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IMPROVING ACCURACY IN MULTIPLE REGRESSION ESTIMATES
OF POPULATION USING PRINCIPLES FROM CAUSAL

MODELLING

David A. Swanson

Washington State Board for Community College Education, Olympia, Washington 98504 and
Demographic Research Laboratory, Department of Sociology, Western Washington University,

Bellingham, Washington 98225

Abstract—This paper reports a mildly restricted procedure for using a theoretical
causal ordering and principles from path analysis to provide a basis for mod-
ifying regression coefficients in order to improve the estimation accuracy of
the ratio-correlation method of population estimation. The modification is
intended to take into account temporal changes in the structure of variable
relationships, a major element in determining the accuracy of post-censal es-
timates. The modification of coefficients is conservative in that it uses rank-
ordering as a basis of change. Empirical results are reported for counties in
Washington state that demonstrate the increased accuracy obtained using

the proposed procedure.
INTRODUCTION

Most procedures intended to improve
regression estimation accuracy are based
on modifications introduced during
model construction. These procedures in-
clude variable selection, variable transfor-
mation, higher-order forms, data aug-
mentation and ridge regression. Most of
these types of procedures have been ap-
plied to the “ratio-correlation method,” a
regression technique introduced by
Schmitt and Crosetti (1954) and now
commonly used for making post-censal
estimates of subnational populations. For
example, variable selection is discussed
by Goldberg, Rao and Namboodiri
(1964) and Zitter and Shryock (1964);
variable transformation by Schmitt and
Grier (1966), O’Hare (1976) and Swanson
(1978b); data augmentation by Rosenberg
(1968), Pursell (1970), Namboodiri and
Lalu (1971) and Martin and Serow
(1978); and ridge regression by Swanson
(1978a) and Spar and Martin (1979). One
limiting feature common to these types of
procedures is that they are only applied to
the data used in constructing a given re-

gression model (i.e., to the “model data
set”) and do not incorporate subsequent
post-censal information, say, for example,
from the predictor variables substituted
into a given regression model in order to
produce an actual post-censal estimate
(ie., information from the “estimation
data set”). The issue of utilizing more
fully information available subsequent to
the construction of a given model is im-
portant. Studies by Namboodiri and Lalu
(1971), Ericksen (1974), Namboodiri
(1972), O’Hare (1976), Martin and Serow
(1978), Swanson (1978a), Spar and Mar-
tin (1979), Tayman (1979) and Mandell
(1980) have all implicated the temporal
stability of model coefficients as a primary
element in the accuracy of post-censal es-
timates.

One example of a procedure that does
incorporate information subsequent to
that available from the “model data set”
is given by Ericksen (1974). This proce-
dure, the “regression sample method,” in-
corporates current sample data and symp-
tomatic information in order to produce
more accurate estimates of post-censal
populations. However, this procedure has
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not caught on, probably because of the in-
creased complexity and data collection
burden it requires.

In this paper, an alternative procedure
for improving regression estimation accu-
racy is introduced which, like Ericksen’s,
utilizes the information external to the
model data set used in constructing a re-
gression model but, unlike his, is gained
solely from the “estimation data set.” The
procedure is subject to two limitations: it
can only be applied to situations in which
reasonable assurance of the correct speci-
fication of a causal ordering of variables is
obtained and in which each correlation
between the predictor variables and the
dependent variable can be assumed to be
positive. While these two restrictions may
be incapacitating in some estimation
problems, they do not preclude using the
procedure in the majority of problems re-
lating to county, state or other local area
population estimates using the sympto-
matic indicators typically found in con-
junction with the ratio-correlation
method (see, e.g., U.S. Bureau of the Cen-
sus, 1973; 1976). For example, it is rea-
sonable to assume that a model which
specifies county population as causally
prior to county voters, employment and
school enrollment is a correctly postulated
theoretical structure. It is physically im-
possible to have voters, employment and
school enrollment without a population;
on the other hand, while it may be un-
likely, it is possible to have a county pop-
ulation without voters, or employed per-
sons, or students.'

The second limitation, that of a positive
correlation between the dependent vari-
able and each of the predictor variables,
while more constraining than the idea of a
causally prior population variable, does
not hinder the procedure for most states.’
The U.S. Bureau of the Census (1976, pp.
70-74) reports only ten states in which the
relationship between the dependent vari-
able is negative for state-specific ratio-
correlation models used for county popu-
lation estimates. In these states (Colorado,
Delaware, Maryland, Minnesota, Missis-
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sippi, Nevada, New Mexico, Rhode Is-
land, Vermont, and West Virginia) the
procedure could still be used by eliminat-
ing the variable or variables in question
and re-constructing the model. It would,
of course, be advisable to weigh the costs
of variable reduction against the addi-
tional information gained by using the
procedure.

