf0 and an envelope,
envn(m), as shown in (9) and (10) (see next page), where
∆Tp and τn are the pulse length and the time delay at the
n-th frame, respectively. In the simulation experiments,
τn is defined as the time delay from the beginning of the
time window as shown in Fig. 1. The time delay, τn, differs
frame by frame when the object is displaced.

The change in time delay, τn+1−τn, between two neigh-
boring frames is estimated based on (3) by applying the
discrete Fourier transform to rfn(m) and rfn+1(m).

A very simple model was used in the present study
because in cases of arterial walls without atherosclerotic
plaque, echoes can be modeled by such a simple model
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rfn(m) = envn(m) · sin {ω0(mTs − τn)} = envn(m) ·
ejω0(mTs−τn) − e−jω0(mTs−τn)

2j
, (9)

envn(m) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin2

{
π

mTs − τn

∆Tp

}
= 0.5

{
1 −

e
j2π

mTs−τn
∆Tp + e

−j2π
mTs−τn

∆Tp

2

}

(τn ≤ mTs ≤ τn + ∆Tp),

0 (mTs < τn, mTs > τn + ∆Tp),

(10)

Fig. 1. Illustration of the change in relative position between the RF
echo and the time window due to object displacement using simu-
lated RF echoes.

because dominant echoes are reflected from two interfaces
(lumen-intima and media-adventitia interfaces) [23] and
because the distance between these interfaces is greater
than the pulse duration. The distance between these in-
terfaces is greater than 0.5 mm for carotid arteries, and
the duration of the ultrasonic pulse used in this paper is
about 0.25 µs, which corresponds to 385 µm in the case of a
sound speed of 1540 m/s. Although a more complex model
also should be investigated, the error source described in
this paper influences even such a simple model. Therefore,
a simple model was considered in this study to show an
error source in estimation of the time shift of RF echoes.

III. Results of Simulation Experiments

A. Power Spectrum of RF Echo Reflected from

Carotid Artery

Fig. 2(a) shows an ultrasonic pulse of the diagnostic
equipment used measured by a hydrophone placed in a

water tank. The hydrophone was placed at a distance of
20 mm from the surface of a linear-type probe, which cor-
responds to the electric focal depth. The signal received
by the hydrophone was acquired at a sampling frequency
of 1 GHz with a digital oscilloscope. The nominal cen-
ter frequency of the linear-type ultrasonic probe used was
10 MHz.

An echo is expressed by the product of a sinusoidal wave
at a center frequency, f0, and an envelope, env(t), in the
time domain. The frequency spectrum of a sinusoidal wave
at frequency f0 is expressed by a delta function, δ(f −f0),
in the frequency domain. Therefore, the frequency spec-
trum of an echo is a convolution of the spectrum, Senv(f),
of the envelope and the delta function, δ(f − f0), that
shows the shifted version, Senv(f − f0), of the spectrum of
the envelope. When an envelope of an echo is expressed by
functions such as a Hanning window or a Gaussian func-
tion, its power spectrum, |Senv(f)|2, becomes maximum
at f = 0. Therefore, we can determine the actual center
frequency by referring to the power spectrum of the echo,
|Senv(f −f0)|

2, because |Senv(f −f0)|
2 becomes maximum

at f = f0.

As shown in Fig. 2(a), the envelope of the ultrasonic
pulse has a finite duration of ∆Tp, that is, the sampled
version of the envelope, env(m), is limited from m = 0 to
m = Mp (Mp: number of samples in the duration of the
pulse). Therefore, a period that corresponds to the dura-
tion of the pulse is sufficient for the length of the time
window for the Fourier transform. However, for example,
the time window of 0.5 µs, which is sufficient for echoes in
this paper, gives a sampling rate of 1/(0.5 µs) = 2 MHz for
the frequency spectrum estimated by the discrete Fourier
transform. To overcome such a low resolution of a fre-
quency spectrum, (M0 −Mp) zero points are added to the
time sequence extracted by the time window before ap-
plication of the discrete Fourier transform. The estimated
frequency spectrum is not changed by adding zero points
as explained below. The time sequences y(m) and y′(m),
with and without zero points, respectively, are equivalent
to the time functions y(t) and y′(t), expressed as follows:

y(t) = env(t) (0 ≤ t ≤ ∆Tp), (11)

y′(t) =

{
env(t) (0 ≤ t ≤ ∆Tp),

0 (∆Tp < t ≤ T0),
(12)
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Fig. 2. Ultrasonic pulse of the diagnostic equipment used. (a) Ultrasonic pulse received by a hydrophone placed in a water tank (sampling
frequency, 1 GHz). (b) Power spectrum of (a). (c) B-mode image of a human carotid artery. (d) RF echo from the posterior wall along the
white vertical line shown in (c) (sampling frequency, 40 MHz). (e) Power spectrum (d).

