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ABSTRACT

Residue contact map is essential for protein three-dimensional structure determination. But most of the current contact pre-

diction methods based on residue co-evolution suffer from high false-positives as introduced by indirect and transitive con-

tacts (i.e., residues A–B and B–C are in contact, but A–C are not). Built on the work by Feizi et al. (Nat Biotechnol 2013;

31:726–733), which demonstrated a general network model to distinguish direct dependencies by network deconvolution,

this study presents a new balanced network deconvolution (BND) algorithm to identify optimized dependency matrix with-

out limit on the eigenvalue range in the applied network systems. The algorithm was used to filter contact predictions of

five widely used co-evolution methods. On the test of proteins from three benchmark datasets of the 9th critical assessment

of protein structure prediction (CASP9), CASP10, and PSICOV (precise structural contact prediction using sparse inverse

covariance estimation) database experiments, the BND can improve the medium- and long-range contact predictions at the

L/5 cutoff by 55.59% and 47.68%, respectively, without additional central processing unit cost. The improvement is statisti-

cally significant, with a P-value < 5.93 3 1023 in the Student’s t-test. A further comparison with the ab initio structure pre-

dictions in CASPs showed that the usefulness of the current co-evolution-based contact prediction to the three-dimensional

structure modeling relies on the number of homologous sequences existing in the sequence databases. BND can be used as

a general contact refinement method, which is freely available at: http://www.csbio.sjtu.edu.cn/bioinf/BND/.
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INTRODUCTION

The three-dimensional (3D) structure of proteins is often

represented by a two-dimensional residue contact map

matrix, where the nodes represent the protein residues and

the edges are used to represent the spatial relationship

between residues. The contact map contains important con-

straints for determining protein structures.1–8 Typically,

when the spatial distance of two residues is close enough, for

example, 8 Å, its corresponding entry in the contact map

matrix is set to 1, or otherwise 0. Because wet-lab experi-

ments are extremely time-consuming and expensive, specifi-

cally designed automated computational methods have been

widely used to predict the protein residue contact map. For

instance, based on the hypothesis that the contacted residues

will co-mutate,9–15 the mutual information (MI)-based

approach16 and its variant, mutual information without the
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influence of phylogeny or entropy (MIp),17 have been

widely used.

Although much progress has been obtained on develop-

ing computational algorithms for predicting residue con-

tacts, the prediction quality is usually low. For instance,

one of the observations is that the contact network from

predictors is noisy and inaccurate because of the data being

contaminated by the variable indirect relationship.18,19

The transitive effects of correlations are considered as a

main source of indirect contacts.18 If there are true con-

tacts between sites AB and BC, it will result in observed

false correlations between AC with a high probability. The

network data quality will significantly affect the resolution

of the modeled 3D structure; thus, separating the direct

contact from indirect contact is an essential but tough

task, especially with a shortage of prior knowledge.

Many groups have developed different approaches to find

direct information flows from the initially observed contact

data by filtering the transitive noise. For example, the precise

structural contact prediction using sparse inverse covariance

estimation (PSICOV),19 which uses an inversed partial corre-

lation matrix, the direct-coupling analysis (DCA),20 which

employs a Potts model, and Gaussian DCA (gDCA),21 which

is a variant of DCA, are three outstanding methods in separat-

ing direct dependencies from indirect dependencies in the res-

idue contact map. Recently, the network deconvolution

(ND)18 approach formulates the problem of removing transi-

tive relationships as the inverse of network convolution. Its

hypothesis is that the observed data are the sum of both direct

and indirect contacts, which can be reflected by summing all

direct matrix powers. Compared with other existing

approaches, ND is a cutting-edge method in terms of its effi-

ciency and general application capability.