THE RATIO-CORRELATION METHOD

The ratio-correlation method uses pro-
portional numbers, which means that the
county populations must sum to a state
total population, which in an estimation
year is determined independently of the
regression-estimated county populations.
The model is designed to estimate the
temporal change in county population
proportions using the observed temporal
changes in the county proportions of
symptomatic indicators such as school en-
rollment, voters, and the like. The tem-
poral change is measured simply by tak-
ing a ratio of the proportions at two
points in time for each variable—hence
the name ratio-correlation. Since enumer-
ated county populations for an entire
state are found only for federal decennial
census years, the model is always con-
structed for two points in time that are ten
years apart. The data underlying this con-
struction are termed the “model data-set.”
For example, in Washington state, a ra-
tio-correlation model used to estimate an-
nual county populations from 1971 to
1979 was constructed using the ratio of
1970 to 1960 proportions.

Once a model is constructed, the actual
estimation is accomplished by algebrai-
cally manipulating the estimation of
change in proportions into actual county
population numbers. The estimated
county population numbers are then ad-
justed to the independently determined
total state population and, often,
smoothed to provide orderly transitions
from earlier estimates.

An example of this procedure for the
year 1972 follows: first, 1972 over 1970 ra-
tios of symptomatic indicator proportions
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are substituted into the model that was
constructed using ratios of 1970 over 1960
data. These ratios of proportions are the
“independent” variables in the model.
Next, the model is run and estimated ra-
tios of 1972 over 1970 county population
proportions are generated. Since the 1970
county populations are known, these esti-
mates can be algebraically manipulated
into estimated 1972 proportions. These, in
turn, are then multiplied by the independ-
ently derived state total and adjusted and
smoothed where necessary. A more for-
mal description of the ratio-correlation
model is given below.

Y=a,+ax +ax,+,,+ax .+ F
0))
Where

a, = coefficient to be estimated
E = error term

In the ratio-correlation form:

Y = (Population in County, time=T,,,)
State Total Population

+ (Population in County, time = T)
State Total Population

Yx

Yo

Symptomatic
X, = (Indicator in County, time = T, ,)
State Total Indicator

Symptomatic
+ (Indicator in County, time = T,)
State Total Indicator

_X

X

Although equation (1) is readily under-
standable, it is more convenient to use
matrix notation to represent it. (For a
good introduction to the matrix approach
to regression, see Draper and Smith,
1966.) Equation (1) in matrix form is de-
noted by

415
Y=XB+e )

where the n X p matrix X contains the
values of p predictor variables at each of
the n data points. Y is the vector of values
for the dependent variable, B is the p X 1
vector of regression coefficients, and ¢ is
an n X 1 vector of stochastic errors, where
E(e) = 0, and E(ee’) = ¢°L,.

Further, it is also convenient to con-
sider equation (2) in correlation form.
That is, in a form where the variables are
standardized by centering each observa-
tion on its mean and scaling it by dividing
by the standard deviation of the variable
in question. (See, again, Draper and
Smith, 1966.)

In its correlation form, the estimate of
B is given by

B = (X’X)"'X'Y 3)

with (X’X) being the zero-order correla-
tion matrix for the independent variables,
and (X'Y) the vector of zero-order corre-
lations between each of the independent
variables and the dependent variable.
Throughout this paper, the intent of the
procedures described is to produce a
modified B vector, primarily by exploiting
information for (X’X)., where the sub-
script “e” identifies an “estimation data
set.” An established procedure for pro-
ducing modified B vectors is ridge regres-
sion (Hoerl and Kennard, 1970) which is
used in the presence of multicollinearity
in order to stabilize the estimate of the re-
gression coefficient vector. However, ridge
regression is designed to deal with insta-
bility caused by multicollinearity not in-
stability caused by structural changes
over time, although in some applications
it may be difficult to distinguish between
these two causes of instability. In any
event, ridge regression and other proce-
dures mentioned earlier do not exploit the
information always available from the
zero-order correlation matrix (X’'X). for
the predictor variables in an estimation
data set. In these procedures, predictor
values are simply plugged into the coeffi-
cients previously calculated from the



416

model data set and the estimated values
for the dependent variable are generated.
Ignoring the relationships found in the
zero-order correlations among the predic-
tor variables in the estimation data set
disregards information that can be used to
modify B and improve the accuracy of es-
timated values.