where T0 = M0Ts. There is no difference between the spec-
tra Y (f) and Y ′(f) of the time functions y(t) and y′(t):

Y ′(f) =

∫ ∞

−∞

y′(t) · e−j2πftdt

=

∫ ∆Tp

0

env(t) · e−j2πftdt = Y (f).

(13)

Therefore, no distortion occurs by the addition of zero
points, and only the sampling rate of the spectrum, Y (f)
(f = k/(M0Ts) (k = 0, . . . ,M0 − 1)), obtained by the
discrete Fourier transform is improved from 1/(MTs) to
1/(M0Ts).

The sampled version of the frequency spectrum,
Senv(k), of the envelope is obtained from the convolution of
Y (k) with the frequency spectrum of the Hanning window
used in the discrete Fourier transform.

A Hanning window with a length of 0.5 µs (512 points)
was applied to the data set shown in Fig. 2(a) to ex-
tract a time sequence, and 1536 zero points were added.
The power spectrum then was obtained by applying the
Fourier transform as shown in Fig. 2(b). The power spec-
trum was found to have the largest value at about 8 MHz.
In Fig. 2(b), the power spectrum at 20 MHz is sufficiently
smaller (−30 dB) than that at the actual center frequency
of 8 MHz. Therefore, the sampling frequency of 40 MHz
of the ultrasonic diagnostic equipment used in this paper
is sufficient for measuring RF echoes.

Fig. 2(c) shows the B-mode image of a human carotid
artery. Along the white vertical line shown in Fig. 2(c),
RF echoes reflected from the posterior wall were received
as shown in Fig. 2(d) by the ultrasonic probe, which both

transmits ultrasound and receives echoes (sampling fre-
quency: 40 MHz). Fig. 2(e) shows the power spectrum
of the RF echo reflected from the lumen-intima inter-
face, which was obtained from the time sequence (16
points = 0.4 µs) extracted by a Hanning window at the po-
sition shown in Fig. 2(d). Before application of the Fourier
transform, 48 zero points were added. In Fig. 2(e), it can
be seen that the center frequency was slightly changed to
7.5 MHz due to the frequency-dependent attenuation in
tissue. Based on these results, the center frequency of the
simulated RF echo is set at 7.5 MHz in the following sec-
tion.

B. Simulated RF Echo

Fig. 3 shows the simulated RF echos, rf1(m) and rf2(m),
at the 1st and 2nd frames based on (9) (center frequency:
7.5 MHz; 3 wavelength; envelope: Hanning window). The
sampling frequency was set at 40 MHz. rf2(m) was shifted
by 12.5 ns in comparison with rf1(m) due to object dis-
placement. This time shift corresponds to a displacement
of 9.625 µm and a velocity of 2.753 mm/s at a sound speed
of 1540 m/s and a frame rate of 286 Hz. Typical velocity
of the human carotid arterial wall is less than 10 mm/s.
Therefore, the phase shifts between rf1(m) and rf2(m) were
estimated for the cases of τ2 − τ1 = 12.5 ns (2.753 mm/s),
25 ns (5.506 mm/s), and 37.5 ns (8.258 mm/s) in the fol-
lowing section.

C. Estimation of Phase Shift of RF Echoes by Discrete

Fourier Transform with a Hanning Window

Fig. 4(a) shows the signals after application of a Han-
ning window (length Mw: 10 points = 0.25 µs) to RF
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Fig. 3. Simulated RF echoes, rf1(m) and rf2(m), based on (9). The
time delay of rf2(m) from rf1(m) is 12.5 ns. The limits of the Hanning
window are indicated by vertical dashed lines.

