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Abstract Accurate digital elevation models of saltmarshes

are crucial for both conservation and management goals.

Light detection and ranging (LiDAR) is increasingly used

for topographic surveys due to the ability to acquire high res-

olution data over spatially-extensive areas. This capability is

ideally suited to saltmarsh environments, which are often vast,

inaccessible systems where topographic variations can be very

subtle. Derivation of surface (DSMs) (ground elevation plus

vegetation) versus terrain (bare ground elevation) models

(DTMs) relies on the ability of the LiDAR sensor to accurately

record multiple returns. In saltmarshes however, the dense

stands of low (< 1 m) vegetation commonly found precludes

the acquisition of more than one return, and the resulting

DTM is not different to the DSM. Establishing the offset be-

tween ground and vegetation surface in order to correct the

LiDAR-derived DTM can be challenging due to the spatial

variability in saltmarsh habitats. Here we show the develop-

ment and application of a habitat-specific correction factor

(HSCF) for the Odiel Saltmarshes using a combination of

habitat object-based classification (82% overall accuracy)

and ground control surveys that reduces the DTM error to

within that associated with the LiDAR sensor (average error

0.1 m). We also show that the true accuracy of supplied

(unmodified) DTMs can be >0.5 m in saltmarshes dominated

by dense vegetation such as Spartina densiflora. In particular,

global projections of sea-level rise across the next 80 years

(0.18–0.59 m) significantly overlaps this accuracy margin,

implying that assessments and modelling of sea-level impacts

in saltmarsh systems will likely be erroneous if based on

Lidar-derived DTMs. Erroneous assumptions and conclusions

can result if the real accuracy of DTMs (bare ground) on

vegetated saltmarshes is not considered, and the consequences

of the propagation of this misinformation through to manage-

ment decisions should not be over-looked.
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Introduction

LiDAR technology is very useful for the characterisation,

quantification and monitoring of coastal environments

(Chust et al. 2008; Krolik-root et al. 2015; Mitasova et al.

2010) particularly for saltmarshes, where subtle variations in

micro-topography can be crucial for determining spatial pat-

terns in vegetation distribution and edaphic factors (e.g., oxy-

gen and moisture). LiDAR data has been employed in

saltmarsh research for purposes such as wetland characterisa-

tion (e.g. Morris et al. 2007; Rosso et al. 2006; Millette et al.

2010), vegetation mapping and assessment (e.g. Brown 2004;

Rosso et al. 2006; Collin et al. 2010; Yang and Artigas 2010),

determination of wetland vegetation height (e.g Genc et al.

2004), evaluation of sea level rise (SLR) impacts (e.g.

Webster et al. 2006; Feagin et al. 2010), saltmarsh restoration

(e.g. Millard et al. 2013; Athearn et al. 2010) and the detection

of estuarine and tidal river hydromorphology (e.g. Gilvear

et al. 2004). However, in these low-topography environments,

despite resolution improvements offered by LiDAR technol-

ogy in comparison with other techniques (e.g. NASA Shuttle

Radar Topography Mission), the uncertainty in derived
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elevation products can vary significantly between surface

types, and is particularly problematic in environments com-

prising dense vegetation (Hladik and Alber 2012; Schmid

et al. 2011). This issue is due to limited penetration of the laser

beam through the marsh vegetation layer (Schmid et al. 2011).

Erroneous assumptions and conclusions can result if this lim-

itation is not considered, and the consequences of the propa-

gation of this misinformation through to management deci-

sions should not be over-looked.

In saltmarshes, LiDAR systems can fail to distinguish

centimetre-scale variations between the vegetation canopy

(digital surface model - DSM) and bare-ground/bare-earth

(digital terrain model - DTM) (Hopkinson et al. 2004;

Schmid et al. 2011). Ground filtering is the primary step re-

quired for DTM production (Meng et al. 2010), which is par-

ticularly challenging in saltmarsh environments due to the

physical structure of vegetation. Many halophytes comprise

a dense and homogeneous structure. This means the halophyt-

ic vegetation often simulates a flat surface consistent with

bare-ground elevation and morphology (Brovelli et al. 2004;

Göpfert and Heipke 2006). This characteristic complicates the

filtering process because is very difficult to discern if the last

return is vegetation or bare-ground.

On the basis that there are limitations for the use of LiDAR

in saltmarshes, and the need for high accuracy data in research

and management applications in these environments, some

authors (e.g. Hladik and Alber 2012; Hopkinson et al. 2004;

Populus et al. 2001; Schmid et al. 2011; Millard et al. 2013)

have investigated the vertical accuracy of the elevation data

from LiDAR, and the possibilities of calibration for these en-

vironments (Table 1). For example, several studies (Montané

and Torres 2006; Rosso et al. 2006; Schmid et al. 2011) that

focus on Spartina alterniflora marshes note that elevations

within LiDAR-derived DTMs are overestimated with a mean

error between 7 and 17 cm depending on study site, where the

error seems to increase with vegetation density and height

(Montané and Torres 2006; Morris et al. 2007; Rosso et al.

2006; Schmid et al. 2011).

Under the physical limitations mentioned previously,

LiDAR-derived DTMs covering saltmarshes are generally

not accurate enough to distinguish topographic structure at

the resolution that is used to determine tidal flooding or veg-

etation patterns (Hladik and Alber 2012; Krolik-root et al.

2015). Thus, a corrected DTM becomes essential for certain

applications (e.g. tidal flooding) in saltmarshes characterised

by dense evergreen vegetation, such those found in southern

Europe. Previous works in saltmarshes have investigated and

applied the minimum bin gridding method (e.g. Ewald 2013;

NOAA 2010; Schmid et al. 2011), analysis of airborne infra-

red photography taken during a rising tide (Andrade et al.