CAUSAL MODELLING AND PATH
ANALYSIS CONCEPTS

The key to exploiting the information
contained in the zero-order correlations
found in an estimation data set is taken
from Land (1969, Chapter IV), work that
is based on the fundamental theorem un-
derlying path analysis as developed by
Wright (1921). As stated in the In-
troduction and footnote 1, it involves a
theoretical “reversal” of the dependent
variable in the regression model, the pop-
ulation variable, as an unmeasured, caus-
ally prior variable and a “just-identified”
structure—a minimum of three predictor
variables (in the regression model), the
covariance of which is assumed to be due
to the fact that they are all causally re-
lated to the population variable. The path
diagram specifies this theoretical “re-
versal.”Let
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Z, =predictor variable 1
Z, =predictor variable 2
Z, =predictor variable 3
Z,, Z., and Z, = residual effects
r; =the zero-order correlation between
variable i and variable j.

If the causal structure is adequately speci-
fied, then the following relations hold:

re = (P,)(P.)
rs = (P.)(Ps,)
ryp = (P u)(P 3a)

Further, from the above system, if P,
P,,, and P,, can be assumed to be posi-
tive, a system of three linear equations in
three unknowns can be made using loga-
rithmic transformation in order to solve
for In(P,,), In(P,,) and In(P,,).

In(r,,) = (1) [In(P,,)| + (1) [In(Ps,)|

+(0) [In(P5,)]
In(r,;) = (1) [In(P,,)| + (0) [In(Py,)|

+ (1) |In(Py,)|
In(r;;) = (0) [In(P,,)| + (1) [ln(P.,)|

+ (1) [In(P5,)|

@

3a

1b

3d

Z,= a variable in standard form (sub-
tracted from its mean and divided
by its standard deviation)

Z, =the population variable

Once the unknowns are found they are
transformed into estimates of P,,, P,,, and
P,,, which are also estimates of r,,, r,,, and
Is., Tespectively since Py, = ry,, P,, = r,,
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and P,, = r;,. These estimates are the
basis for modifying an original regression
model’s coefficients. The actual process of
modification will be discussed in the sub-
sequent section.

If more predictor variables are avail-
able, i.e., more than three, using the theo-
retical causal structure specified above
leads to an over-identified model which in
turn can be used to test the adequacy of
the specified causal structure. This point
is pursued by Land (1969) and Heise
(1969).

At this point, one might think that if
reasonable estimates of the correlations
are available between the dependent vari-
able and the predictor variables for an es-
timation data set, why not simply use
these to re-estimate the original coeffi-
cient vector, B. This approach is usually
blocked by two factors. The first is that
the coefficient vector, B, is extremely sen-
sitive to estimation errors in a given (X'Y)
matrix. Even small error could lead to a
significantly different coefficient vector
which could produce less accurate esti-
mates than an unmodified, original coeffi-
cient vector. The second factor is that in
order to transform the modified estimated
(standardized) coefficient vector into the
unstandardized regression coefficients
(and, consequently, to have, by definition
an intercept in the regression equation)
needed for an actual estimation of the de-
pendent variable, an estimate of the vari-
ance of the dependent variable must be
available. This variance is not available
for an estimation data set, since by defini-
tion, an estimation data set excludes any
observations of the dependent variable.
Further, it does not appear to be stable
enough to estimate its value from that
contained in the model data set although
this must be determined empirically for
specific estimation problems.

THE RANK-ORDER PROCEDURE

At this point it is useful to provide some
notation.
Let
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(X’X),, = the zero-order correlation ma-
trix for the p predictor vari-
ables in the model data set, the
subscript “m” refers to the
model data set,

B. =(X'X)."'(X’Y).., the coefficient
vector estimated from the
model data set,

(X’X). = the zero-order correlation ma-
trix for the p predictor vari-
ables in the estimation data set,
which is always available in an

A estimation situation,

B. = (X’X).”'(X"Y)., the coefficient
vector that would result if in an
estimation data set the depen-
dent variable could be ob-
served. (In actual practice, B, is
unknown because (X'Y), is un-
known.) And

(X’Y).* = the zero-order correlation vec-
tor for each of the p predictor
variables with the (unknown)
dependent variable that is esti-
mated for the estimation data
set using the rank-order proce-
dure.

