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Abstract

Background: In recent years, with the development of high-throughput sequencing technology and the commercial
availability of genotyping bead chips, more attention is being directed towards the utilization of abundant genetic
markers in animal and plant breeding programs, human disease risk prediction and personal medicine. Several useful
approaches to accomplish genomic prediction have been developed and used widely, but still have room for
improvement to gain more accuracy. In this study, an improved Bayesian approach, termed BayesBπ, which
differs from the original BayesB in priors assigning, is proposed. An effective method for calculating the locus-specific π
by converting p-values from association between SNPs and traits’ phenotypes is given and systemically validated using a
German Holstein dairy cattle population. Furthermore, the new method is applied to a loblolly pine (Pinus taeda) dataset.

Results: Compared with the original BayesB, BayesBπ can improve the accuracy of genomic prediction up to 7.62 % for
milk fat percentage, a trait which shows a large effect of quantitative trait loci (QTL). For milk yield, which is controlled by
small to moderate effect genes, the accuracy of genomic prediction can be improved up to 4.94 %. For somatic cell
score, of which no large effect QTL has been reported, GBLUP performs better than Bayesian methods. BayesBπ
outperforms BayesCπ in 10 out of 12 scenarios in the dairy cattle population, especially in small to moderate
population sizes where accuracy of BayesCπ are dramatically low. Results of the loblolly pine dataset show that
BayesBπ outperforms BayesB in 14 out of 17 traits and BayesCπ in 8 out of 17 traits, respectively.

Conclusions: For traits controlled by large effect genes, BayesBπ can improve the accuracy of genomic prediction and
unbiasedness of BayesB in moderate size populations. Knowledge of traits’ genetic architectures can be integrated into
practices of genomic prediction by assigning locus-specific priors to markers, which will help Bayesian approaches
perform better in variable selection and marker effects shrinkage.
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Background
In the field of medicine, risk prediction of major diseases
such as cancer is essential for taking preventive mea-
sures early before worsening [1–4]. Similarly, it is im-
portant to predict genetic values of candidates for early
selection, through which the production costs will be re-
duced immensely, in breeding programs both of domestic

animal and economically important plants [5–9]. There-
fore, developing prediction methods exploiting the avail-
ability of genomic big-data is a renewed hot topic in the
scientific community nowadays.
With the development of high-throughput sequencing

technology and the commercial availability of genotyping
bead chips in recent years, large numbers of single
nucleotide polymorphisms (SNPs) covering the whole
genome can be obtained quickly and cheaply. The utili-
zations of these genomic data to accelerate genome wide
association studies (GWAS), disease prediction and per-
sonal medicine of human beings, and breeding programs
of animals and plants are attracting more and more
attention [10]. The paradigm of involving dense genomic
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markers into genetic merit prediction, which was termed
genomic selection (GS), was first proposed by Meuwis-
sen et al. [11]. Nowadays, GS has been applied to genetic
merit prediction in human beings [12], model organisms
[13], dairy cattle [14–17] and other domestic animals
[18–21], and has even been applied to the breeding pro-
grams of economically important crops [22–24], forest
trees [25, 26], and aquaculture species [27]. Methods for
GS keep developing rapidly [28] and can be divided into
two categories, direct and indirect approaches, based on
the manners in which they use the genetic markers [29].
Direct approaches are derived from best linear unbiased
prediction (BLUP), and termed genomic best linear un-
biased prediction (GBLUP) [30], which firstly construct
a numerator relationship matrix with SNPs and then
mixed model equations are solved to obtain genetic
merit directly. Indirect approaches include ridge regres-
sion BLUP (RRBLUP) [11], Bayesian variable selection
approaches [11, 31], and Bayesian shrinkage [32, 33] first
estimate marker effects and then get genetic values by
summing the effects of all relevant markers.
In Meuwissen et al. [11], least square (LS), RRBLUP, and

Bayesian non-linear models (i.e., BayesA and BayesB) were
compared for the accuracy of quantitative trait loci (QTL)
detection and genetic value prediction. Results from litera-
tures shown that Bayesian approaches, which integrate a
priori that a large proportion of SNPs (with a high prob-
ability π) are non-effective, are more powerful than other
models in both of QTL detection and genetic value pre-
diction. Since 2001, many Bayesian methods for GS have
been developed [11, 31, 34], which were reviewed by Meu-
wissen [28]. The concept of a “Bayesian alphabet”, which
denotes the growing number of Bayesian methods that
differ in the priors while sharing a similar sampling model,
was first proposed by Gianola [35].
Although widely used in the animal and plant breeding

programs, the original Bayesian models have been shown
to have some drawbacks [31, 35]. The first is the arbi-
trary assignment of the proportion of non-effective SNPs
(π), which is treated as a constant close to 1 (i.e., 0.95 or
0.99) in most situations [31, 35]. The second is the data-
independent prior degree of freedoms assigned to locus-
specific variances [35]; The full-conditional posterior has
only one additional degree of freedom compared to the
prior distribution, regardless of the number of pheno-
types and genotypes [31]. To overcome these two defi-
ciencies, BayesCπ and BayesDπ [31] were developed, in
both of which the non-informative parameter π and/or
scale parameter S are treated as variable and sampled
from relevant prior distributions. Additionally, changes
to the distribution of marker effects and variances have
been performed [36, 37]. BayesLASSO [38, 39] uses an
exponential distribution as a prior of marker effects, dif-
ferent from the prior normal distribution in BayesA and