In the ND algorithm, the noise model is represented by the

sum of all direct matrix powers. The result is that the eigenval-

ues of the initially observed (predicted) matrix must be scaled

to make the eigenvalues of the direct matrix meet the conver-

gence requirement of the infinite series. The reason is that the

items of even powers in the infinite series will make all trans-

formed eigenvalues positive, making the eigenvalues (kobs) of

the observed matrix Gobs in a narrow range (kobs > 20:5).

Consequently, in order to cope with various potential kobs in

the real observed matrix, a network-dependent parameter has

to be used to enlarge the range of eigenvalues of the observed

contact maps in the ND algorithm.

To solve this problem, in this article, a new balanced

network deconvolution (BND) algorithm was proposed

to remove transitive relationships. The BND will keep

the balanced distribution of eigenvalues, endowing it

with robustness without needing an optimized scaling

parameter. Instead of representing the observed matrix

data as the sum of direct matrix and all its powers, only

the direct matrix and its odd powers are considered as

the noise model. By doing this, we can infer 8kobs 2 R

from kdir in the range of jkdirj < 1. In this case, there is,

therefore, no further need of scaling parameters in BND.

Experimental results on the benchmark 9th critical

assessment of protein structure prediction (CASP9),

CASP10, and PSICOV datasets demonstrate BND as a

much more accurate filter than the ND approach. The

best merit of the BND for protein residue contact map

prediction is that it is a parameter-free postprocessing

step and independent of the prediction algorithms, which

can therefore generate an additional benefit at no cost of

changing the prediction algorithms.

DATASETS AND METHODS

Benchmark datasets

Three benchmark datasets were used to evaluate the

proposed BND algorithm. The first one is the set of 147

proteins in the CASP9 competition, the second is the set

of 121 proteins in the CASP10 competition, and the third

is the set of 150 proteins used in PSICOV.19 Contacts are

defined as those pairs of residues where the spatial distance

of their C-batoms (C-a in the case of glycine) is <8 Å.22

Initial observed contact matrix

Given a query protein sequence of L residues, five

sequence-based residue–residue contact predictors were

used to generate the initial observed contact matrix Gobs,

which is a symmetry matrix of L3L with the Gobsði; jÞ
entries, indicating the contact probability between the i-th

and the j-th residues. The five predictors are MI,16

MIp,17 DCA,20 its recent variant gDCA,21 and PSICOV.19

Here, we give their brief introductions separately.

The idea of MI-based residue contact prediction algo-

rithm is to estimate the co-evolution probability though

the MI statistic between two residues calculated from the

multiple sequence alignment (MSA), which is generated

by searching the query sequence against a large sequence

database, for example, searching the query sequence

using PSI-BLAST program against the NR (nonredun-

dant) database. The MI between positions Sa and Sb

along the sequence can be calculated as:

MIðSa; SbÞ ¼ HðSaÞ1HðSbÞ-HðSa; SbÞ (1)

where, HðSaÞ and HðSbÞ are the entropy of positions Sa

and Sb derived from the MSA, respectively:

HðSaÞ ¼ 2
X

x
pðx; SaÞlog10pðx; SaÞ

HðSbÞ ¼ 2
X

x
pðx; SbÞlog10pðx; SbÞ

8<
: (2)

where, pðx; SaÞ and pðx; SbÞ represent the frequencies of

occurrence of amino acid x at columns Sa and Sb in the

MSA. HðSa; SbÞ in Eq. (1) is the joint entropy of col-

umns Sa and Sb.

An improved version of MI-based algorithm called

MIp was proposed on the consideration of reduction of

the influence of phylogeny or entropy.17 The MIp uses
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Eq. (3) to estimate the background MI shared by posi-

tions Sa and Sb:

BðSa; SbÞ ¼
MIðSa; �ÞMIðSb; �Þ

MI
(3)

where, MIðSa; �Þ and MIðSb; �Þ represent the mean MI of

columns Sa and Sb, respectively. MIðSa; �Þ is defined by
1

M�1

P
i¼1:M
i 6¼a

MIðSa; SiÞ, where M is the number of columns in

the MSA. Similarly, MI represents the overall mean MI

in the MSA. Then the MIp of Sa and Sb is:

MIpðSa; SbÞ ¼ MIðSa; SbÞ2BðSa; SbÞ (4)

DCA20 and PSICOV19 are two methods proposed

recently trying to remove the transitive contact effects.