Further, let the p unique correlation co-
efficients appearing in (X'Y),, and (the
unknown) (X’Y), be ranked in descending
order in R, and R,, respectively. The cor-
relation coefficients that are estimated us-
ing the rank-order procedure and con-
tained in (X'Y).* are placed in descending
rank-order in R *. By either calculating to
a high number of significant digits or us-
ing a procedure to decide among any ties
within R, and R.*, respectively, there are
p* pairwise comparisons of ranks that can
be made for p predictor variables between
R.. and R.* and a minimum of zero and a
maximum of p re-orderings of the ranked
coefficients in R,, such that their rank or-
der becomes equivalent to their corre-
sponding rank-order in R.*. This re-or-
dering of ranks in going from R, to R_* is
the basis of the procedure. The key is in
estimating (X’Y).* and, consequently,
placing these correlations in descending
rank-order in R.*. This key is found in
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the causal structure outlined earlier.
While, as it was stated earlier, it is usually
not feasible to use (X'X). in conjunction
with the algebraic manipulations possible
from the specified causal structure to di-
rectly estimate (X'Y),, and, consequently,
B., it is reasonable to assume that the esti-
mated correlations, (X’Y).* are in the
same rank-order as those in (X'Y).. The
reasonableness of this assumption is di-
rectly related to the reasonableness of the
causal structure specified. In turn, the
rank-orders in R,, and R_* are the same as
the rank-orders in B, and B., respec-
tively. Consequently, the change in rank-
order, if any, observed in going from R,
to R.* can be used to modify B, such that
it conforms to the (unobserved) rank-or-
der in B.. Further, since the variance of
each of the variables in the model data set
is known, B, (which is, remember, in
standardized form), modified to conform
to the rank-order found in R.*, can be
manipulated into a modified set of un-
standardized  regression  coefficients,
which can be used to provide an alterna-
tive estimate of the dependent variable.
Although others are feasible, the modi-
fication of coefficients proposed here is in-
tended to provide a conservative ap-
proach. The actual modification proposed
is as follows. First, R,, and R_* are deter-
mined. Since R,, preserves the same rank-
ordering found in B, the coefficients in
B.. can be incremented by selected values
such that their rank-order is modified to
conform to the rank-order in R.*. By us-
ing “minimum” increments, this proce-
dure assumes even more of a conservative
approach to modifying the coefficients in

The use of “minimum” increments has
two major issues associated with it that re-
quire clarification. The most obvious one
is the selection of a value for the in-
crement. Should it be in tenths, hun-
dredths, thousandths, or even more de-
tailed? In an actual application the
selection of a useful increment should be
determined both by the magnitude of
change required and by the judgment of
the user. The other issue is how to apply
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the selected increment to a set of coeffi-
cients. A set of two hypothetical examples
will help with the required clarification.
In the first hypothetical example, suppose
that there are only two predictor vari-
ables, X, and X,, whose standardized re-
gression coefficients in the original model
are B,, = .52 and B,, = .48, respectively.
Suppose further that using the subsequent
information derived from the zero-order
correlations in the estimation data set,
(X’X)., B,, is indicated to be less than B,,.
How does one now select—and apply—
an increment of change to the original co-
efficients such that the modified B,, is
made to be less than B,,? Obviously, by
arbitrarily changing B,, to .40 and leaving
B,, at .48 the desired new rank-ordering
will be achieved. Such an arbitrary ap-
proach, however, could decrease the accu-
racy of an estimation because it ignores
certain theoretical and empirical regular-
ities of the ratio-correlation form of mul-
tiple regression.

These regularities can help provide a
useful set of guidelines for conservatively
changing the original coefficients. First,
recall that in a multiple regression equa-
tion the sum of the standardized model
coefficients is finite. Further, in the ratio-
correlation form, this sum consistently ap-
proximates 1.00 regardless of the number
of predictor variables. Also, under the
limitations given for this entire procedure,
each independent variable is positively
correlated with the dependent variable.
These regularities imply that a change in
one coefficient should be balanced by a
corresponding change in the opposite di-
rection. In the hypothetical example
given, the arbitrary reduction of B,, from
.52 to .40 results in a coefficient vector
that is “too short” in terms of its expected
sum. Where the original sum was .52 +
48 = 1.00, the sum of the modified set is
only .40 + .48 = .88. In order to conform
to its expected sum, the modified coeffi-
cient vector should, in this example, be
equal to 1.00. This can be accomplished
by matching each decrease in B,, with a
corresponding increase in B,,.