BayesB. In BayesR [15] and BayesRS [34], the prior of
marker effects is treated as a serious normal distribution.
All of these approaches show some advantages under
different circumstances, but none of them can be con-
sidered as the golden rule.
Although Bayesian approaches outperform GBLUP

under most circumstances, the priors assigned to the
established Bayesian approaches still may have room for
further improvement. It has been shown that genetic ar-
chitectures of traits can influence genomic prediction
accuracy [40]. Therefore, traits’ genetic architectures
should be taken into account by assigning locus- or
trait-specific priors to genomic prediction models. By
assigning different marker weights to build a trait-specific
numerator relationship matrix, locus-specific priors have
been utilized in methods derived from BLUP, such as
TABLUP [41, 42], BLUP|GA [43], and iterated-GBLUP
[44]. These approaches confirmed that locus-specific
priors show benefits compared to common priors. More-
over, by converting p-values derived from GWAS into
marker-specific weights, the locus-specific priors have
been utilized in the genomic prediction of human traits
via BLUP [12], through which a greater degree of accuracy
was gained. All these previous studies indicated that
locus-specific priors in genomic prediction show favorable
features in BLUP models. However, it has not been tested
whether more accuracy will be gained in Bayesian models
with locus-specific priors. Based on the assumptions of
BayesB and prior knowledge of traits’ genetic architec-
tures, we argue here that a locus-specific prior (π) is more
appropriate for Bayesian methods for genomic prediction.
With a locus-specific prior, the accuracy of genomic pre-
diction may be improved due to a more appropriate
marker effect shrinkage and variable selection. The aim of
this study is to propose and validate a modified BayesB
method which can utilize locus-specific priors. The per-
formance of the modified Bayesian approach in genomic
prediction is compared with that of GBLUP, the original
BayesB and BayesCπ.

Results
Statistical summary for all traits
Two datasets, a German cattle population [45] and a
loblolly pine (Pinus taeda) dataset [25] were analyzed in
this study. The statistical summary of all traits in the
two datasets are shown in Table 1. It should be noted
that phenotypes in the German cattle population were
rescaled to standard normal distribution, i.e., y ~N(0, 1),
where y denotes the phenotypes. For these traits, the
traditional estimated breeding values, with high reliabil-
ity, were close to the true breeding values. The variation
of the regressed phenotypes of the loblolly pine was dra-
matically large (Table 1), and their heritability are rela-
tively low [25].
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Capturing of genetic architecture
In order to capture genetic architectures of traits, ana-
lysis of variance (ANOVA) based on single markers is
performed for three traits in the dairy cattle population.
The logarithms of p-values from ANOVA reflect the
genetic architecture of these traits (Fig. 1). For milk fat
percentage, a set of SNPs with dramatically low p-values
on chromosome 14 were detected via ANOVA (Fig. 1),
which is consistent with our prior knowledge about the
genetic architecture of this trait that 30 % of the genetic
variation is due to segregation of the DGAT1 gene
[46, 47] located on chromosome 14. For milk yield,
clusters of SNPs with low p-values were detected on
chromosome 1, 5, 7, and 14, which is consistent with
the prior knowledge that there is a major gene on chromo-
some 14 and some genes with moderate or small effects on
other chromosomes. For the somatic cell score, none sig-
nificant association between phenotypes and SNPs has
been detected, which in agree with the prior knowledge
that no major genes affect this trait.
Furthermore, we found that the p-values from ANOVA

can be converted with formula (4) to a probability form,
which can be used as a genetic-architecture-based π in

Bayesian methods. The distribution of locus-specific π for
three traits in the dairy cattle population can reveal the
genetic architecture of these traits at some extent (Fig. 1).

Validating BayesBπ with the German dairy cattle dataset
Results of genomic prediction for three traits in the
German Holstein dairy cattle (Table 2) show that when
the population size is 200, BayesB outperforms BayesBπ.
However, when the population sizes are 500 and 1000,
BayesBπ performs better than BayesB. For milk fat per-
centage, BayesBπ gives 6.25 and 7.62 % higher prediction
accuracies than BayesB when the population sizes are
500 and 1000, respectively. For milk yield, the accur-
acy of BayesBπ is 4.94 % higher than that of BayesB
when N = 500, while BayesBπ and BayesB performed
similarly for N = 1000; When the population size reached
2000, BayesBπ performs not better than BayesB. For
somatic cell score, improvement of BayesB with locus-
specific π is only observed when the population size is
1000; In other population sizes, GBLUP performed better
than the Bayesian methods. BayesBπ outperforms BayesCπ
in 10 out of 12 scenarios in the dairy cattle population,
especially in small to moderate population sizes where