PSICOV attempts to correct indirect coupling effect by

calculating partial correlation coefficient, whereas DCA

tries to correct indirect coupling effect by maximizing

entropy using the Potts model. For a further develop-

ment on DCA, gDCA21 used a multivariate Gaussian

modeling approach to replace discrete amino acid states

with continuous Gaussian random variables.

Given a query protein sequence, the above five predic-

tors, that is, MI, MIp, DCA, gDCA, and PSICOV, will be

used to generate the initial residue contact maps Gobs,

and the aim of this study was to filter the transitive

noises from the Gobs to get the true contact matrix Gdir.

Network deconvolution

The ND model18 formulates the transitive closure of a

network as an infinite sum of true direct network, which

can be written in a closed infinite-series sum. The rela-

tionship between the true network matrix (Gdir) and the

observed network matrix (Gobs) in the ND algorithm is

shown in Eq. (5):

Gobs ¼ Gdir1G2
dir1G3

dir1 � � �1Gn
dir (5)

where, n!1. The infinite series of Eq. (5) can be writ-

ten as the following closed form18:

Gobs ¼ GdirðI2GdirÞ21
(6)

where, I is the identity matrix. From Eq. (5), the Gdir

can be calculated as:

Gdir ¼ GobsðI1GobsÞ-1

kobs ¼
kdir

12kdir

kdir ¼
kobs

11kobs

8>>>>>><
>>>>>>:

(7)

where, kobs is the eigenvalue of the observed network,

and kdir the eigenvalue of the true network. From Eq.

(7), when the observed matrixGobs is given, the Gdir can

be reconstructed. After eigenvalue decomposition, rela-

tionship between kdir and kobs is also obtained (refer to

the Balanced Network Deconvolution section for details).

The transformation of eigenvalues is the core of the

transformation of matrices in ND.

Actually, to guarantee the infinite series of Eq. (5) con-

verge, the kdir must meet the condition that jkdirj < 1.

However, to meet this condition, all the eigenvalues of

the Gobs must have kobs > 20:5 [Fig. 1(a)], according to

kobs ¼ kdir

12kdir
in Eq. (7) as illustrated in Figure 1(a), which

obviously cannot be satisfied in the real-world applica-

tions, because in actuality the eigenvalue of the Gobs can

be any value in the range of ð21;11Þ.
To solve this problem, in the original ND model, a

tuning parameter was introduced to linearly scale the

kobs to cover more regions [Fig. 1(a)]:

kdir ¼
akobs

11akobs

a � minð b

ð12bÞk1ðmaxÞ
obs

;
2b

ð11bÞk2ðminÞ
obs

Þ

8>>><
>>>:

(8)

where, k1ðmaxÞ
obs and k2ðminÞ

obs are the biggest positive and

the smallest negative eigenvalues of Gobs. The b parame-

ter is network dependent. Different values have been sug-

gested on different input networks in the ND approach.

For instance, on the protein contact map network, a rec-

ommended b value was 0.99, whereas 0.5 was suggested

on the gene regulator network and 0.95 was suggested

on the social network.