At this point one question still remains
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unanswered. What value should be se-
lected as an increment for modifying the
set of coefficients? If .1 is used, at the first
step B,, will be reduced to .52 — .10 = .42
and B,, will be correspondingly increased
from .48 by .10 to .58. If .00001 is used,
the point where the desired rank-ordering
is achieved is where B,, = .49999 and B,,
= .50001. Here, a useful guideline to fol-
low in order to achieve a meaningful yet
conservative change is to define the de-
sired point of reversal in terms of empiri-
cal referents. Typically, this will probably
be in terms of hundredths for many ratio-
correlation models but some degree of ex-
perimentation is advised for any given ap-
plication. When the number of coeffi-
cients exceeds two (which will usually be
the case in actual practice), additional
consideration must be given to the man-
ner in which the sum of the original coef-
ficient vector is preserved. For example,
in a three coefficient system, there are ex-
actly 3! = 6 possible outcomes for the new
rank-ordering. In one of these outcomes,
the same rank-ordering found in the orig-
inal set is preserved; consequently, no
modifications are required. In three of
these possible outcomes, only two of the
coefficients change ranks; consequently,
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the same procedure for making corre-
sponding changes that was outlined in the
hypothetical example for two coefficients
can be used. That is, since the only pos-
sible changes are in (1) B,, and B,, or in
(2) B,, and B,, or in (3) B,, and B,,, the
balance necessary to preserve the original
coefficient sum can be maintained by
making changes in only the two coeffi-
cients in question; the third coefficient
does not require any change. However, in
the two remaining of the six possible out-
comes, where all three coefficients change
ranks, the balance must be maintained by
making changes in all three coefficients.
This, however, is still not a very com-
plicated matter. In both of these two out-
comes, one coefficient changes rank by
going from either the highest to the lowest
rank or from the lowest to the highest.
The remaining two coefficients each
change one rank in the direction opposite
to the change in the other one. This im-
plies that the increment (or decrement)
used for the single coefficient undergoing
the maximum change of rank can be bal-
anced by splitting its value equally be-
tween the other two and moving them in
the opposite direction. For example, as-
sume that the original coefficients are B,,

Table 1.A.—Correlations between Variables in the
“Model” Data Set

] 1
04 X)m x Y)m
Civ. Pop.
< 65 Yrs.
X1 X2 X3 Xa
Xl (employment) 1.000 .69379 .66318 .73138
X2 (voters) .69379 1.000 .81169 .93228
X, (enrollment) .66318 .81169 1.000 .91942

3
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=.5, B,, = .3 and B,, = .2, and that these
need to be changed so that B,, becomes
the largest, B,, the second largest, and B,,
the smallest. In the first step, B, is in-
creased by .1 to .30; the corresponding
changes in B,, and B,, are .50 — .05 = 45
and .30 — .05 = .25, respectively. In the
second step, B,, is again incremented by
.1 from .3 to .4; B,, and B,, are decre-
mented by .05 to .40 and .20, respectively.
In the final step, B., is incremented by .1
to .5 while B,, and B,, are each decre-
mented by .05 to .35 and .15, respectively.
This last step gives the coefficient values
required to conform to the desired rank-
ordering using the ‘“minimum’ in-
. crement, conservative procedure. As the
number of coefficients increases, the prob-
lem becomes more complicated but it is
still manageable since it reduces to a se-
ries of counting rules. In actual practice,
the number of coefficients is usually un-
der five and consequently it is possible to
solve the majority of outcomes by hand—
although this may become tedious. For
those situations involving a number of co-
efficients a computer algorithm can be
[
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easily developed from basic counting
rules and the allocations that were dem-
onstrated in the two preceding examples.

It is important to bear in mind that the
procedure outlined here is not the only
one that could be used as a basis for coef-
ficient modification. It is suggested be-
cause, in the absence of additional testing,
it is likely to produce more accurate esti-
mates than an unmodified model, espe-
cially if a great deal of change has oc-
curred in the structure of the relationships
for the variables in question; no claim is
made for it producing an optimally accu-
rate estimate.

EMPIRICAL RESULTS

Table 1.A gives the zero-order correla-
tions relating to a 1960-1950 based ratio-
correlation model for estimating county
civilian population under sixty-five years
from employment, voters, and grades 1-8
enrollment for the state of Washington.’
Characteristics of the model constructed
from these data are given in Table 1.B. In
Tables 2.A and 2.B similar results are
given for the 1970-1960 period. This set

Table 1.B.—Model Results

~

B
m
Standardized Unstandardized
Regression Regression
Coefficients Coefficients
Xl .07533 .066786
X2 .51085 .550365
X3 .45481 .356083
Constant ~ —————- .046618
Multiple Correlation Coefficient, R = .97443
R2 = .94953
Adjusted RZ = .94519
S.E.E. = .05022
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Table 2.A.—Correlations between Variables in the
“Estimation” Data Set
' '
(X'x) X'
Xl XZ X3 Xa
Xl (employment) 1.000 .48155 .61864 .65478
X2 (voters) .48155 1.000 .73827 .83726
.61864 .73827 1.000 . 88966