Table 1 Descriptive statistics of trait phenotypes

Datasets Traitsa N Min. Mean Max. S.D. CV%

Dairy cattle MY 5024 −3.383 0.000 3.319 1.000 –

MFP 5024 −3.569 0.000 4.281 1.000 –

SCS 5024 −4.462 0.000 3.469 1.000 –

Loblolly Pine HT 927 −287.700 20.300 226.10 73.315 361.158

HTLC 927 −94.110 3.304 89.080 24.976 755.932

BHLC 927 −1.578 0.092 1.573 0.507 551.087

DBH 927 −5.439 0.294 1.349 4.150 1411.565

CWAL 927 −91.190 2.443 130.800 27.326 1118.543

CWAC 927 −140.600 2.276 157.000 42.033 1846.793

BD 927 −0.608 −0.004 1.739 0.249 −6225.000

BA 927 −24.560 −0.261 21.140 7.315 −2802.682

Rootnum_bin 927 −0.779 0.107 0.602 0.258 241.121

Rootnum 927 −2.422 0.321 4.368 0.960 299.065

Rust_bin 927 −0.482 −0.014 0.822 0.399 −2850.000

Rust_gall_vol 927 −1.175 −0.022 5.212 1.132 −5145.454

Stiffness 927 −3.244 0.095 6.082 1.225 1289.474

Lignin 927 −3.644 0.050 4.073 1.200 2400.000

LateWood 927 −4.544 0.090 4.878 1.571 1745.556

Density 927 −10.290 −0.053 17.610 2.498 −4713.208

C5C6 927 −8.102 −0.049 9.057 2.649 −5406.122
aMY, milk yield; MFP, milk fat percentage; SCS, somatic cell score; HT, total stem height; HTLC, total height to the base of the live crown; BHLC, basal height of the
live crown; DBH, traits stem diameter; CWAL, crown width along the planting beds; CWAC, crown width across the planting beds; BD, average branch diameter;
BA, branch angle average; Rootnum_bin, presence or absence of roots; Rootnum, Root number; Rust_bin, presence or absence of rust; Rust_gall_vol, gall volume;
lignin, lignin content; LateWood, latewood percentage; Density, wood specific gravity; C5C6, C5C6 content. In the dairy cattle population, phenotypes were
rescaled to standard normal distributions

Gao et al. BMC Genetics  (2015) 16:120 Page 3 of 11



accuracies of BayesCπ are dramatically low (Fig. 2 &
Table 2). For milk fat percentage, the prediction un-
biasedness of BayesBπ is the best among four ap-
proaches (Additional file 1: Table S1), indicating that
BayesBπ is suitable for genomic prediction of traits
controlled by large effect genes.
Impacts of population sizes on accuracy of genomic

selection are tested by averaging accuracies among traits
in each subpopulation (Fig. 2). Similarly, impacts of
traits’ genetic architectures on genomic selection accur-
acy are detected by averaging accuracies among subpop-
ulations for each trait (Table 2). Accuracies of BayesB
and BayesBπ are higher than that of GBLUP for all
population sizes. BayesBπ outperformed BayesB in mod-
erate size populations, but the accuracies of BayesB and
BayesBπ become similar when the population sizes be-
come either smaller or larger (Fig. 2). When taking aver-
age genomic prediction accuracies of three traits in the

dairy cattle dataset across subpopulations, BayesBπ out-
performs BayesB and BayesCπ in all three traits (Table 2).
Moreover, BayesBπ outperforms GBLUP for both milk
yield and milk fat percentage, but was not better than
GBLUP for the somatic cell score.

Applying BayesBπ to the loblolly pine population
Results of loblolly pine dataset show that BayesBπ out-
performs BayesB in 14 out of 17 traits and BayesCπ in 8
out of 17 traits, respectively (Table 3). The scale of ac-
curacies for all traits are consistent with that reported by
other scholars previously [25], although some differences
exist due to random sampling in cross-validation. In four
development related traits—CWAL, CWAC, BD, and
Rootnum_bin, genomic prediction accuracies of BayesBπ
are 0.52, 1.28, 0.76, and 1.84 % higher than that of
BayesB; 1.84, 1.28, 1.14, and 0.72 % higher than that of
GBLUP, respectively. In other traits, advances of

Fig. 1 Distribution of p-values and locus-specific π of three traits in dairy cattle population across the genome. Rows in the figure correspond to
distributions of features of milk fat percentage (FP), milk yield (MY), and somatic cell score (SCS), respectively. Four columns correspond
to distributions of ω, density of ω, distribution of locus-specific π, and density of locus-specific π, respectively; where, ω= − log10(p − values). The p-values
are derived from ANOVA for all single markers. Logarithmic transformation of the p-values is performed for data visualization convenience and latter
utilization. The locus-specific π is derived from the p-values of the ANOVA via formula (4). Since π is the proportion of non-effective markers, 1-π is taken
as the probability of each marker to be effective. For milk yield and milk fat percentage, the clusters on chromosome 14 is the genomic segment where
located the DGAT1 gene. For somatic cell score, no cluster is observed due to the lack of major genes. Distributions of the locus-specific π are consistent
with our prior knowledge about the genetic architectures of these traits. These plots are drawn on the R software platform (http://www.r-project.org/)
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BayesBπ over BayesB range from 0.52 % for CWAL to
4.05 % for C5C6, with an average improvement of
2.13 %. The unbiasedness of BayesBπ shows a trend of
larger than that of BayesB and GBLUP (Additional file 1:
Table S2).