Fig. 4. (a) Signals after application of a Hanning window [0.25 µs
(= 10 points)] to RF echoes shown in Fig. 3 (τ2 − τ1 = 12.5 ns).
(b) Power spectra, |RF1(k)| and |RF2(k)|, of rf1(m) and rf2(m) (τ2−
τ1 = 12.5 ns). (c) Phases of cross spectra, {RF1(k)}∗ · RF2(k), for
the cases of τ2 − τ1 = 12.5 ns, 25 ns, and 37.5 ns. The dashed line
shows −2πf(τ2 − τ1) for each case of τ2 − τ1.

echoes, rf1(m) and rf2(m), as shown in Fig. 3 (difference
between time delays τ2 − τ1: 12.5 ns). By applying the
Fourier transform, power spectra, |RF1(k)| and |RF2(k)|,
at a frequency f = k/(Mw · Ts) were obtained as shown
in Fig. 4(b). Fig. 4(c) shows the phases of the cross-
spectra, {RF1(k)}∗ · RF2(k), and the dashed lines show
−2πf(τ2 − τ1) for the cases of τ2 − τ1 = 12.5 ns, 25 ns, and
37.5 ns.

In Fig. 4(c), it is found that the phase shift estimated
at the nominal center frequency of 10 MHz is biased from
−2πf(τ2 − τ1). However, the change in time delay, τ2 − τ1,
can be estimated precisely at the actual center frequency
of 7.5 MHz. Therefore, the actual center frequency should
be determined by referring to the power spectrum of the
received RF echo, and the phase shift should be estimated
at the actual center frequency.

The magnitude, ∆τmax, of the change in time delay is
limited by half of the wavelength at the actual (selected)
center frequency f0 (∆τmax ≤ 0.5/f0).

D. Considerations Regarding Error in Estimation of

Change in Time Delay

For mathematical simplification, the envelope of an
echo, envn(m), is assumed to be rectangular in this sec-
tion. A Hanning window was used for the discrete Fourier
transform.

1. Estimation of Change in Time Delay at a Frequency

f �= f0: Frequency spectra, RF1(k) and RF2(k), at a fre-
quency f = k/(Mw · Ts) �= f0 of RF signals, rf1(m) and
rf2(m), which are illustrated in Fig. 1, are obtained by
applying the discrete Fourier transform with a Hanning
window, w(m), of Mw points as follows:

w(m) = sin2

(
2π

mTs

MwTs

)

=
1

2
−

ej2π
mTs

MwTs + e−j2π
mTs

MwTs

4
.

(14)

RF1(k) =

Mw−1∑

m=0

w(m) · rf1(m) · e−jωmTs

=
Mw−1∑

m=M1

w(m) · rf1(m) · e−jωmTs

=

Mw−M1−1∑

m=0

w(m + M1) · rf1(m + M1) · e−jω(m+M1)Ts

=
1

2

Mw−M1−1∑

m=0

rf1(m + M1) · e−jω(m+M1)Ts

−
1

4

Mw−M1−1∑

m=0

e
j2π

(m + M1)Ts

MwTs · rf1(m + M1) · e−jω(m+M1)Ts

−
1

4

Mw−M1−1∑

m=0

e−j2π
(m+M1)Ts

MwTs · rf1(m + M1) · e−jω(m+M1)Ts

= A1(k) − B1(k) − C1(k). (15)
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The first term, A1(k), in the right-hand side of (15), is
rewritten as follows:

2 · A1(k) =

Mw−1∑

m=0

rf1(m) · e−jωmTs

=

Mw−1∑

m=M1

rf1(m) · e−jωmTs

=

Mw−M1−1∑

m=0

rf1(m + M1) · e−jω(m+M1)Ts

=
1

2j

Mw−M1−1∑

m=0

{
ejω0{(m+M1)Ts−τ1}

− e−jω0{(m+M1)Ts−τ1}
}
e−jω(m+M1)Ts

=
1

2j
e−jω0τ1 · ej(ω0−ω)M1Ts

Mw−M1−1∑

m=0

ej(ω0−ω)mTs

−
1

2j
ejω0τ1 · e−j(ω0+ω)M1Ts

Mw−M1−1∑

m=0

e−j(ω0+ω)mTs

=
1

2j
e−jω0τ1 · ej(ω0−ω)M1Ts ·

1 − ej(ω0−ω)(Mw−M1)Ts

1 − ej(ω0−ω)Ts

−
1

2j
ejω0τ1 · e−j(ω0+ω)M1Ts ·

1 − e−j(ω0+ω)(Mw−M1)Ts

1 − e−j(ω0+ω)Ts
,

(16)

where ω = 2πk/(Mw ·Ts) and M1 corresponds to the sam-
pled point that is just after t = τ1. In the ultrasound sys-
tem used, the sampling frequency, 1/Ts, is equal to four
times the nominal center frequency (Ts ≈ 1/(4f0): f0 is
the actual center frequency). Therefore, the first term in
the right-hand side of (16) is much larger than the sec-
ond term because