X3 (enrollment)

forms the estimation data over which the
procedure will be used and tested.
Although full knowledge of the estima-
tion data set is available, the procedure is
used as if this were not the case and the
known results in Table 2 are shown for
purposes of comparison. Of course, what
is known in Table 2—and for any estima-

tion problem—is (X’X). which is used in
conjunction with the theorem to estimate
the rank-order of the (unknown) coeffi-
cients in R, and, consequently, provide
the re-ordering to which %m will be modi-
fied for conformation. Observe that in
Table 1.A, the correlations in (X'Y),, are
ranked:

Table 2.B.—Model Results

~

B
e
Standardized Unstandardized
Regression Regression
Coefficients Coefficients
X1 .15351 .081743
X2 .38825 .473637
X3 .50805 .492240
Constant = =  —=—=—— -0.559175
Multiple Correlation Coefficient, R = .93680
R2 = .87759
Adjusted R2 = .86709
S.E.E. = .05077
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R, Rank
2 (1)
I3 2)
r la (3 )

Let the causal structure (as in the path
diagram) be specified for the model data
set (Table 1.A) and estimated data set.
Then, for the model data set, the system
of equations to be solved would be:

In(.69379) = (1)|[In(P.,)| + (1)|In(P,)| + O
In(.66318) = (1)[In(P,,)| + 0 + (1)[In(Ps,)|
In(.81169) = 0 + (1)[In(P..)| + (1)[In(Ps,)|
Solving the preceding system leads to:

P, =F,=.75290

P,, = #,, = 92146

P, =+, = .88082

These values correspond very closely to
the correlations actually computed for the
model data set which are r,, = .7314, r,, =
9323, and r;,, = .9194. The causal struc-
ture specified appears to be reasonable for
the model data set. In an actual appli-
cation, the preceding comparison is rec-
ommended. If the estimated correlations
are at least not in the same rank-order as
the calculated correlations then the proce-
dure may not be adequate since the
causal structure specified is not adequate.

Using the same causal structure and
system of equations given above for the
estimation data set leads to the following
estimate, i.e., (X'Y)* =

P, =, =.635210
P,, = f,, = 758055

P, =#, = 973848
Notice that these estimated values of the
true (and, remember, in actual practice,
unobservable) correlations are less accu-
rate than those estimated for the model
data set. This decline in accuracy is re-
lated to the changing structure of rela-
tionships for these variables. In spite of
the decline in accuracy, (X'Y)¥ still pre-
serves the correct rank-ordering in (X'Y)..
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Ordering the correlations in (X'Y),, and
(X’Y)* by descending rank in R,, and R¥,
respectively, leads to the following “map”
of indicated changes:

Rm Re* RANK
T2a ><r3a 1
Ty, LI 2
Tla >T1a 3

Using the changes in rank-order ob-
served in going from R,, to R*, B,, can be
modified in the following manner in order
to provide the type of change described
earlier,

. By
B2a ><B3a
B3a B2a
Bla > B1a

The actual values are:

B B '
m m

.51085 >< .49481
.45481 .47085

.07533 =——>.07533

Note that here the increment selected was
.01, as was suggested earlier. Some experi-
mentation may be useful in other appli-
cations.

With these modified estimates of the
standardized regression coefficients and
the standard deviations of the variables in
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the model data set, which are .2145, .2420,
.1991, and .2740 for X, X,, X,, and X, re-
spectively, the modified unstandardized
coefficients can be estimated using the
relationship b/, = B,(s,../5.). The modi-
fied model in raw form becomes, then

Y = .046618 + .066787X, + .50727X,
+ .38736X,.

Estimates for 1970 of the county civilian
population under sixty-five years of age
(adjusted to the independently estimated
state total) resulting from the preceding
modified model and its unmodified ver-
sion are presented in Table 3 along with
the actual enumerated populations. Ex-
amination of the individual estimates pro-
duced by the original and modified ver-
sions of the model reveal that the
modified model provides a higher degree
of accuracy. Summary statistics bearing
out this impression are given in Table 4.