Discussion
Performance of BayesBπ in genomic prediction
Compared with original BayesB, BayesCπ, and GBLUP,
the proposed new approach, which with a locus-specific
prior instead of the common prior used in the other

three methods, gives improved genomic prediction ac-
curacies and unbiasednesses in both moderate size pop-
ulations (Fig. 2) and traits controlled by large effect
genes (i.e. milk fat percentage, Table 2). When the popu-
lation sizes are small to moderate, the performance of
BayesCπ will be dramatically decreased, while other
three approaches gain relevantly reliable prediction ac-
curacies. As expected and systematically tested previ-
ously, the accuracy of genomic prediction differs among
approaches in small to moderate sample sizes but be-
comes similar when the reference population is large
enough [24]. The accuracy of genomic prediction is also
dependent on the consistency between the priors utilized
and the true genetic architecture of the target traits [40].
It has been shown previously that methods given reason-
able differential weights to markers outperformed those
given common weights [12, 43]. Our results showed that
the original BayesB can be improved by assigning locus-
specific priors.

Priors in genomic prediction
When dealing with the problem of “p>>n” in the process
of genomic prediction by Bayesian methods, the distri-
butions of priors have a relatively large impact on pos-
terior distributions of parameters to be estimated, for
example marker effect and variance [48]. However, the
sensitivity to priors differs among methods [49], while
BayesA and BayesB are more sensitive because the
assigned priors are not derived from real data [50].
Therefore, suitable priors are important for performing

Table 2 Accuracy of genomic prediction of three traits in Germany cattle population r(EBVs, GEBVs)

Traits N GBLUP BayesB BayesBπ BayesCπ

MY 200 0.438 ± 0.010 0.385 ± 0.018 0.382 ± 0.016 0.128 ± 0.016

500 0.547 ± 0.007 0.547 ± 0.012 0.574 ± 0.009 0.324 ± 0.010

1000 0.620 ± 0.005 0.663 ± 0.005 0.663 ± 0.004 0.560 ± 0.006

2000 0.693 ± 0.003 0.722 ± 0.002 0.716 ± 0.002 0.718 ± 0.002

Mean 0.574 ± 0.006 0.579 ± 0.009 0.584 ± 0.008 0.432 ± 0.008

MFP 200 0.353 ± 0.012 0.558 ± 0.018 0.544 ± 0.018 0.112 ± 0.012

500 0.467 ± 0.008 0.629 ± 0.011 0.670 ± 0.010 0.332 ± 0.005

1000 0.594 ± 0.004 0.709 ± 0.007 0.763 ± 0.003 0.709 ± 0.007

2000 0.698 ± 0.003 0.815 ± 0.002 0.799 ± 0.002 0.799 ± 0.001

Mean 0.528 ± 0.007 0.678 ± 0.010 0.694 ± 0.008 0.488 ± 0.006

SCS 200 0.347 ± 0.017 0.292 ± 0.015 0.290 ± 0.018 0.161 ± 0.017

500 0.469 ± 0.008 0.440 ± 0.011 0.465 ± 0.009 0.265 ± 0.006

1000 0.568 ± 0.004 0.570 ± 0.006 0.572 ± 0.006 0.535 ± 0.005

2000 0.650 ± 0.007 0.647 ± 0.002 0.647 ± 0.002 0.646 ± 0.002

Mean 0.508 ± 0.009 0.487 ± 0.008 0.494 ± 0.009 0.402 ± 0.008

The highest accuracies (Mean ± SE) among methods in different scenarios (subpopulations for different traits) are in bold faces. For each trait, accuracies among
subpopulations are averaged to test the overall performances (i.e., the “Mean” accuracies here) of methods. For example, the overall performance of GBLUP in MY
is the mean of its prediction accuracies for this trait among subpopulation 200, 500, 1000, and 2000

Fig. 2 Impact of population sizes on genomic prediction accuracy.
Genomic prediction accuracies of each method in each subpopulation
are averaged among three traits to test the overall performance of
methods in different subpopulations. For example, accuracies of
GBLUP in subpopulation 200 are averaged among three traits to gain
its’ overall performance in this population size
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genomic selection in plant and animal breeding practices
or genomic prediction of human complex traits.
To the knowledge of the co-authors and pointed by