2014) and species-specific correction factors (e.g. Hladik

and Alber 2012; McClure et al. 2015) for ‘user-modified’

DTM creation. In the case of using specific correction factors

for correcting LiDAR-derived DTM, the work carried out by

Hladik and Alber (2012) and Hladik et al. (2013) in a

saltmarsh in Georgia (Atlantic coast, USA), and by McClure

et al. (2015) in a saltmarsh in San Francisco bay (Pacific coast)

showed that the DTM mean errors can be significantly re-

duced using this method. However, accurate vegetation maps

are required for its appliance over large areas.

In saltmarshes, accurately mapping detailed features from

optical remotely sensed data is a challenge due to the low

spectral contrast between plant species, and the small scale of

vegetation patterns. These particular features have been iden-

tified as the main limitations in saltmarsh mapping by different

authors in the literature (e.g. Silva et al. 2008; Adam et al.

2009; Kelly et al. 2011; Millard et al. 2013) complicating the

classification process more than in other coastal environments.

Due to the difficulties in separating saltmarsh plant species or

communities, some authors have included elevation data in the

classification process to distinguish species of low spectral

contrast located at different elevations within the marsh

(Chust et al. 2008; Gilmore et al. 2008; Arroyo et al. 2010).

This is possible because there is a strong relationship between

species and elevation (Silvestri et al. 2005).

The aim of this paper is to investigate the effectiveness of

using elevation ground control points (differential GPS) and

vegetation surveys to improve vertical accuracy in a LiDAR-

derived DTM for an Atlantic-Mediterranean saltmarsh,

through the application of habitat-specific correction factors

in the Odiel saltmarshes (Spain, Gulf of Cadiz). Essential to

this process is the availability of a high-resolution habitat map,

and here we undertake an object-based image classification

including high spatial resolution aerial photography and ele-

vation data (DSM) for this purpose.

Although similar approaches have previously been applied

(e.g. Hladik and Alber 2012; Hladik et al. 2013; McClure et al.

2015) to reduce mean vertical error in LiDAR-derived DTMs,

all previous studies were conducted in the USA. Saltmarsh

habitats in the US, especially those found in the Atlantic coast

present dissimilarities to those located in Europe due to a range

of differences in, for example, extent, vegetation type and struc-

ture. For example, saltmarshes in the Gulf of Cadiz comprise

complex creek networks compared with the broad coastal tidal

plains of the Atlantic US coast (Phinn et al. 1996). Saltmarshes

found on the Pacific US coast, particularly in California, pres-

ent more similarities to Atlantic-Mediterranean saltmarshes in

the Gulf of Cadiz (Peinado et al. 1995) than those found in the

Atlantic US coast, although species composition is distinctly

different (e.g. S. pacifica vs S. perennis; Sp. foliosa vs Sp.

densiflora and S. emerisi vs S. ramosissima are respectively

associated with Pacific US and Gulf of Cadiz coasts). Thus,

the success of this method applied to those saltmarshes found in

the Gulf of Cadiz could vary based on these dissimilarities due

to the difficulties related to saltmarsh species and habitat map-

ping. Thus, it is still unknown whether the use of habitat-
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specific correction factors can effectively reduce DTM vertical

errors in all saltmarsh environments.

Material and methods

The approach undertaken here (Fig. 1) uses remotely sensed

data acquired in a combined photogrammetric and LiDAR

flight, that in combination with vegetation surveys and

object-based image analysis (OBIA) enables its application

over large saltmarsh extensions. The production of a high-

resolution habitat map is central to this approach in terms of

facilitating the spatially-variable application of the habitat-

specific correction factor (HSCF) to the input (unmodified)

LiDAR-derived DTM. The habitat map is derived from high

resolution multispectral aerial photography (using RGB and

NIR bands) and unmodified LiDAR data (DSM and Slope).

The acquisition of field data, comprising measurements of

precise elevation, vegetation structure and plant species as-

semblages, provided the information need for cover class def-

inition as well as the means to calibrate and validate the cor-

rection factor and the classification results.

Study area

The study area is located within the Odiel saltmarshes of the

Odiel-Tinto estuary (Fig. 2) (Gulf of Cadiz, SW Spain), com-

prising roughly 3000 ha of saltmarsh land. The Tinto-Odiel

estuary (the estuarine confluence of the Odiel and Tinto rivers)

is situated in the central part of the Huelva coast on the south-

west Atlantic coastline of the Iberian Peninsula. This estuary

comprises extensive saltmarsh land, vegetated sand spits,

coastal sand dunes, beaches and saline lagoons. Two study

sites have been selected to test the method. The first site

(Site 1) is approximately 10 ha and located in Saltes Island

(Fig. 2). Habitats here are typical of those found throughout

the mid-high and lower Odiel estuary saltmarshes with a dom-

inance of Salicornia species: high marsh (S. machrotaschyum,

and S. fruticosa), mid marsh (S. perennis subsp. alpini and

Atriplex portulacoide), low marsh (mixture of S. perennis

subsp. perennis, Atriplex portulacoide and Limonium sp.),

creeks and intertidal flats. The second site (Site 2) covers

nearly 4 ha and is located in the upper estuary, near the town

of Corrales (Fig. 2). This site provides good examples of salt

pans and mid- and high marsh habitats dominated by Spartina

densiflora, which it poorly represented in Site 1.