The mean of the Absolute Percent Er-
ror is noticeably lower for the estimates
provided by the modified version. The In-
dex of Misallocation (IM) (see Palit et al.,
1974 or Swanson, 1980) is a measure of
total allocation accuracy relative to the
entire state. Unlike the mean of the abso-
lute percentage error—which is refer-
enced to the individual counties—IM is
referenced to the entire state. It is inter-
preted as the percentage of the entire state
total that would have to be re-allocated in
order to have the estimated county popu-
lations conform to the actual county pop-
ulations. Although the difference may not
seem great, 1.560 percent must be re-allo-
cated to achieve zero mis-allocation using
the original model while 1.493 percent
must be re-allocated using the modified
version, this level of improvement can
mean a greal deal when, as is often the
case, these estimates are used to allocate
funds.

DISCUSSION

Perhaps the first point that deserves at-
tention is the similarity of the unmodified
estimates to the modified estimates. The
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ratio-correlation model for the empirical
period under consideration already
achieves a relatively high degree of accu-
racy. However, because data are only
available at ten-year intervals for eval-
uating the estimates produced by differ-
ent models, the actual estimation accu-
racy of a given model over virtually 90
percent of its use is unknown. While the
relative gain in accuracy achieved using
the modified version may seem modest, it
is nevertheless an observable gain.

If a procedure consistently produces
more accurate estimates over the entire
inter-censal period, relatively slight gains
in accuracy tend to accumulate if for no
other reason than that later estimates tend
to be smoothed or adjusted to earlier esti-
mates. Furthermore, even slight gains in
accuracy are worth pursuing because pop-
ulation estimates produced by many state
demographic centers and the U.S. Bureau
of the Census are used as a basis for allo-
cating funds (Engels, 1978; Rosenberg
and Myers, 1977; and U.S. Bureau of the
Census, 1973).

Recall that a number of studies were
cited above in which the temporal stabil-
ity of model coefficients was found to be a
major factor in the accuracy of post-cen-
sal estimates using the ratio-correlation
method. Examination of the regression
coefficients in Table 1.B and the corre-
sponding ones in Table 2.B provides an
example of change in the structure of
relationships for Washington state. The
modified model provides a tractable
means for attempting to cope with this
type of instability. Further, recall also
that it was earlier suggested that perhaps
one reason why Ericksen’s (1974) “regres-
sion sample method” has not gained gen-
eral acceptance is because of the diffi-
culties involving coordination—and
collection—of the data sets it requires.
Compared with Ericksen’s procedure, one
advantage of the one presented here is
that it does not impose any additional
data collection and data coordination
burden on a user. The procedure relies
only on information that is contained
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wholly within the data necessary for a ra-
tio-correlation procedure.

An alternative method that could be
used to deal with the instability problem
is ridge regression (see, e.g., Hoerl and
Kennard, 1970), although this procedure
is generally thought of as a means to cope
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with the instability of coefficients due to
the large mean square errors associated
with multicollinearity. Nonetheless, ridge
regression provides a means of coefficient
modification and it deserves some atten-
tion. A ridge procedure was conducted
using the same data underlying the model

Table 3.—Estimation Accuracy of the Two Models’
Civilian Population under Sixty-Five Years by
County, State of Washington, 1970

Enumerated Estimated Population Percentage Difference
County Population Unmodified Modified Unmodified Modified
Adams 11,102 11,387 11,458 2.570 3.207
Asotin 11,862 11,819 11,814 -0.360 -0.408
Benton 63,144 67,823 67,511 7.411 6.916
Chelan 35,862 36,373 36,177 1.426 0.879
Clallam 30,023 31,371 31,294 4.489 4.232
Clark 116,663 111,312 111,437 -4.587 -4.480
Columbia 3,771 4,222 4,161 11.953 10.340
Cowlitz 62,586 61,636 61,581 -1.518 -1.606
Douglas 15,287 16,375 16,252 7.116 6.313
Ferry 3,336 3,408 3,397 2.152 1.825
Franklin 23,983 24,770 24,631 3.281 2.700
Garfield 2,546 2,770 2,761 8.814 8.435
Grant 38,921 42,750 42,606 9.839 9.469
Grays Harbor 52,583 52,173 52,114 -0.779 -0.891
Island 20,589 22,215 22,148 7.897 7.572
Jefferson 9,235 9,551 9,473 3.423 2.579
King 1,054,271 1,035,704 1,037,937 -1.761 -1.549
Kitsap 86,529 85,989 85,821 -0.625 -0.818
Kittitas 22,764 19,972 19,863 -12.266 -12.744
Klickitat 10,729 11,968 11,923 11.552 11.132
Lewis 39,265 40,124 40,122 2.187 2.183
Lincoln 8,168 9,185 9,107 12.452 11.494
Mason 18,411 17,867 17,827 -2.956 -3.172
Okanogan 22,952 23,656 23,591 3.068 2.786
Pacific 13,310 12,834 12,795 -3.580 -3.872
Pend Oreille 5,185 5,919 5,893 14.162 13.648
Pierce 339,048 346,430 346,728 2.177 2.265
San Juan 3,089 2,947 2,918 -4.603 -5.544
Skagit 45,703 48,868 48,758 6.924 6.683
Skamania 5,330 5,360 5,358 0.554 0.527
Snohomish 245,193 231,238 231,996 -5.691 -5.382
Spokane 251,057 256,882 256,723 2.320 2.257
Stevens 15,178 15,814 15,780 4.189 3.969
Thurston 68,719 69,613 69,540 1.301 1.194
Wahkiakum 3,137 3,409 3,397 8.677 8.293
Walla Walla 36,608 38,323 38,271 4.686 4.543
Whatcom 72,111 70,801 70,670 -1.817 -1.998
Whitman 34,843 32,510 32,409 -6.696 -6.984
Yakima 128,960 136,455 136,283 5.812 5.679
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Table 4—Summary Indices of Estimation Accuracy