Balanced network deconvolution

Why the ND approach needs an additional parameter to

scale kobs? If we inspect the ND noise model [Eq. (5)] care-

fully, it is clear that it contains the even and odd powers of

the direct matrix. The odd powers will maintain the plus

or minus signs of the eigenvalues, whereas the even powers

will make all eigenvalues positive. This phenomenon will

make the eigenvalue distributions imbalanced. As we will

show later, if we remove the even powers in the infinite-

series, the eigenvalues of the rebuilt noise matrix will be

closer to the eigenvalues of observed matrix. In return, the

solved true network will be more precise. So, the noise

model of our proposed BND algorithm is as follows:

Gobs ¼ Gdir1G3
dir1G5

dir1 � � �1G2n21
dir (9)

where, n!1.The infinite series of Eq. (9) can be writ-

ten as the following closed form:

Gobs ¼ GdirðI2G2
dirÞ

21
(10)

By solving the quadratic equation of Eq. (10) for Gdir,

we get:

Gdir ¼ ð2I1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I14G2

obs

q
Þ � ð2GobsÞ21

(11)

Let U and Edir represent eigenvectors and a diagonal

matrix of eigenvalues of Gdir, where ki
dir is the i-th

Protein Residue Contact Map Prediction
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diagonal component of the matrix Edir. By using the

eigen decomposition principle, we get:

Gobs ¼ Gdir1Gindir

¼
ðaÞ

Gdir1G3
dir1G5

dir1 � � �1G2n21
dir

¼
ðbÞ
ðUEdirU21Þ1ðUE3

dirU21Þ1ðUE5
dirU21Þ

1 � � �1ðUE2n21
dir U21Þ

¼ UðEdir1E3
dir1E5

dir1 � � �1E2n21
dir ÞU21

¼ U

Xn

i¼1

ðk1
dirÞ

2i21 . . . 0

� . .
.

�

0 � � �
Xn

i¼1

ðkL
dirÞ

2i21

0
BBBBBBBBBB@

1
CCCCCCCCCCA

U21

5
ðcÞ

U

k1
dir

12ðk1
dirÞ

2
. . . 0

� . .
.

�

0 � � � kL
dir

12ðkL
dirÞ

2

0
BBBBBBBBBB@

1
CCCCCCCCCCA

U21

(12)

where, (a) is inferred from the definition of the diffusion

model of Eq. (9); (b) follows from the eigen decomposi-

tion of matrix Gdir; and (c) makes use of the character of

geometric series to compute the infinite summation on

the assumption of jkdirj < 1 similar to the assumption

proposed in ND.

Actually, from Eq. (11), if we use Gobs ¼ UEobsU21 to

represent the eigenvalue decomposition of Gobs, where

Eobs ¼

k1
obs . . . 0

� . .
.

�

0 � � � kL
obs

0
BBB@

1
CCCA (13)

we get:

ki
obs ¼

ki
dir

12ðki
dirÞ

2
; 81 � i � L (14)

and

ki
obs � ðki

dirÞ
2
1ki

dir2ki
obs ¼ 0 (15)

When jki
dirj < 1 for all i, we can derive any ki

obs 2 ð21;
11Þ from Eq. (14) as illustrated in Figure 1(a). This

means that Eq. (14) can suit all the observed matrix Gobs

in the real-world applications. So, unlike the ND model,

the proposed BND model does not need an additional

tuning parameter to linearly scale kobs for meeting the

assumption of jki
dirj < 1 anymore.

By solving the quadratic Eq. (15) for ki
dir, we will get

two possible solutions:

ki
dir ¼

211

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
114ðki

obsÞ
2

q

2ki
obs

ki
dir ¼

212

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
114ðki

obsÞ
2

q

2ki
obs

8>>>>>><
>>>>>>:

(16)

As shown in Figure 1(b), the solution of ki
dir

¼ 211
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
114ðki

obsÞ
2

p
2ki

obs

satisfies the condition of

8ki
obs 2 ð21;11Þ; jki

dirj < 1, which is finally used in

the BND model.

RESULTS

Comparison of ND and BND models

Figure 2(a) illustrates the difference between the ND and

BND noise models. To quantitatively examine both the dif-

ference and similarity of the noise models between ND and

the proposed BND, we did two intuitive experiments.