Field data

In order to investigate habitat distribution and composition, a

broad vegetation survey was undertaken in September 2012

for the whole study area, where vegetationwas surveyed using

a 1 × 1 m quadrat during low tide. In total, 156 sites were

sampled across the Odiel saltmarshes (Fig. 2). Quadrats were

located using a semi-random number based positioning pro-

cess. In each quadrat, plant species cover, bare ground cover

and vegetation height per species were measured using visual

percentage cover estimations and sward height (Van der Graaf

et al. 2002) respectively. These data were analysed using

TWINSPAN (version 2.3), which allows clustering of species

into indicator-species defined communities (Hill and Šmilauer

MDS

Slope

DTM_unmodified

Panchrom , 

RGB and NIR

Habitat map

(Object-based)

GCPs

Training

Dataset

(70%)

HSCFHSCF map

DTM_user-modified

GCPs

Aerial PhotographyLiDAR data

GCPs

validation 

Dataset

(30%)

Vertical accuracy
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Field data

Vege

analysis

Cover class 
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Fig. 1 Workflow of the analytical approach used here

Table 1 Studies focused on

calculating LiDAR vertical

accuracy in saltmarshes

Purpose Marsh type Error (cm) References

Accuracy assessment Tidal flats/marsh 10 / 20 Populus et al. (2001)

Morris et al. (2005)

Spartina alterniflora 7–17 Montané and Torres (2006)

Rosso et al. (2006)

Schmid et al. (2011)

Upland/Marsh 18.2 / 45.7

2 / 32

Hladik and Alber (2012)

Millard et al. (2013)

Separation of ground

and low vegetation signature

Tidal marsh Wang et al. (2009)
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2005). Species vegetation height was then assessed in each of

these communities to inform the definition of habitat classes

that expressed both plant communities and vegetation struc-

ture. Some species, such as S. fruticosa and S. densiflora have

significantly different growth forms in different areas of the

saltmarsh, which is in part related to the local plant commu-

nity, but also reflects variations in location. The TWINSPAN

analysis provided an effective delineation of community, but

examination of growth structures enabled a more accurate

determination of habitat.

Once the habitat types were defined, a second vegetation

height survey was undertaken in November 2012 to support

the ascertain that each habitat type displays consistency in

canopy height across the whole study area. Here, 12 represen-

tative sites covering different habitat types were sampled,

where vegetation canopy height was surveyed at 100 randomly

located points within a 10 × 10 m quadrat. Canopy heights

measured in each habitat type from different sites were com-

pared using one-way analysis of variance (ANOVA).

Additionally, a Tukey’s Honest Significant Difference (HSD)

Fig. 2 Study area and site

locations at the Tinto-Odiel estu-

ary (Huelva, Southwest Spain).

The GCPs collected for both sites

are represented by black dots and

the vegetation survey (quadrats)

location by white dots
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test (confidence level = 0.95) was also used. Statistical analy-

ses were performed using the software ‘R’ version 2.15.1.

A topographic survey of the saltmarsh was also undertaken

in November 2012 at the testing sites. For this, ground control

points (GCPs) - 260 within Site 1 and 132 within Site 2 - were

established, at which ground elevation, canopy height and

plant species presence at were recorded (Fig. 2). Ground ele-

vation at the GCPs was surveyed using a Real-Time

Kinematic (RTK) Leica-1200 (base station) GPS and two ro-

vers with 0.02 m vertical and 0.01 m spatial accuracy. The

RTK Rover foot was placed flush with the marsh surface for

ground elevation points. Orthometric heights (in metres above

Zero in Alicante) were calculated from RTK elevations using

the Spanish Geodetic Survey GEOID (as used for LiDAR

elevations) EGM08-REDNAP (BRed Espanola De

Nivelacion de Alta Precision^, Spanish High Precision

Positioning Network). The 392 GCPs collected within the

study sites were divided into training (70% of the GCPs;

N = 282) and validation data sets (30% of the GCPs;

N = 121). In addition, 20 GCPs were also collected over bare

areas (bare ground and roads) for assessing the accuracy of the

LiDAR data.

Remote sensing data

A LiDAR dataset was acquired in a combined LiDAR sensor

(Table 2) and photogrammetric camera carried out in January

2013 for a broader research project (Ojeda et al. 2014). Data

were collected for the whole Odiel estuary during low tide

(tide level = −1.1 m above MSL; tidal coefficient = 89) to

minimize the amount of water on the marsh surface. The sen-

sor collected up to 4 returns on upland areas (mean point

density = 2 points per square metre), but for the majority of

the estuarine environment, only one return was collected.

Reported vertical and horizontal accuracies for the LiDAR

sensor are 0.07–0.10 m and 0.15–0.17 m respectively (Ojeda

et al. 2014). Simultaneously, high resolution aerial photogra-

phy (red, green, blue, NIR, and panchromatic bands) was also

obtained with 0.15 m spatial resolution.

The final products of this flight were: raw LiDAR data

(‘LAS’ files), multispectral aerial photographs (102 photo-

grams), DSM and DTM. Across the saltmarsh and intertidal

environment however, only one return was recorded, meaning

the ‘LAS’ files provide little further information for modelling

the ground surface in this system. Thus, the DSM and the

DTM are identical across the saltmarsh: this unmodified ele-

vation dataset is referred to here as the LiDAR-derived DTM,

and was resampled to 1 m resolution. Elevations were posi-

tioned in the Spanish vertical reference frame (Cero in

Alicante - the equivalent of mean sea level) and projected onto

the UTM (WGS-1984) coordinates (zone 29 N) system.