Index

Misallocation (IM)

Absolute Percent Error

Mean
s.d.
N > 10.00

N < 3.00

Model
Unmodified Modified
1.560 1.493
5.068 4.886
3.813 3.639
5 5
15 16

data set used earlier. The optimally accu-
rate ridge model was found where the
bias level was equal to k = .10 (using in-
crements of .01 from 0.00 to .10 and in-
crements of .10 from .10 to .90). The opti-
mally accurate model produced estimates
for 1970 with absolute percentage error
that exceeded 10 percent seven times (out
of thirty-nine) and had a mean and stan-
dard deviation of 5.001 and 3.754, respec-
tively. The Index of Misallocation of this
model was 1.519 percent. The model
clearly produced less accurate results than
the model using the rank-order proce-
dure, although it did provide more accu-
rate estimates than did the original. Addi-
tional research comparing the rank-order
procedure and ridge regression may be
useful within the ratio-correlation con-
text, especially where the effects of insta-
bility due to temporal change can be dis-
tinguished from those due to
multicollinearity.

Even in a situation where the entire
rank-order procedure is not used, it can
still provide some valuable information.
For example, it may show that there has
been no change in the rank-ordering of a
model’s coefficients over time. This gives

some indication that the temporal insta-
bility issue may not be a major source of
estimation error and that a given regres-
sion model can be used with some degree
of confidence. The rank-order procedure
may be of more importance in an area
that has experienced rapid population
change and for which it is obvious that an
original model can not be expected to
produce the most accurate estimates pos-
sible. A trade-off that must be evaluated
for each situation is the one mentioned in
the first section: the cost of reducing the
number of independent variables, in or-
der to conform to the limitations de-
scribed earlier, against utilizing informa-
tion about temporal change. While this
may not be a problem for many users it is
a potential source of difficulty that must
be mentioned.

Less conservative approaches than that
used in the “minimum” increments rank-
order procedure introduced here may be
possible but, as discussed earlier, one ma-
jor hurdle to be surmounted is controlling
for the sensitivity of B.* to errors in
(X’Y).*. It may be of interest to explore
this issue in relation to producing opti-
mally accurate estimates within the con-
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fines of the approach to coefficient modi-
fication described here. The rank-order
procedure described in this paper, re-
member, is only intended to provide esti-
mates that are more accurate than those
available from an original model for
which it is likely that structural changes
have taken place over time. It does not
necessarily provide an optimally accurate
set of estimates available within the con-
text of the information that can be gained
from an estimation data set using the the-
oretical causal specification and path-
analysis algebra exploited here.

NOTES

! Throughout the paper it is important to realize
that while the proposed procedure relies upon the
conception that a population must be causally prior
to its symptomatic indicators, this is a theoretical
construct that is used to exploit algebraic relation-
ships in order to modify model coefficients. That is,
this conception is a theoretical reversal that relies
upon being able to assume that the dependent vari-
able in the regression model is causally prior to its
symptomatic indicators in a theoretical causal struc-
ture. In the actual estimation, the intent is still to
produce a population estimate using the sympto-
matic indicators as a set of predictor variables.

2 This second restriction is like the first in that it is
necessary in order to exploit algebraic relationships,
in this case, logarithms. If values are negative, then
the logarithms required cannot be calculated.

3 These data are in the official Washington State
Population Data Base (File Base 526), available on
request.
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