First, we constructed a 5000 3 5000 symmetric matrix

containing random values obeying a standard normal dis-

tribution, which is considered as Gdir. The distribution of

its eigenvalues obeys Wigner’s semicircle law.23 Then, the

eigenvalues of Gdir were used to rebuild the noise matrix

Gobs with the ND and BND noise models separately [Eq.

(5) and Eq. (9)]. The difference of eigenvalue distributions

of the rebuilt Gobs by the two models is obvious [Fig.

2(b)]: the BND noise model has maintained the balanced

eigenvalue distribution, whereas the ND noise model

made almost all kobs eigenvalues positive.

Second, we simulated an 8 3 8 symmetric matrix con-

taining pseudorandom weight values [see Fig. 2(c) and Sup-

porting Information for details), which is considered as

Gdir. New edges were added to the network by applying the

ND and BND noise models, respectively, generating new

network topologies. Two interesting results were observed:

the first was that the two new network topologies derived

from ND and BND are very comparable, indicating that the

odd powers can cover the information in the even powers;

and the second was that compared with the true topology,

the BND noise network can keep the strong edge weights

better, for example, edge between Nodes 5 and 7 [Fig. 2(c)].

Results of filtering noise from the predicted
residue contact maps

There are three steps of conducting the experiments of

removing the transitive noises contained in the residue

contacted map matrix. First, given a protein sequence,

H.-P. Sun et al.

488 PROTEINS



we generated an MSA by the PSI-BLAST search; Second,

the MSA was inputted to MI, MIp, DCA, gDCA, and

PSICOV for predicting the residue–residue contact

matrix (Gobs); Third, the BND algorithm was applied on

the predicted Gobs for filtering the transitive noises,

where for comparison, the ND approach is also tested in

Figure 2
(a) An illustration showing ND and BND noise models. (b) Eigenvalue distributions for the rebuilt noise matrices with ND and BND noise mod-
els. (c) Network topology comparison by applying ND and BND noise models on the same network. (d, e) General mathematic calculation model

of BND. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 1

(a) Plot of BND model: kobs ¼
kdir

12ðkdirÞ
2 and ND models: kobs ¼ kdir

12kdir
and kobs ¼ kdir

að12kdirÞ ða ¼ 0:1Þ. (b) Two solutions of Eq. (16): Solution 1:

kdir ¼
212

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
114ðkobsÞ

2
p

2kobs
, and Solution 2: kdir ¼

211
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
114ðkobsÞ

2
p

2kobs
. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]
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the third step. Note that on 150 proteins in the PSICOV

dataset, the MSA provided in the original article is used

for fairly comparison.19 Figure 3 gives a flowchart of the

conducted experiments.

In order to measure the performance of the BND-

based filtering in protein residue–residue contact predic-

tion precisely, the accuracy of the top-ranked contacts is

evaluated. Figure 4 shows the top L/5 results from MI,

MIp, DCA, gDCA, PSICOV, ND, and BND in different

sequence separation ranges, where L is the length of the

query sequence.

Improvements are observed on all the three bench-

mark datasets by applying the BND for removing the

transitive noises. For all the contacts with the sequence

separation >5 on the top L/5 results, BND improves the

prediction accuracy at an average by 161.67%, 134.00%,

and 134.58% on the contact map predicted by MI in the

three datasets, respectively. Compared with the original

MIp method, BND improves its prediction accuracy by

159.04% on CASP9, 127.13% on CASP10, and 134.69%

on PSICOV database. For DCA, BND improves the pre-

diction accuracy by 14.73%, 10.37,% and 7.92% on the

Figure 3
The flow chart of removing transitive noise with BND algorithm. Top L/2 predictions are drew for the T0525 protein in CASP9 as an example to

show how to correct the wrongly predicted contacts with BND filter. Green dots are benchmark contacts in the protein; red dots are right predic-
tions; and blue dots are wrong predictions.

Figure 4
Accuracy of the top L/5 contact predictions by different methods on the three benchmark datasets.