∣∣1 − ej(ω0−ω)Ts

∣∣ ≪ 1. Thus, (16) can be
approximated as follows:

A1(k) ≈
1

2
e−jω0τ1 · ej(ω0−ω)M1Ts

·
1 − ej(ω0−ω)(Mw−M1)Ts

1 − ej(ω0−ω)Ts
. (17)

As well as A(k), B(k) and C(k) are obtained as follows:

B1(k) ≈
1

4
e−jω0τ1 · ej(ω0−ω+ 2π

MwTs
)M1Ts

·
1 − ej(ω0−ω+ 2π

MwTs
)(Mw−M1)Ts

1 − ej(ω0−ω+ 2π
MwTs

)Ts

.

(18)

C1(k) ≈
1

4
e−jω0τ1 · ej(ω0−ω− 2π

MwTs
)M1Ts

·
1 − ej(ω0−ω− 2π

MwTs
)(Mw−M1)Ts

1 − ej(ω0−ω− 2π
MwTs

)Ts

.

(19)

From (17), (18), and (19), (15) is expressed as follows:

RF1(k) ≈
1

2
e−jω0τ1 · ej(ω0−ω)M1Ts

·
1 − ej(ω0−ω)(Mw−M1)Ts

1 − ej(ω0−ω)Ts

−
1

4
e−jω0τ1 · ej(ω0−ω+ 2π

MwTs
)M1Ts

·
1 − ej(ω0−ω+ 2π

MwTs
)(Mw−M1)Ts

1 − ej(ω0−ω+ 2π
MwTs

)Ts

−
1

4
e−jω0τ1 · ej(ω0−ω− 2π

MwTs
)M1Ts

·
1 − ej(ω0−ω− 2π

MwTs
)(Mw−M1)Ts

1 − ej(ω0−ω− 2π
MwTs

)Ts

.

(20)

As well as (20), RF2(k) is obtained as follows:

RF2(k) ≈
1

2
e−jω0τ2 · ej(ω0−ω)M2Ts

·
1 − ej(ω0−ω)(Mw−M2)Ts

1 − ej(ω0−ω)Ts

−
1

4
e−jω0τ2 · ej(ω0−ω+ 2π

MwTs
)M2Ts

·
1 − ej(ω0−ω+ 2π

MwTs
)(Mw−M2)Ts

1 − ej(ω0−ω+ 2π
MwTs

)Ts

−
1

4
e−jω0τ2 · ej(ω0−ω− 2π

MwTs
)M2Ts

·
1 − ej(ω0−ω− 2π

MwTs
)(Mw−M2)Ts

1 − ej(ω0−ω− 2π
MwTs

)Ts

(21)

where M2 corresponds to the sampled point that is just
after t = τ2.

As shown in (20) and (21), in this case, the phase of
{RF1(k)}∗ · RF2(k) does not only depend on the change
in time delay, τ2 − τ1.

2. Estimation of Change in Time Delay at the Center

Frequency f = f0: By assuming that a discrete frequency,
f = k0/(Mw · Ts), is identical to the actual center fre-
quency, f0, of the received RF echo, the frequency spec-
tra, RF1(k0) and RF2(k0), of the RF signals, rf1(m) and
rf2(m), are obtained by substituting f = k0/(Mw ·Ts) = f0

into (15). A1(k0) is obtained as follows:

2 · A1(k0) =
1

2j
e−jω0τ1

Mw−M1−1∑

m=0

1 −
1

2j
ejω0τ1

· e−j2ω0M1Ts

Mw−M1−1∑

m=0

e−j2ω0mTs

=
1

2j
· (Mw − M1) · e−jω0τ1 −

1

2j
ejω0τ1

· e−j2ω0M1Ts
1 − e−j2ω0(Mw−M1)Ts

1 − e−j2ω0Ts
.