The discordance between ground elevation and LiDAR

survey dates arose due to weather conditions: the LiDAR

flight had been planned to coincide with the field survey, but

was delayed to January (when weather and low tide conditions

were optimum). The tide coefficient was similar to that of the

ground survey. Although not ideal, both surveys were still

undertaken within the same winter period, thereby reducing

the potential for significant change between surveys.

Furthermore, except S. ramosissima most of the saltmarsh

plant species found in Odiel saltmarshes such as S. fruticosa,

S. perennis, A. macrostashyum and S. densiflora are perennial

(Figueroa et al. 1987), which enables a stable evergreen veg-

etation canopy over the saltmarsh through the whole year.

This has been checked and confirmed during numerous field

campaigns (associated with another project) undertaken

throughout the year.

Habitat mapping

A high resolution habitat map was produced through the ap-

plication of object based image analysis (OBIA) on a com-

bined data product covering the specific region of interest

covering just the saltmarsh region (Fig. 2). Water and non-

marsh habitats (supratidal spits, reclamations) were masked.

The source layers were multispectral photography

(January 2013) comprising panchromatic, near-infrared,

red, green and blue bands, the LiDAR-derived DSM and

the associated slope raster (all in tiff format). Layers were

resampled to 1 m for spatial consistency. The classes used

for the classification as well as for training and valida-

tion samples were the habitat classes defined using

TWINSPAN classification and vegetation height (classes are

listed in the results).

The vegetation data collected at each quadrat during the

field surveys were used as ground-truth data for image classi-

fication validation purpose. Quadrat locations were added as a

point layer into ArcGIS 10.2 overlapping the 2013 multispec-

tral photography and validation polygons were digitised

around each point following homogeneous vegetation that

represented the contiguous habitat patch associated with each

quadrat location. Digitisation of the training areas on the other

hand were based on extensive image photointerpretation

Table 2 Details of the LiDAR flight undertaken in January 2013

LiDAR Flight

Sensor name ALS50 II (Leica)

Flight height 1450 m

Pulse frequency 145.3 kHz (145,300 pulses/s)

Altimetry precision expected 0.1 m

Number of Collected returns 4

Recorded intensity Once per pulse

Multiples Pulses in Air Yes

Points density 2 points per m2
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experience and knowledge of the study site (supported

by 1000 geo-located ground photographs) and an earlier

vegetation map (2003) published by the Andalusian

Environmental Agency – Consejer ia de Medio

Ambiente. In total, 316,012 pixels were used for supervised

classifier training and 66,480 for validation of the image clas-

sification results.

The OBIA approach was performed in two steps using

eCognition Developer software (v. 8.7). The first step was to

apply the Multi-Resolution Segmentation (MRS) algorithm

integrated in eCognition (Benz et al. 2004; Moffett and

Gorelick 2013) to the source layers. As described in Benz

et al. (2004), MRS is a region growing method that groups

randomly selected pixels in a scene into objects using auto-

mated merger decisions based on a homogeneity criterion and

scale parameter. The optimal scale parameter for this analysis

was 10 to enable identification of small creeks and ponds,

which are the smallest features of interest here. Inclusion of

the LiDAR-derived DSM layer in the segmentation process

led to the generation of objects with similar canopy heights

(laser penetration is very low in vegetated areas due to the

high vegetation density). The second step was to apply the

image classification to the objects previously created. The

K-nearest neighbour (KNN) classifier (Kim et al. 2011) algo-

rithm was used to perform the classification (five neighbours

were used here). The classifier was trained using the training

areas (digitised polygons previously created) and included

spectral and spatial variables.

DTM correction based on HSCF and habitat map

The habitat-specific correction factor (HSCF) was based on

the vertical bias, or mean error, of the LiDAR-derived DTM

with respect to the ground-truth data (the training GCPs).

Ground elevations surveyed at 70% of the GCPs were com-

pared to the DTM elevation values for the same locations. The

difference between these two values at each GCP was used to

first compute the vertical bias, and second, summarised as a

mean correction factor for each habitat type. The vertical bias

(CFi) has been previously used to compute correction factors

for saltmarshes in Hladik and Alber (2012) and it is calculated

as stated in eq. (1):

CF i ¼ ZDTMi−ZGCPi ð1Þ

where ZDTMi is the elevation derived from the LiDAR-

derived DTM, and ZGCPi is the elevation measured by

RTK-dGPS, at each GCPi. For each habitat type j, a

habitat-specific correction factor (HSCFj) is then com-

puted from the arithmetic mean of all CFi that relate to

each habitat type.

Application of these habitat-specific correction factors to

the Odiel study sites is undertaken using the high resolution

saltmarsh habitat cover map (derived from the supervised

classification result) which enables the spatialisation of

HSCF (HSCFmap), and the correction of the DTM to a user-

modified DTM (mDTM) using eq. (2):

ZmDTM ¼ ZDTM−HSCFmap ð2Þ

The GCPs validation dataset (30% of the collected GCPs)

was use to validate mDTM and assess the difference between

the LiDAR-derived DTM over vegetated environments (the

true accuracy of the original LiDAR product). In order to

assist the accuracy assessment, GCPs were also obtained in

other non-vegetated areas such as bare mud and roads. The

vertical accuracy assessment of both elevation models was

carried out using two error metrics: mean error and Root

Mean Square Error (RMSE).