other scholars, there is no golden rule for the assign-
ment of priors in the paradigm of genomic prediction so
far, especially when the biological meanings of priors are
taken into account [51]. Nowadays, researchers are
mostly focused on changing prior distribution of marker
effect and variance for the purpose of gaining more pre-
diction accuracy. The prior of marker effects was set to
a normal distribution with a zero mean under most cir-
cumstances [11, 31]. In the work of Knurr et al. [36, 37],
a spike-and-slab-shaped prior of marker effects was
introduced, and the effects were limited to the interval
of −l ~ −b, −b ~ b, and b ~ l. They concluded that an ap-
proach involving the mixture of uniform priors was suit-
able for genomic selection since through which different
priors can be introduced into the prediction procedure
[37]. Marker effects variance was usually set as an in-
verse chi-squared distribution with degree of freedom
and scale parameters derived from the genetic architec-
ture of traits [11, 31] or from a double exponential
distribution [38, 39]. In this paper, we introduce one ap-
proach to obtain locus-specific prior by converting the
p-values from associating phenotypes to single markers
into probability form. The locus-specific prior here can
be understood as a prior considering the probability of
each marker to be effective or non-effective.

Locus-specific π in genomic prediction
Results from this study confirm that locus-specific priors
can improve genomic prediction accuracy in domestic
animals and plants. A locus-specific π calculated based on
p-values from associating phenotypes to single markers
outperforms other non-informative priors, especially for
traits with large effect genes, such as the milk fat percent-
age of dairy cattle. The results of the loblolly pine show
that genomic prediction accuracy is improved via a locus-
specific π (Table 3).
In recent years, it has been shown that traits’ genetic

architectures impact genomic prediction accuracy at
some extent [40]. Therefore, knowledge of traits’ genetic
architectures should be incorporated into practices of
genomic prediction. Previously developed Bayesian ap-
proaches attempt to integrate prior knowledge of traits
into genomic prediction by assigning different priors
during the procedure of marker effects estimation. How-
ever, the priors of developed Bayesian methods are
identical among all markers, which therefore cannot per-
fectly integrate prior knowledge into the paradigm of
genomic prediction. Locus-specific priors at the level of
variances of marker effects have been showed to be help-
ful in the estimation of phenotypes by combining genetic
markers and records of phenotyped individuals [15, 34].
The difference between BayesBπ and BayesB is in the
assigning of the proportion (π) of non-effective markers,
which is assigned to be a fixed value close to 1 in BayesB

Table 3 Accuracy of 17 traits in the loblolly pine population r(Deregressed Phenotypes, GEBVs)

Trait category Traits GBLUP BayesB BayesBπ BayesCπ

Growth HT 0.376 ± 0.003 0.351 ± 0.003 0.363 ± 0.002 0.374 ± 0.002

HTLC 0.451 ± 0.002 0.449 ± 0.002 0.448 ± 0.002 0.449 ± 0.001

BHLC 0.487 ± 0.006 0.468 ± 0.007 0.479 ± 0.007 0.487 ± 0.002

DBH 0.458 ± 0.002 0.436 ± 0.003 0.446 ± 0.003 0.458 ± 0.002

Development CWAL 0.381 ± 0.003 0.386 ± 0.003 0.388 ± 0.003 0.382 ± 0.002

CWAC 0.468 ± 0.002 0.468 ± 0.002 0.474 ± 0.002 0.469 ± 0.002

BD 0.262 ± 0.004 0.263 ± 0.004 0.265 ± 0.004 0.264 ± 0.003

BA 0.512 ± 0.003 0.497 ± 0.002 0.500 ± 0.003 0.512 ± 0.002

Rootnum_bin 0.277 ± 0.003 0.272 ± 0.004 0.279 ± 0.003 0.275 ± 0.002

Rootnum 0.262 ± 0.003 0.245 ± 0.003 0.253 ± 0.003 0.261 ± 0.002

Disease resistance Rust_bin 0.306 ± 0.004 0.368 ± 0.004 0.353 ± 0.004 0.32 ± 0.003

Rust_gall_vol 0.259 ± 0.005 0.325 ± 0.006 0.292 ± 0.006 0.267 ± 0.004

Wood quality Stiffness 0.424 ± 0.003 0.401 ± 0.003 0.410 ± 0.003 0.422 ± 0.002

Lignin 0.179 ± 0.005 0.173 ± 0.005 0.176 ± 0.005 0.178 ± 0.003

LateWood 0.254 ± 0.003 0.254 ± 0.003 0.257 ± 0.003 0.253 ± 0.002

Density 0.239 ± 0.003 0.226 ± 0.003 0.234 ± 0.003 0.239 ± 0.002

C5C6 0.264 ± 0.004 0.247 ± 0.004 0.257 ± 0.004 0.262 ± 0.003

Mean accuracy – 0.345 ± 0.003 0.343 ± 0.004 0.346 ± 0.004 0.345 ± 0.002

The highest accuracies (Mean ± SE) among methods in relevant traits and subpopulations are in bold faces
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while to be locus-specific constants calculated based on
p-values from associating phenotypes to single markers
in BayesBπ.
In the iteration of MCMC in BayesB [11], variable se-

lection is based on π and the likelihood ratio, where π is
identical among markers as discussed previously. The
non-effective marker proportion π is estimated from
data in BayesCπ and BayesDπ [31], but is same among
markers within a single iteration. Assuming that the im-
pact of the likelihood ratio on variable selection is iden-
tical for different methods, the non-effective marker
proportion π is another important parameter that affects
the decision whether markers are fitted in the model.
The locus-specific π in our study assigns a more reason-
able prior to the MCMC algorithm, and performs better
variable selection. When genomic prediction is per-
formed on extremely dense markers panels or full se-
quences [52], approaches with better variable selection
will show advantages. Through formula (4), a constant
close to zero would be assigned to markers with large ef-
fects, which would increases the probability of these
markers being fitted in the model; however, a fixed value
close to 1 would be assigned to markers with zero or
small effects, thus decreasing the probability of these
markers being fitted. It is by the new method that the
sampling machine can perform more reasonable marker
effect shrinkage and variable selection.