(22)
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When the time window is sufficiently long (Mw ≫ 1),
the second term in the right-hand side of (22) can be ne-
glected:

A1(k0) ≈
1

4j
· (Mw − M1) · e−jω0τ1 . (23)

B1(k0) is obtained as follows:

4 · B1(k0) =
1

2j
e−jω0τ1

Mw−M1−1∑

m=0

ej2π
m+M1

Mw −
1

2j
ejω0τ1

· e−j(2ω0+
2π

MwTs
)M1Ts

Mw−M1−1∑

m=0

e−j(2ω0+
2π

MwTs
)mTs . (24)

As well as (22), the second term in the right-hand side of
(24) can be neglected.

4 · B1(k0) ≈
1

2j
e−jω0τ1

Mw−M1−1∑

m=0

ej2π
m+M1

Mw

= −
1

2j
e−jω0τ1

1 − ej2π
M1
Mw

1 − ej 2π
Mw

.
(25)

When the time window is properly applied to the echo
(the difference between the beginnings of the window and
the echo, which corresponds to M1, is sufficiently small,
that is, M1 ≪ Mw), B(k0) ≈ 0. As well as B(k0), C(k0) ≈
0 under such a condition.

Therefore, RF1(k0), can be expressed as follows:

RF1(k0) ≈
1

4j
· (Mw − M1) · e−jω0τ1 . (26)

As well as (26), RF2(f0) is obtained as follows:

RF2(k0) ≈
1

4j
· (Mw − M2) · e−jω0τ2 . (27)

From (26) and (27):

{RF1(k0)}
∗ · RF2(k0)

= −
1

16
(Mw − M1)(Mw − M2) · e−jω0(τ2−τ1). (28)

As shown in (28), the phase shift, which corresponds
to the change in time delay, τ2 − τ1, can be estimated at
the RF center frequency, f0 = k0/(Mw · Ts), even when
the relative position between the RF echo and the time
window is changed due to object displacement.

In Fig. 4(c), for example, the error in the estimated
change in time delay at the nominal center frequency of
10 MHz is 2.3 ns in comparison with the true value of
12.5 ns, and it is not extremely large. Therefore, the mea-
surement of velocity at a constant time (= depth) is not
significantly influenced (for example, in blood flow mea-
surement). However, to obtain the artery-wall displace-
ment, the estimated velocity must be integrated with re-
spect to time, and the error between each adjacent frame is
accumulated. As shown in Fig. 4, the error described above

Fig. 5. Phase shift estimated at 7.5 MHz is plotted as a function
of window length (with respect to simulated RF echoes, τ2 − τ1 =
12.5 ns).

depends on the magnitude of object displacement between
two consecutive frames, i.e., magnitude of velocity. The
velocity of the arterial wall is large during expansion and
small during contraction. Therefore, the accumulated error
in the displacement, which is obtained by integrating the
estimated velocity, does not become zero. From these re-
sults, although a discrete frequency often does not exactly
correspond to the actual center frequency, the phase shift
should be estimated at the frequency that is the nearest
to the actual center frequency to avoid the influence of the
change in relative position between the RF echo and the
time window.

E. Considerations Regarding Required Window Length

In Fig. 5, the phase of the cross spectra, {RF1(f0)}
∗ ·

RF2(f0), at the actual center frequency, f0, which is ob-
tained from the simulated RF echoes (f0: 7.5 MHz, shown
in Fig. 3), is plotted as a function of window length.
The dashed line shows 2πf0(τ2 − τ1). When the window
length is less than 10 points (= 0.25 µs), the variation
of the estimated phase shift is large. The Hanning win-
dow has a main lobe of ±2/(window length) in the fre-
quency domain. When the frequency spectrum is esti-
mated at the RF center frequency, f0, the main lobe of
the Hanning window ranges from Bw1 = f0 − 2/(window
length) to Bw2 = f0 + 2/(window length). In the case
of (window length) < 2/f0, Bw1 becomes less than zero,
and the estimated frequency spectrum is influenced by
the negative-frequency components. Therefore, the win-
dow length should be equal or greater than 2/f0. In Fig. 5,
the window length of 0.25 µs (= 10 points) = 2/(8 MHz)
almost corresponds to 2/f0 = 2/(7.5 MHz).