Results

Field surveys

The vegetation survey showed that vegetation of the Odiel

saltmarshes is mainly represented by 8 halophytic genera:

Atriplex, Inula, Salicornia, Puccinellia, Limoniastrum,

Limonium, Spartina and Suaeda. The TWINSPAN results

(Fig. 3) highlighted the most common plant species associa-

tions that also reflected specific habitats across the saltmarsh

system. The first division in the TWINSPAN results splits the

data into two groups; S. perennis subsp. perennis, S.

ramosissima and bare soil were the indicators of one group,

associated with the low marsh, whereas S. fruticosa,

A. portulacoides, S. densiflora and S. perennis subsp. alpini,

which are associated with the mid- and high marsh, were

indicators for the second group. Further divisions split these

groups into more specific communities: low marsh I, low

marsh II, mid marsh and high marsh.

Within the high marsh community further divisions in

TWINSPAN results (4th division; 23 quadrats) showed Sp.

densiflora as a separate community. This specific community

was observed in the field forming large homogeneous patches

of Sp. densiflora along the upper-mid estuary, and it was quite

different to others high marsh communities at the mid- and

low estuary. The field evidences supported by the

TWINSPAN results led to consider this community as a dif-

ferent habitat type referred to as Spartina marsh. Furthermore,

the canopy height of this community was also quite distinct to

the other communities. Based on species height data and plant

distribution, the low marsh I and II groups were merged into

one habitat type (lowmarsh), and the high marsh group divid-

ed into two habitat types (high marsh and Spartina marsh).

Thus, the Odiel saltmarshes habitats can be best described as

comprising low marsh (S. perennis subsp. perennis, S.
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ramosissima and bare soil), mid marsh (S. perennis subsp.

alpine), high marsh (S. fruticosa, S. macrostachyum, L.

monopetalum) and Spartina marsh (Sp. densiflora).

The saltmarsh habitats were examined spatially in the con-

text of aerial photography-interpretation leading to the defini-

tion of the following saltmarsh cover classes for the habitat

classification analysis: low marsh (dominated by short

Salicornia spp.), mid marsh (dominated by medium

Salicornia spp.), high marsh (dominated by tall Salicornia

spp.), Spartina marsh, mud (salt pans and intertidal flats)

and water (ponds). The results derived from the field survey

justify the use of only 6 classes for a large expanse such as the

Odiel saltmarshes. Thus, these cover classes were confidently

used for application of correction factors.

Results from the vegetation height surveyed per habitat type

are shown in Fig. 4 and show that vegetation height ranged

between 0.09 to 1.05 m. Fig. 4 highlights the similarities in

canopy height within the habitat types defined here. However,

the bottom values of the Spartina marsh height intervals over-

lap with the top interval values of the high marsh. Canopy

heights measured in the different habitats (2 sites in low marsh,

3 in mid marsh, 3 in high marsh and 3 in Spartinamarsh) were

compared using one-way analysis of variance (ANOVA),

which proved that there were significant differences in height

means between habitats (p < 0.001). Additionally, the Tukey’s

HSD (confidence level = 0.95) clarified that the height means

were significantly different between different habitats (results

were considered significant when p < 0.05) but were similar

among the same habitat type as shown in Fig. 4.

Finally, results from the RTK survey at Site 1 and Site 2

showed that ground elevation ranged from 0.03 to 3 m in Site

1 and from 1.2 to 2.4 m in Site 2, and vegetation height from

0.03 to 0.61 and 0.05 and 1.07 m respectively. These differences

are due to the different complexes of habitat present at the dif-

ferent sites; Site 1 represents high marsh (S. machrotaschyum,

and S. fruticosa), mid marsh (S. perennis subsp. alpini and

Atriplex portulacoide) and low marsh (mixture of S. perennis

subsp. perennis, Atriplex portulacoide and Limonium sp.) dom-

inated by Salicornia species, and Site 2 represents mid- and high

marsh habitats dominated by Spartina densiflora. The GCPs

were classified by habitat type, divided as 41 points within low

marsh class, 153 in mid marsh, 102 in the Salicorniamarsh and

96 in the Spartina marsh. Ground elevation measured at each

GCP in these different habitats was also compared using one-

way analysis of variance (ANOVA), which proved that there

were significant differences in ground elevation means between

habitat types (p < 0.001). Additionally, the Tukey’s HSD clari-

fied that the elevation means were significantly different be-

tween all habitat types (comparing all habitat types by pairs).
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S. macrostachyum

35

24 S. perennis alpini

A. portulacoides

S. fruticosa

Sp. densiflora

S. perennis alpini

S. ramosissima

MH= 0.23 m

MH= 0.26 m

MH= 0.5 m

MH= 0.43 m

Low marsh I

Low marsh II

N=156

Samples
High marsh

Mid marsh 

Fig. 3 Dendrogram of Odiel saltmarsh vegetation communities based on

TWINSPAN classification. N means the number of quadrats included in

each group, and ‘MH’ the vegetation mean height per group based on

species height

Fig. 4 Vegetation height per habitat type at different sites, where BLmarsh^ means low marsh, BMmarsh^ mid marsh, BHmarsh^ high marsh and

BSpmarsh^ spartina marsh. The numbers state different sites within the Odiel saltmarshes
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Saltmarsh habitat map

The classification results are shown in Fig. 5 (including inset

maps covering Site 1 and Site 2). The habitat map reveals a

complex pattern in the spatial distribution of these habitats.