Methods for calculating locus-specific π
In this study, the locus-specific π was derived by con-
verting p-values from associating phenotypes to single
markers into probability form via formula (4) and then
involved into the MCMC procedure directly. Our results
show that priors derived through this strategy are con-
sistent with prior knowledge about the genetic architec-
tures of different traits in dairy cattle population. The
magnitudes of π among these traits are highly variable,
which reveals that the absolute values of π are at some
extent impacted by the denominator of formula (4)
(Fig. 1). Traits with large effect genes, such as the milk
fat percentage, will return a relatively larger denomin-
ator; while traits with moderate to small effect genes,
such as the milk yield and somatic cell score, will return
a smaller denominator.
One way of dealing with such conflict may be to firstly

dividing genetic markers into different classes based on
p-values of ANOVA and then calculating π for each cat-
egory of markers, which will involves efforts to find suit-
able thresholds as that for genome wide association
studies [53]. Alternatively, effective loci that have been
previously reported [54] can be considered during the
calculation of locus-specific priors. With the develop-
ment of sequencing technologies, more and more data
from all levels of central dogma, termed multi-omics

data, is becoming available and can be involved in the
paradigm of genomic prediction [55]. These data tend to
be trait- or gene-specific, and thus can be integrated into
genomic prediction by assigning locus-specific priors
based on these data. In summary, as the publicly avail-
able information for commercially important traits in-
creases, along with the development of suitable methods
to integrate this information into genomic prediction,
more genomic prediction accuracy can be gained in the
near future.

Conclusions
In this study, we proposed and validated a modified
BayesB method, BayesBπ, which can integrate prior
knowledge into genomic prediction by assigning locus-
specific priors to genetic markers. We conclude, based
on the results of genomic prediction for three traits in
German Holstein dairy cattle and 17 traits in a loblolly
pine dataset, that firstly, for traits controlled by large ef-
fect genes, BayesBπ can improve the genomic prediction
accuracy and unbiasednesses of BayesB and BayesCπ.
Secondly, knowledge of the genetic architecture can im-
prove the performance of Bayesian models in genomic
prediction by assigning locus-specific priors to markers.
Thirdly, converting p-values of ANOVA to a locus-
specific π is an efficient methodology for traits controlled
by major genes in moderate size populations. Further-
more, BayesBπ may serves as a favorable method for vari-
able selection when full sequences data are involved into
genomic prediction.

Methods
Data sets
Two datasets, a dairy cattle and a loblolly pine dataset,
are used to validate the new genomic prediction model.
The cattle population consists of 5024 individuals [45].
Three traits, milk yield, milk fat percentage, and somatic
cell score of this population are selected as model traits.
After genotyping with Illumina BovineSNP50 [56] Bead
chip, 42,551 SNPs were obtained for further study. Trad-
itional estimated breeding values (EBVs) with high reliabil-
ities for the three traits are used as the response variables of
the statistical models in this study. For in detail description
of this population see Zhang et al. [43], where this dataset
was used to compare the accuracies of GS with GBLUP
[30], TABLUP [42], BLUP|GA [43] and BayesB [11]. The
dataset is online available with link http://www.g3journa-
l.org/content/5/4/615/suppl/DC1.
The publicly available loblolly pine dataset consists of

927 lines from the United States, of which 17 traits related
to growth, wood quality, disease resistance, and develop-
ment were recorded [25]. For computational convenience,
deregressed phenotypes given by Resende et, al. [25] are
used as the response variables of GS models. The statistical
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summary of the deregressed phenotypes for all 17 traits is
shown in Table 1. All trees were genotyped with an Illu-
mina Infinium array [57], and 4853 SNPs were obtained.
For more details about this loblolly pine dataset see
Resende et, al. [25]. The dataset is online available with link
http://www.genetics.org/content/190/4/1503/suppl/DC1.