H.-P. Sun et al.
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three datasets; and for its variant gDCA, BND improves

the prediction accuracy by 4.43%, 3.13%, and 2.86% on

the three datasets. For PSICOV, BND improves the accu-

racy by 13.01% and 3.69% on the two CASP datasets,

but the precision drops a little bit of 0.75% on PSICOV

dataset, which was originally applied in the PSICOV

article.19 However, BND outperforms ND with all the

evaluations on the PSICOV dataset. For instance, the

long-range contacts (residue separation distance larger

than 23) prediction accuracy on top L/5 is 60.69% when

applying the ND on the original PSICOV output,

whereas this number is 62.42% when applying BND on

PSICOV’s output (see Supporting Information for

details).

Besides, in order to test the robustness of BND, we

picked up 39 and 36 hard targets from CASP9 and

CASP10 separately, which are more difficult to predict

their contacts among all proteins evaluated because little

homology sequences can be found for them. The

improvement is also observed on the predicted contacts

(Fig. 5). For all the contacts with the sequence separa-

tion> 5 on the top L/5 results, compared with MI, BND

improves the prediction accuracy by 184.53% and

136.77% in CASP9’s hard targets and CASP10’s, respec-

tively. For MIp, BND improves its prediction accuracy by

178.42% on CASP9 and 119.84% on CASP10. For DCA,

BND improves the prediction accuracy by 11.44% and

14.86% on the two datasets; and for gDCA, BND

improves the accuracy by 7.92% on CASP10, but reduces

the accuracy by 4.35% on CASP9; and for PSICOV, BND

improves the accuracy by 5.66% and 11.27% (see Sup-

porting Information for details).

Long-range residue–residue contacts are the most

important to protein structure determinations, but they

are usually more difficult for predictions as shown in the

recent CASP competitions.15,24,25 In previous studies,

there are different definitions of long-range contacts, for

example, residue contacts with sequence separation larger

than 23, 20, 15, or 8.7 BND is also found to be signifi-

cantly helpful for mining the long-range contacts (Table

I). Taken the top L/5 results into account on the four

kinds of long-range definitions, on the MI, BND helps to

improve the long-range contact prediction accuracy at an

average by 159.75% on CASP9, 127.86% on CASP10,

and 128.57% on PSICOV dataset. Compared with MIp,

BND improves the accuracy by 157.79%, 127.60%, and

Figure 5
Accuracy of the top L/5 contact predictions by different methods on the hard targets from CASP9 and CASP10 datasets, respectively.
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128.69% on the three datasets. For DCA, BND helps to

improve the accuracy by 7.45%, 4.31%, and 5.82%; for

gDCA, BND helps to improve the accuracy by 4.89%,

0.17%, and 2.28%; and for PSICOV, improvements of

6.58% on CASP9 and 1.76% on CASP10, but 0.41%

decrease compared with PSICOV on this dataset were

observed.

Not only for the top L/5 rankings, the enhancement

by BND is also found generally in top L/10, L/2, and L

rankings. Tables II, III, and IV show the long-range resi-

due–residue (residue contacts with sequence separation

larger than 23) contact prediction results of different

rankings on CASP9, CASP10, and PSICOV datasets,

respectively. In all the tables, we can find that BND out-

performs ND on all the experiments. Taking the CASP9

dataset for an example, with the same Gobs matrix gener-

ated by MI approach, where its accuracy for predicting

the top L/5 contacts with the sequence separation> 5 is

10.32%, BND will improve the accuracy to 26.99%,

whereas ND will only improve it to 21.95%.