The Spartina marsh, which is characterised by dense and

dominant coverage of Sp. densiflora, and high marsh,

characterised by S. fruticosa and S. macrostachyum, are most

abundant. The Spartina marsh is mainly distributed in the

upper estuary, and the high marsh in the mid-estuary. The

low and mid-marsh habitats are closely associated in terms

of their plant species communities, characterised in the main

by S. perennis and A. portulacoides, but distinguished by

growth structure where plants are notably shorter in the low

marsh (S. perennis subsp. perennis, S. ramosissima) areas than

in the mid-marsh areas (S. perennis subsp. alpini). Very low

density vegetation, bare mud (intertidal flats and salt pans) and

water (small creeks and ponds), are found throughout the es-

tuary, but the salt pans are a more prominent feature of the

upper estuary. Vegetation is clearly influenced by both eleva-

tion and creeks, and patterns of habitat distribution closely

follow the creek network (Fig. 5). This is more evident in

mature saltmarshes at the mid- and upper estuary where the

saltmarsh platform is much higher (up to 1 m cliff in some

parts) than creeks. Lowmarsh habitats are found following the

creek network. For example, Site 1 and Site 2 (Fig. 5)

show that broad zonation is determined by the elevation

gradient (Fig. 6), but local detail is determined by the presence

of creeks.

The overall accuracy of the classification was 82% and the

Kappa coefficient 0.77 as it is shown in the confusion matrix

(Table 3). Additionally, we also estimated the user and

Fig. 5 Marsh habitat map of the

Odiel saltmarshes (SW Spain).

The zoom windows represent Site

1 and Site 2

216 M. Fernandez-Nunez et al.



producer accuracy. Focusing on the producer accuracy, which

highlights how well the map objects have been classified, we

can observe that all the cover classes have been reached values

over 70%. Water, bare mud, low marsh and Spartina marsh

were classified with producer accuracy greater than 80% (84,

95, 93 and 82% respectively), while mid marsh and high

marsh under this value (70 and 76% respectively). Mid marsh

and high marsh can be confused by the classifier in those

vegetation patches comprising a more complex mix of high

and mid marsh vegetation, resulting in slightly lower accuracy

values. In the case of the low marsh, the vegetation is usually

covered by a mud layer and it can be separated easily from

mid and high marsh. Furthermore the average height canopy

between low marsh and the rest of classes also play an impor-

tant role in the classification results, enabling high accuracy

values for this class.

DTM production and accuracy assessment

The HSCFs were only computed for vegetated saltmarsh hab-

itat classes (Table 4) and the un-vegetated classes (mud and

water) were added to the mask layer (with a HSCF value of

zero) to avoid negative bias. The results highlight that the

Spartina marsh has the highest canopy and the largest stan-

dard deviation compared with the other classes. The variabil-

ity in canopy height (reflected in the standard deviation) is

explained by the structure of this plant, which grows in erect

clumps of slender stems with long and narrow leaves. Other

saltmarsh vegetation is distinctly shorter and less variable.

The HSCF for each habitat class were converted to a

spatially-distributed HSCF map using the habitat classifica-

tion. This was applied as a spatially-distributed correction lay-

er to the unmodified DTM across the whole study area.

Comparison of unmodified and corrected DTMs are provided

in Fig. 6, for the area covered by Site 1 and Site 2, which

highlights the changes in ground elevation as a result of the

correction. As it was expected the changes are more pro-

nounced in those areas where the vegetation canopy was

higher (i.e. the Spartinamarsh). The supratidal zone, channels

and bare mud remain the same as these were masked from the

analysis. The two profiles (Transect 1 and 2) shown in Fig. 6

illustrate clearly the spatially-varying elevation differences

between the LiDAR-derived DTM and the corrected mDTM.

Accuracy was assessed in both the original DEM and

corrected mDEM using a selection of ground control points

(distinct from those used in the derivation of the correction

Fig. 6 Map of the two areas used as test sites for unmodified DTM

corrections showing the unmodified and user-modifier DTM for Site 1

and Site 2, where: a and b are the unmodified and the user-modified

DTM respectively in Site 1; and c and d are the unmodified and the user-

modified DTM respectively in Site 2. Two transects (Transect 1 and

Transect 2) were selected for comparing the height profiles of both

DTMs at Site 1 and 2. In the profile graphs, note the differences in canopy

heights in the unmodified DTM and the user-modified DTM, and the

overlapping at creeks (where a mask was used)
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factors). The results show that the HSCF considerably reduced

the overall vertical mean error in both sites (Table 5): from

0.23 to 0.13 m in Site 1 and from 0.45 to 0.09 m in Site 2. The

unmodified DEM mean vertical error was greater than 0.1 m

(the LiDAR reported mean error) for all habitat classes, except

for low marsh. In the case of un-vegetated areas the mean

vertical error remained under the reported LiDAR accuracy

(0.1 m): 0.09 m in bare mud areas and 0.04 in roads. In con-

trast, the mean vertical error in the corrected mDEM remains

well within the reported LiDAR vertical mean error (0.1 m)

for all habitat types except for Spartina marsh (that is slightly

higher) as shown in Fig. 7.

The mean vertical biases in the taller and usually denser

habitat types (Spartinamarsh and Highmarsh) are significant-

ly decreased from the original DEM to the corrected mDEM:

the mean error was reduced from nearly 0.53 to 0.13 m in

Spartina marsh, and from 0.35 to 0.02 in High marsh. The

surface level in the rest of habitat classes was all slightly

under-predicted in the corrected mDEM due to over estima-

tion of the correction factor: low marsh (−0.02 m) and mid

marsh (−0.06 m). In order to investigate whether the over-

estimated correction factor was caused by the averaging tech-

nique selected (the mean), the median was also applied.

Nevertheless, the results were unchanged when applying a

different averaging technique.

Discussion

LiDAR is one of the sensors that better captures the micro-

scale structural complexity of saltmarsh topography over ex-

tensive areas. However, it is extremely important to be aware

of the limitations and uncertainty (elevation accuracy) of

DTMs derived from this sensor data for saltmarsh environ-

ments, particularly when these data underpin monitoring and

management strategies and inform decision-making.