In this paper, influences of random noise were not con-
sidered. The noise variance would be reduced using a
longer time window. However, the window length is con-
sidered to be limited by the pulse duration. For example,
when the window length is too long, both echoes from the
lumen-intima and media-adventitia interfaces are included
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Fig. 6. (a) RF echoes reflected by the posterior wall of the human
carotid artery. (b) Power spectra, |RF1(k)| and |RF2(k)|, obtained
by applying a Hanning window with a length of 0.25 µs = 10 points
to waveforms shown in (a). (c) Phase of cross spectrum, {RF1(k)}∗ ·
RF2(k).

in the same time window. In this case, the noise variance
would be reduced in comparison with a shorter time win-
dow. However, the change in time delay of the echo from
the lumen-intima interface cannot be estimated because
the estimated change in time delay is biased by that of the
echo from the media-adventitia interface.

IV. In Vivo Measurement for Human Carotid

Artery

Fig. 6(a) shows RF echoes reflected from the poste-
rior wall of the carotid artery obtained at two consecu-
tive frames (frame rate: 286 Hz). With respect to the echo

Fig. 7. In vivo experimental results for a carotid artery without
atherosclerotic plaque (30-year-old healthy male). Change in thick-
ness of the posterior wall due to the heartbeat estimated from the
phase shift at 7.5 MHz. (a) M-mode image. (b) Electrocardiogram.
(c) Velocity of the intimal side. (d) Velocity of the adventitial side.
(e) Change in thickness of the posterior wall.

from the lumen-intima interface, the frequency spectrum
was estimated with a Hanning window having a length of
0.25 µs = 10 points.

Fig. 6(b) shows the power spectra, |RF1(k)| and
|RF2(k)|, obtained by extracting the time sequences from
rf1(m) and rf2(m) using the time window. From the esti-
mated frequency spectra, RF1(k) and RF2(k), the phase
shift between echoes was obtained from the phase of their
cross-spectrum, {RF1(k)}∗ ·RF2(k), as shown in Fig. 6(c).
The arterial wall then was tracked using the phase shifts
estimated at both the nominal center frequency of 10 MHz
and the actual center frequency of 7.5 MHz.

Figs. 7 and 8 show the results of artery-wall tracking
using the phase shifts estimated at the actual center fre-
quency of 7.5 MHz and the nominal center frequency of
10 MHz, respectively. Figs. 7(a) and (b) show the M-mode
image and the electrocardiogram, respectively. The veloc-
ities shown in Figs. 7(c) and (d) were obtained at the in-
timal side and the adventitial side of the posterior wall,
respectively. As shown in Figs. 7(a) and 8(a), the intimal
side and the adventitial side were tracked by integrating
the estimated velocities, v̂n, of (7), and the tracked posi-

tions, d̂n+1, of (8) were superimposed on M-mode images
by a white line for the intimal side and a black line for
the adventitial side. With respect to the intimal side, as
shown in Fig. 8(a), an obvious tracking error was found
when the phase shift was estimated at the nominal cen-
ter frequency of 10 MHz. As for the adventitial side, the
tracking error is not so obvious even at 10 MHz. How-
ever, the tracking shown by the black line is not in good
agreement with the M-mode image in comparison with the
result obtained at 7.5 MHz. For assessment of the relative
elasticity, the change in wall thickness, which corresponds
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Fig. 8. In vivo experimental results for a carotid artery without
atherosclerotic plaque (30-year-old healthy male). Change in thick-
ness of the posterior wall due to the heartbeat estimated from the
phase shifts at 10 MHz. (a) M-mode image. (b) Electrocardiogram.
(c) Velocity of the intimal side. (d) Velocity of the adventitial side.
(e) Change in thickness of the posterior wall.

to the strain caused by the change in blood pressure, is
obtained as shown in Fig. 7(e) [16], [17] from the differ-
ence between displacements at the intimal and adventitial
sides. However, such a change in wall thickness as shown in
Fig. 8(e), which was estimated at the nominal center fre-
quency of 10 MHz, does not correspond to the wall strain
(in cardiac systole, the artery diameter expands, and the
wall thickness should become smaller). From these results,
the phase-shift estimation at the actual center frequency
was shown to be important even for the data sets measured
for the human carotid artery.

The change in thickness would be dependent on the
positions of points A and B, and thus changes in thick-
ness were estimated at five different depths by shifting
points A and B in the depth direction by 77 µm at a pitch
of 19.25 µm. The distance between points A and B was
kept constant. Mean and standard deviation of maximum
changes in thickness during a heartbeat were estimated to
be 97.6 µm and 6.9 µm. Slight influences of the positions
of the assigned points were found. However, in cases of ar-
teries with atherosclerotic plaque, there are many echoes
in addition to those from the lumen-intima and media-
adventitia interfaces. Under such a situation, the change
in thickness would be more dependent on the position of
the assigned points. Such a complex condition is not con-
sidered in this paper and should be investigated in a future
work.