Whole genome prediction models
The statistical model for GBLUP in this study can be
written as

y ¼ Xμþ Zuþ e ; ð1Þ
where y is a vector of phenotypic values; μ denotes the
overall mean; u is a vector of additive genetic merits for
all individuals, which is assumed to be multivariate nor-
mal u~N(0, σu

2G); σu
2 denotes variance of additive genetic

merits; G is a marker-derived numerator relationship
matrix [30]; e is the model residuals, where e ~N(0, σe

2I);
σe
2 denotes the residual variance; and X and Z are inci-
dence matrices linking the overall mean and additive
genetic merits to the phenotypes, respectively. The ori-
ginal and modified BayesB are involved in the estimation
of marker effects in the training population. The statis-
tical model of both methods can be written as

y ¼ Xbþ
XN
i¼1

zigi þ e; ð2Þ

where y is a vector of phenotypic values; b is a vector of
fixed effects (overall mean in this study); gi~N(0, σ2gi ) is the
substitution effect of marker i; σ2gi is the variance of marker
effects; N is the total number of markers; e~N(0, I σe

2) is
the vector of residuals; σe

2 is the residual variance; X is the
design matrix for b; and zi is a vector of indicators for ge-
notypes of marker i with values equal to 0, 1, and 2 to indi-
cate the marker genotypes 11, 12, and 22, respectively. The
marker effect variance σ2

gi
is assumed a priori to be 0 with

a probability of π or to follow a scaled inverse χ-squared
distribution (i.e., σ2

gi
∼x−2 v; Sð Þ) with a probability of (1 − π),

where the degree of freedom v = 4.234 and scale parameter
S = 0.0429 [11]. The prior distribution of the error variance
(i.e., σe

2) is a scaled inverse χ-squared distribution with pa-
rameters v = −2 and S = 0.
Gibbs sampling is used in the MCMC algorithm to obtain

samples of each parameter from its full-conditional posterior
distribution. Given a Gaussian response variable, the likeli-

hood of which is p yjμ; g; σ2ð Þ ¼
Yn

i¼1
Nðyijμþ

Xp

j¼1
xijgj;

σ2Þ, where Nðyijμþ
Xp

j¼1
xijgj; σ

2Þ is a normal density for

the random variable yi centered at μþ
Xp

j¼1
xijgj and

with variance σ2. According to Meuwissen et al. [11],
the prior of unknowns in model (2) can be assigned as

p μ; g; σ2jdf ; S;ωð Þ∝
Yp

j¼1
p βjjθgj ; σ2
� �

p θgj jω
� �n o

x−2 σ2jdf ; Sð Þ .
Then the joint posterior density of all unknowns can be
written as

p μ; g; σ2jy; df ; S;ωð Þ∝
Yn
i¼1

N
�
yijμþ

Xp

j¼1
xijgj; σ

2
�

�
Yp

j¼1
pðgjjθgj ; σ2Þp θgj jω

� �n o
x−2 σ2jdf ; Sð Þ:

Conditional posterior of each parameter can be de-
duced from the joint posterior density. However, we can-
not use these conditional posterior distributions directly
for estimating parameters because all of them are condi-
tional on other unknowns. While we can introduce a
MCMC procedure based on a Gibbs sampler to solve
this problem. The general steps of Gibbs sampler (i.e.,
BayesA) are given below.

Step 1: Initialization of parameters. Initialize μ, gi and
σ2gi with small positive numbers.

Step 2: Update the σ2gi . Sampling σ2gi from its’ fully con-

ditional distribution, P σ2
gi
jgi

� �
¼ x−2 vþ ni; S þ gi′gi

� �
,

where v = 4.234, S = 0.0429, ni is the number of haplo-
type effects at the ith segment.

Step 3: Update the σe
2. First adjust e with e = y −Xg − 1n

′μ,
then update σe

2 by drawing a single sample from x− 2(n − 2,
ei
′ei).

Step 4: Update the overall mean μ by sample from N
1
n 1n′y−1n′Xgð Þ; σ2en
� �

.

Step 5: Update effects of all chromosome segments by
sampling all effects from

N
X′

ijy−X
′
ijXgij¼0−X

′
ij1nμ

X′
ijX ij þ σ e

2
=σ i

2
; σ2

e=
�
X′

ijX ijþ
 

σ2e
�
σ2
i

�!
;

where, Xij is the column of X of effect gij; gij = 0 equal to
g except that the effect of gij is set to zero.

Step 6: Repeat step 2 to step 5 for a large number of
cycles.
BayesB uses a prior that a large proportion (π) of

markers are non-effective and the prior distribution of
σ2gi is

σ2gi ¼ 0

σ2giex−2 v; Sð Þ
with probability π

with probability 1−πð Þ ;
(

where v = 4.234 and S = 0.0429. The Gibbs sampler of
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BayesA will not move through the entire space of
method BayesB, because the sampling of σ2

gi
¼ 0 is im-

possible, if gi
′gi > 0. This problem is resolved by sampling

σ2gi and gi simultaneously using a Metropolis-Hasting
(MH) algorithm. Thus, the Monte Carlo Markov Chain
(MCMC) algorithm of BayesB consists of running a
Gibbs chain as in BayesA, except that samples of σ2gi
are obtained by running a Metropolis-Hasting (MH)
algorithm for 100 cycles instead of simply sampling
σ2gi from an inverse chi-square distribution. The par-
ameter π is used at the beginning of the Metropolis-
Hasting (MH) algorithm in the sampling model. Once the
MH algorithm began, a random number α is sampled from
a uniform distribution. If α ≥ 1 − π, the variance of marker
effects is not resampled and set as 0 or not updated ac-
cording to the likelihood ratio. However, the variance is
sampled from an inverse χ-squared distribution and ac-
cepted according to the likelihood ratio when α < 1 − π. If
the variance is 0, the effect of current marker is set as 0,
otherwise it is sampled from its posterior distribution.
Therefore, the updating of marker effects is affected by the
variance.
In this study, the MCMC in Bayesian methods are iter-