Although the LiDAR sensor used for this work collected up

to 4 returns, for the majority of the saltmarsh environment

only one return was collected as the laser beam was unable

to penetrate to the ground. Thus, in the filtering process, it was

not possible to discriminate bare ground from saltmarsh veg-

etation for DTM generation. Based on the analysis undertaken

for this work, a LiDAR-derived DTM (without any user mod-

ifications) can accurately represent saltmarsh elevations for

only non-vegetated (e.g. intertidal flats and salt pans) or low

density, short (< 0.2 m height) plant habitats. The accuracy

calculated for these habitats remained below 0.1 m, which is

the vertical resolution of the LiDAR data. However, the accu-

racy of the DTM decreases significantly in habitats

characterised by dense, tall vegetation (> 0.2 m height).

Similar findings have been reported by other authors (Hladik

and Alber 2012; Schmid et al. 2011; Wang et al. 2009).

LiDAR-derived DTM accuracy in saltmarsh environments

can be improved by user modifications. The development and

application of spatially variable correction factors has been

shown here to have clear benefits for the mapping of

Atlantic-Mediterranean saltmarshes. Application of a correc-

tion factor that varies depending on vegetation characteristics

reduces vertical errors in vegetated saltmarshes without reduc-

ing the spatial resolution. Furthermore, this technique does not

compromise the accuracy in open areas such as mud flats if

unvegetated areas are masked (where the correction is zero,

and therefore no change is made).Masking is often considered

an arduous process as it frequently relies on manual

digitisation. But habitat classification through an object-

based image analysis approach has the added benefit of

Table 3 K-nearest neighbour

confusion matrix for the 6

saltmarsh cover classes. The

columns represent the reference

data derived from validation areas

and the rows the user data derived

from the classification results. The

producer accuracy shows the

accuracy obtained per class

(the percentage of pixels that were

correctly classified). The cover

classes mainly include the

following species: high marsh

(S. machrotaschyum, and

S. fruticosa), mid marsh

(S. perennis subsp. alpini and

Atriplex portulacoide) and low

marsh (mixture of S. perennis

subsp. perennis, Atriplex

portulacoide and Limonium sp.)

User/Reference class Water Mud Low marsh Mid marsh High. marsh Spar. marsh Total

Confusion Matrix

Water 5966 0 0 0 0 0 5966

Mud 933 5273 0 212 0 0 6418

Low marsh 121 0 9389 800 0 640 10,950

Mid marsh 80 284 613 7542 376 1113 10,008

High. marsh 0 0 0 1805 9084 2053 12,942

Spar. marsh 0 0 87 450 2541 17,118 20,196

Total 7100 5557 10,089 10,809 12,001 20,924

Accuracy

Producera (%) 84 95 93 70 76 82

Userb (%) 100 82 86 82 70 81

Overall (%) 82

Kappa Coefficient 0.77

a refers to the probability of a pixel labeled as a certain class in the map is really this class; and
b to the probability of that a certain class on the ground is classified as such
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including the identification of small features of unvegetated

classes (ponds and salt pans), which can then be assigned to a

mask. Thus, negative bias in those areas is avoided.

High resolution habitat classification using object-based

image analysis has been used in this work to accurately cap-

ture vegetation characteristics on the basis of distinct commu-

nities and plant structure. Specific correction factors based on

high resolution habitat maps derived from canopy heights and

spectral information have the benefits of being applied to

broad areas with less effort. However, to map saltmarsh hab-

itats with high accuracy is a challenge due to the low spectral

contrast between plant species and the small scale of vegeta-

tion patterns (Adam et al. 2009; Kelly et al. 2011; Silva et al.

2008). In this sense, the combination of spectral and elevation

information significantly improves saltmarsh mapping (Chust

et al. 2008; Gilmore et al. 2008; Yang and Artigas 2010),

allowing higher accuracy values. The use of an object-based

approach can also improve the classification results in

saltmarshes in comparison with pixel-based approaches using

high spatial resolution photography (Cao et al. 2007; Ouyang

et al. 2011) with poor spectral resolution (four spectral bands).

In the image classification undertaken in this study, we

obtained a high overall accuracy (82%) over a large expanse

of saltmarsh. This result is comparable to the values obtained

by to Brown (2004) and Belluco et al. (2006) who achived

79% and 92% accuracy respectively. However, they applied a

pixel-based classification (maximum likelihood classifier) to a

smaller saltmarsh area using hyperspectral satellite images

(CASI) and elevation data. The high spectral resolution of

these images provided more information to discriminate be-

tween saltmarsh plants with low spectral contrast.

Interestingly, our results showed a higher accuracy for bare

mud (96%) than achieved by Brown (2004) (75%). The seg-

mentation process previous to the classification has helped in

saltmarsh feature recognition in classes such as water and

mud, resulting in high individual accuracy values: 84% water

(ponds and small creeks) and 96% for mud (tidal flats and salt

pans). High accuracy in bare mud and low marsh habitat clas-

ses are essential to avoid negative bias in these less vegetated

habitats. For example, the results showed that low marsh ele-

vation is well modelled by LiDAR-derived DTM and there-

fore this habitat could be added to the mask layer as well.

Although the correction factors based on habitat maps have

greatly improved the LiDAR-derivedDTM accuracy, wemust

be aware of the limitations of this technique when very large

surface areas are used. The vegetation height can vary natu-

rally depending on location, and the average technique used to

calculate the correction factor values may add negative bias in

those places where the vegetation is shorter than the average.