Fig. 9 shows the results of tracking in the anterior wall
of the same subject as that shown in Fig. 7. The phase
shift was estimated at 7.5 MHz. As in the case of the pos-
terior wall, tracking was successfully performed for the an-
terior wall. A relatively smaller displacement was detected
in comparison with that of the posterior wall.

Fig. 9. In vivo experimental results for a carotid artery without
atherosclerotic plaque (30-year-old healthy male). Change in thick-
ness of the anterior wall due to the heartbeat estimated from the
phase shift at 7.5 MHz. (a) M-mode image. (b) Electrocardiogram.
(c) Velocity of the adventitial side. (d) Velocity of the intimal side.
(e) Change in thickness of the anterior wall.

V. Comparison with Autocorrelator Using

Quadrature Demodulated Complex Signal

A correlation estimator with a quadrature demodulated
complex signal is widely used for assessing artery-wall dis-
placement. It is desirable that the demodulation frequency
be the actual center frequency of the received RF echo be-
cause the problem mentioned below is the same as that
already discussed.

In the quadrature demodulation, the received RF echo
is multiplied by a complex sinusoidal function at a demod-
ulation frequency, fdem, as follows:

rf1(m) · ejωdemmTs =
1

2j

{
ej{(ω0+ωdem)mTs−ω0τ1}

− e−j{(ω0−ωdem)mTs−ω0τ1}
}
, (29)

rf2(m) · ejωdemmTs =
1

2j

{
ej{(ω0+ωdem)mTs−ω0τ2}

− e−j{(ω0−ωdem)mTs−ω0τ2}
}
, (30)

where ωdem = 2πfdem.
When an ideal low-pass filter, LPFideal[·], is used, the

quadrature demodulation gives the quadrature demodu-
lated signals, řf1(m) and řf2(m), at a time, t = mTs, as
follows:

řf1(m) = LPFideal[rf1(m) · ejωdemmTs ]

= −
1

2j
e−j{(ω0−ωdem)mTs−ω0τ1},

(31)

řf2(m) = LPFideal[rf2(m) · ejωdemmTs ]

= −
1

2j
e−j{(ω0−ωdem)mTs−ω0τ2}.

(32)
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In this case, as described in [21], the phase of the 2-
D autocorrelator, r(m′, n′) (m′: lag for the time (depth)
axis, n′: lag for the frame axis), with an M ×N correlation
window gives the phase shift, ω0(τ2−τ1), due to object dis-
placement and the difference, ω0 − ωdem, between the de-
modulation frequency and the actual center frequency. For
the simplest case (M = N = 1), to obtain object displace-
ment at a depth that corresponds to t = mTs = 0 (= the
beginning of the time window as illustrated in Fig. 1),
r(0, 1) and r(1, 0) are expressed using demodulated sig-
nals, řf1(m) and řf2(m), as follows:

r(0, n′ = 1) =
N=1∑

n=1

řf
∗

n(0) · řfn+n′(0)

= řf
∗

1(0) · řf2(0) =
1

4
ejω0(τ2−τ1),

(33)

r(m′ = 1, 0) =
M=1∑

m=1

řf
∗

1(m − 1) · řf1(m − 1 + m′)

= řf
∗

1(0) · řf1(1) =
1

4
ej(ωdem−ω0)Ts .

(34)

From the phase ∠r(1, 0), the actual RF center fre-
quency can be estimated as follows:

ωdem −
∠r(1, 0)

Ts

= ω0. (35)

Therefore, the unbiased change in time delay, τ2 − τ1,
which corresponds to object displacement, can be esti-
mated as follows [22]:

τ2 − τ1 =
∠r(0, 1)

ωdem −
∠r(1, 0)

Ts

. (36)

Next, let us consider a realistic case in which the mov-
ing average operator is used as a low-pass filter in the
quadrature demodulation. The moving average estimator,
LPFMA[·], can be expressed as follows:

LPFMA[·] =
1

Mw

Mw−1∑

m=0

. (37)

Therefore:

řf1(0) = LPFMA[rf1(m) · ejωdemmTs ]

=
1

2j

1

Mw

Mw−1∑

m=0

{
ejω0(mTs−τ1)

− e−jω0(mTs−τ1)
}

· ejωdemmTs

=
1

2j

1

Mw

Mw−M1−1∑

m=0

{
ejω0{(m+M1)Ts−τ1}

− e−jω0{(m+M1)Ts−τ1}
}

· ejωdem(m+M1)Ts ,

(38)

řf2(0) = LPFMA[rf2(m) · ejωdemmTs ]

=
1

2j

1

Mw

Mw−M2−1∑

m=0

{
ejω0{(m+M2)Ts−τ2}

− e−jω0{(m+M2)Ts−τ2}
}

· ejωdem(m+M2)Ts .