ated 10,000 times with 100 cycles in Metropolis-Hastings
algorithm, and the first 2000 iterations are discarded as
burn-in. Samples from the remaining iterations are aver-
aged to obtain estimates of marker effects. In BayesB,
π is set to 0.95, while is calculated with formula (4)
in BayesBπ. Our new method is termed BayesBπ be-
cause it is an improved version of the original BayesB
by assigning genetic architecture based priors. Calcu-
lation of GBLUP, BayesB, and BayesBπ are conducted
with our in house programs, while BayesCπ is con-
ducted with R package “GBLR” [58].

Locus-specific priori
From the aspect of whole genome, π is the proportion
of non-effective markers. However, from the aspect of
single markers, π is an important parameter which de-
cides the extent to which a marker is fitted in the
model, and thus affects the estimation of marker ef-
fects. Therefore, π should be different among markers,
which is consistent with our prior knowledge that
some genome segments have large effects and others
show moderate to zero effects across the whole gen-
ome. Here we propose a method to obtain the locus-
specific π based on traits’ genetic architecture. The
locus-specific π is obtained by rescaling p-values de-
rived from the analysis of variance (ANOVA) to a prob-
ability form. ANOVA is performed by the R software
package (http://www.r-project.org/) on single markers in
the reference population to get the p-values. The model
for ANOVA can be written as

y ¼ Xbþ Zgþ e ; ð3Þ
where, y is a vector of phenotypes; X is a design matrix
linking records to the fixed effects included in b; Z is a
design matrix indicating the genotypes of individual
SNPs; g is the effect of single markers; and e is a vector
of residuals. Then the p-values derived from ANOVA on
single SNPs are transformed to the locus-specific π
through the formula

πi ¼ max ωð Þ−ωi

max ωð Þ−min ωð Þ ; ð4Þ

where, πi is the locus-specific π of ith marker; ω = −
log10(p); ωi = − log10(pi); pi is the p-value of ith marker;
and p is the vector of p-values of all markers.
In BayesBπ, the locus-specific π of SNPs are obtained

from the reference population through the method men-
tioned above. In the following MCMC algorithm, each
marker uses its corresponding π to perform the estima-
tion of variances and marker effects.

Model validation
The accuracy of genomic prediction is defined as the cor-
relation between the GEBVs and the response variables
(conventional EBVs in the dairy cattle population, and
regressed phenotypes in the loblolly pine dataset). Regres-
sion of the GEBVs on the response variables are per-
formed, and the regression coefficients are taken as the
genomic prediction unbiasednesses. The accuracy and un-
biasedness of BayesBπ are compared with that of GBLUP
[30], the original BayesB [11], and BayesCπ. The dairy cat-
tle population is used as a standard dataset for models val-
idating. In order to investigate the impact of population
sizes on genomic selection accuracy, subsets with sizes of
200, 500, 1000, and 2000 are randomly sampled from the
complete dairy cattle dataset. For all subpopulations and
traits, a 5-fold cross-validation is performed 20 times to
get the mean accuracies and unbiasednesses for the three
methods. Within the loblolly pine dataset, a 10-fold cross-
validation is performed 10 times. Therefore, the mean ac-
curacy and unbiasedness are obtained by averaging esti-
mated values of 100 validations for both datasets. In the
dairy cattle dataset, the mean accuracies of the subpopula-
tions and traits are further averaged to show the impact of
both population sizes and the genetic architectures of
traits on the performance of different approaches. The ex-
tents of improvement with our new method compared to
the original BayesB are calculated with the formula
β ¼ accB π−accB

accB
� 100% , where, β is the extent of improve-

ment with our new method compared to the original

BayesB; acc ¼ cov GEBVs; yð Þ
σGEBVsσy

is the Pearson’s correlation

coefficient between genomic estimated breeding values
(GEBVs) and model response variables (i.e., y in the
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formula here, which is traditional EBVs in the dairy cattle
population and deregressed phenotypes in the loblolly
pine dataset), where σGEBVs and σy are the standard devia-
tions of GEBVs and model response variables; accBπ and
accB are accuracies of our new method and that of the ori-
ginal BayesB, respectively.

Availability of supporting data
The data used in this study are online available
through http://www.g3journal.org/content/5/4/615/suppl/
DC1 for dairy cattle dataset and http://www.genetics.org/
content/190/4/1503/suppl/DC1 for loblolly pine dataset,
respectively.

Additional file

Additional file 1: Two tables containing unbiasedness of genomic
prediction of three traits in Germany cattle population and that of
17 traits in the loblolly pine population can are provided as
supporting information. (DOCX 20 kb)
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