This issue could be addressed by classifying each habitat type

based on estimated aboveground biomass density as shown in

Medeiros et al. (2015). However, for this purpose

Table 5 Error statistic of the

unmodified and user-modified

DTM for each habitat cover class

regard to GCP survey; where

‘ME’ is the mean error or vertical

bias, ‘SD’ is the standard devia-

tion and ‘RMSE’ the root mean

square error

Habitat class Unmodified DTM User-modified DTM

ME (m) SD (m) RMSE (m) ME (m) SD (m) RMSE (m)

Bare mud 0.09 0.04 0.01 Not used Not used Not used

Low marsh 0.09 0.09 0.02 -0.02 0.08 0.06

Mid marsh 0.26 0.11 0.08 -0.06 0.13 0.05

High marsh 0.35 0.18 0.15 0.02 0.17 0.03

Spar. marsh 0.53 0.13 0.29 0.13 0.16 0.15

Roads 0.04 0.05 0.004 Not used Not used Not used

Overall site 1 0.23 0.13 0.07 0.13 0.14 0.06

Overall site 2 0.45 0.19 0.24 0.09 0.18 0.16

Fig. 7 Mean error (ME) and root mean square error (RMSE) per habitat

cover class. The ME and RMSE is compared between the unmodified

DTM and the User-modified DTM

Table 4 Habitat-specific correction factors (HSCF), the associated

standard deviation (SD) and the root mean square error (RMSE)

Habitat class HSCF values (m) SD (m) RMSE

Low marsh 0.15 0.067 0.104

Mid marsh 0.25 0.066 0.068

High marsh 0.32 0.088 0.142

Spartina marsh 0.55 0.16 0.292

Mask 0 - -
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aboveground biomass density data collected in the field at the

same time period that the aerial photography and DTM is

required. The combination of these two techniques (correction

factors and aboveground biomass density) would allow a sub-

classification of each habitat in low and high density for in-

stance (estimating the average height for each sub-class),

thereby improving the adjustment of the LiDAR-derived

DTM over very large areas. Substantial additional surveying

effort is required however to obtain concurrent aboveground

biomass density data.

Finally, the corrected DTM obtained after application of

the HSCF across the entire Odiel estuary saltmarsh environ-

ment has improved the overall accuracy of the ground eleva-

tion data, obtaining comparable results to those achieved by

Hladik and Alber (2012) and McClure et al. (2015) in north-

American saltmarshes. The approach outlined here provides a

rigorous methodology that can be applied to improve the ac-

curacy of saltmarsh elevation datasets that is thus robust and

suitable to support and inform the management of these envi-

ronments. In particular, elevation accuracy is crucial for

modelling the response of saltmarshes to sea-level rise be-

cause subtle changes in topography affect other factors that

control saltmarsh dynamics (e.g. flooding and soil salinity)

(Tabot and Adams 2013). Projections of future global sea-

level rise vary from 0.18–0.59 m (over the period 1980–

1999 and 2090–2099) based on physical models (Meehl

et al. 2007a, 2007b). This means that the DTM accuracy has

to be smaller than sea-level rise projections over these reason-

able timescales in order to accurately investigate potential im-

pacts. In the LiDAR dataset presented here, the best accuracy

in elevation data that can be obtained is 0.1 m, which is the

real accuracy of the elevation raw data collected from LiDAR

sensor at up-land known locations. However, it has been

shown that the real accuracy of the original DTM in the

Odiel saltmarshes is higher than 0.1 m (up to 0.53 m in

Spartina marsh for instance) due to the high density of the

vegetation canopy. Thus, the unmodified DTM in this partic-

ular case would not be suitable for modelling sea-level rise

effects over the Odiel saltmarsh due to the mean vertical bias

in large areas of the saltmarsh is nearly the same that the top

range of the future sea-level rise projections (0.59 m).

However, the corrected DTM is suitably accurate to distin-

guish topographic structure at the resolution that is used to

determine future flooding due to sea-level rise.

Conclusions

The work undertaken here highlights that LiDAR data do not

provide accurate DTMs for vegetated saltmarsh environments

without the application of additional corrections to the eleva-

tions acquired. This is potentially a limitation to the use

LiDAR-derived DTMs in applications and investigations that

require high accuracy such as tidal flooding, sedimentation

and vegetation patterns, and management and conservation

activities. The LiDAR elevation error was significantly larger

for vegetated saltmarsh areas than the reported LiDAR accu-

racy (<0.1 m); un-vegetated areas (e.g., roads and bare mud)

were well within this error. Thus, it is highly recommended to

check the real accuracy of the LiDAR-derived DTM before

starting to work with these data. Errors in the vegetated marsh

areas of the unmodified DTM range between 0.1 and 0.53 m,

showing a high variability among habitat types. Error magni-

tude was greatest in Spartina marsh habitats, and generally

increased with the vegetation height and density. This study

demonstrates that application of habitat-specific correction

factor is a suitable approach for improving DTM accuracy in

Atlantic-Mediterranean saltmarshes. After applying the cor-

rection factors, the error of the corrected DTMwas lower than

the reported LiDAR accuracy (0.1 m) for all habitat types,

except for the Spartina marsh that was slightly higher

(0.13 m). In addition, high resolution habitat maps based on

canopy heights are appropriated tools for applying correction

factors to large study areas as it has been shown in this work.

Finally, this research also showed the importance of eleva-

tion accuracy in low-lying areas like saltmarshes and high-

lights the need for DTM corrections when certain applications

such sea-level rise projections are used. In this sense, this

work offers saltmarsh managers a robust approach that can

be followed to modify LiDAR-derived DTMs, providing the

accuracy required for evaluating saltmarsh change in a context

of sea-level rise.
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