(39)

It is found that řf1(0) shown by (38) is identical to
A1(k) at a frequency f = k/(Mw · Ts) = fdem as shown
by (16). Therefore, when k/(Mw · Ts) = fdem �= f0, the
change in time delay, τ2 − τ1, cannot be estimated by
(36) because r(0, 1) corresponds to the cross spectrum,
{RF1(k)}∗ · RF2(k), and the phase of {RF1(k)}∗ · RF2(k)
does not give the change in time delay, τ2 − τ1, at a fre-
quency other than the actual center frequency as described
in Section III-D.

The 2-D autocorrelator gives the desirable results by
(36) when rf1(m) and rf2(m) are stationary sinusoidal
waves. If rf1(m) and rf2(m) are stationary sinusoidal waves
at an angular frequency ω0, řf1(0) and řf2(0) can be ex-
pressed as follows:

řf1(0) =
1

2j

1

Mw

Mw−1∑

m=0

{
ej{(ω0+ωdem)mTs−ω0τ1}

− e−j{(ω0−ωdem)mTs−ω0τ1}
}

≈
1

2j

1

Mw

ejω0τ1 ·
1 − e−j(ω0−ωdem)MwTs

1 − e−j(ω0−ω)Ts
,

(40)

řf2(0) =
1

2j

1

Mw

Mw−1∑

m=0

{
ej{(ω0+ωdem)mTs−ω0τ2}

− e−j{(ω0−ωdem)mTs−ω0τ2}
}

≈
1

2j

1

Mw

ejω0τ2 ·
1 − e−j(ω0−ωdem)MwTs

1 − e−j(ω0−ω)Ts
.

(41)

The terms at the summed frequency, ω0 +ωdem, as well as
(17), were neglected. Thus,

r(0, n′ = 1) =
N=1∑

n=1

řf
∗

n(0) · řfn+n′(0) = řf
∗

1(0) · řf2(0)

= −
1

4M2
w

∣∣∣∣
1 − e−j(ω0−ω)MwTs

1 − e−j(ω0−ω)Ts

∣∣∣∣
2

· ejω0(τ2−τ1),

(42)

r(m′ = 1, 0) =
M=1∑

m=1

řf
∗

1(m − 1) · řf1(m − 1 + m′)

=−
1

4M2
w

∣∣∣∣
1−e−j(ω0−ω)MwTs

1−e−j(ω0−ω)Ts

∣∣∣∣
2

· ej(ω0−ωdem)Ts .

(43)

In this case, from (42) and (43), it is found that the
change in time delay, τ2 − τ1, can be estimated by (36).
From these facts, the 2-D autocorrelator is considered to be
suitable for the narrow-band signal that can be considered
as a continuous wave in an integration period of a low-pass
filter.
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Most conventional ultrasound systems use relatively
narrowband ultrasonic pulses for the Doppler mode in
comparison with that for the B-mode. Under the condition
of a narrowband pulse and a high frame rate of several
kilohertz, the 2-D autocorrelator provides precise results
at a given demodulation frequency based on (36). How-
ever, a broadband pulse is preferable for improving the
spatial resolution in displacement estimation. Under such
a condition, the estimation should be performed at the
center frequency of the received RF echo. In the case of
an autocorrelator with quadrature demodulated signals,
the demodulation frequency should be set at the center
frequency of the RF echo.

VI. Conclusions

Digitized data of broadband RF echoes are available in
modern ultrasonic diagnostic equipment. The phase shifts
of RF echoes due to object displacement can be obtained
at multiple frequencies by frequency analysis of RF echoes.
This phase-shift estimation is influenced by the change in
relative position of the RF echo in relation to the time
window due to object displacement. Through simulations
and in vivo experiments, this study showed that the phase
shift should be estimated at the actual center frequency of
an RF echo.
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