In order to reveal the reason for the better perform-

ance of BND, we looked closely at the eigenvalue distri-

butions on the CASP9 dataset, where Figure 6(a) shows

the distribution of the real contact map Gdir. In the Gobs

of the predicted contact map by MI, its kobs 2 ½21:94;
117:97� [Fig. 6(b)], which violates the required range of

ND (bigger than 20.5) as discussed in Eq. (7). So, ND

applied a parameter b 5 0.99 [a=0.256 as calculated

from Eq. (8) to adjust the kobs, which will be rescaled to

kND
obs 2 ½20:497; 30:20�. Then, according to Eq. (7), the

ND will infer the eigenvalues in the direct matrix as:

kND
dir 2 ½20:9870; 0:9679�. By contrast, BND does not

need a scaling parameter but uses Eq. (16) directly

to infer the eigenvalues of the direct matrix as: kBND
dir

2 ½20:7750; 0:9958� from kobs 2 ½21:94; 117:97�. BND

keeps the absolute value of minimum transformed

Table I
The improvements of four different long range contact definitions

achieved in the top L/5 predictions by applying BND on five prediction
algorithms.

Dataset Method |i-j|>23 |i-j|>20 |i-j|>15 |i-j|>8

CASP9 MI1BND 156.71% 160.92% 158.30% 162.63%
MIp1BND 151.36% 162.53% 157.95% 158.99%
DCA1BND 5.63% 5.84% 7.06% 10.95%
PSICOV1BND 4.75% 4.96% 6.55% 9.58%
gDCA1BND 5.06% 4.21% 5.11% 5.16%

CASP10 MI1BND 122.62% 110.59% 145.07% 133.89%
MIp1BND 124.18% 113.50% 142.97% 130.52%
DCA1BND 3.33% 4.44% 4.12% 5.18%
PSICOV1BND 1.76% 0.91% 3.24% 1.15%
gDCA1BND -1.11% 0.04% 0.22% 1.33%

PSICOV MI1BND 125.60% 128.86% 129.01% 130.53%
MIp1BND 125.84% 129.13% 129.42% 130.13%
DCA1BND 5.73% 5.76% 5.72% 6.04%
PSICOV1BND -0.22% -0.69% -0.29% -0.42%
gDCA1BND 2.60% 2.02% 1.67% 2.81%

Table III
Long-range residue contact (residue separation>23) prediction accura-

cies on CASP 10 dataset by applying the BND to filtering transitive
noises on five prediction algorithms.

Method Top L/10 Top L/5 Top L/2 Top L

MI 15.82% 13.82% 9.97% 7.71%
MI1ND 30.63% 25.45% 18.89% 14.15%
MI1BND 36.78% 30.77% 22.63% 16.69%
MIp 15.82% 13.82% 10.02% 7.69%
MIp1ND 30.81% 25.77% 19.24% 14.32%
MIp1BND 36.53% 30.99% 22.88% 16.98%
DCA 40.74% 34.48% 25.94% 19.13%
DCA1ND 38.98% 34.24% 25.96% 18.79%
DCA1BND 41.42% 35.62% 26.80% 19.51%
PSICOV 41.45% 35.87% 26.72% 18.90%
PSICOV1ND 39.89% 34.75% 24.81% 17.14%
PSICOV1BND 41.55% 36.50% 25.99% 17.94%
gDCA 45.22% 40.11% 30.36% 22.25%
gDCA1ND 42.78% 38.26% 27.57% 19.16%
gDCA1BND 45.13% 39.67% 29.35% 20.65%

Table II
Long-range residue contact (residue separation>23) prediction accura-
cies on CASP 9 dataset by applying the BND to filtering transitive

noises on five prediction algorithms.

Method Top L/10 Top L/5 Top L/2 Top L

MI 10.39% 8.41% 6.12% 5.16%
MI1ND 21.60% 17.73% 12.95% 10.05%
MI1BND 26.29% 21.58% 15.49% 11.86%
MIp 10.39% 8.46% 6.16% 5.19%
MIp1ND 21.60% 18.13% 13.19% 10.25%
MIp1BND 26.29% 21.26% 15.81% 12.38%
DCA 29.88% 24.93% 17.69% 12.71%
DCA1ND 29.86% 25.59% 17.82% 13.24%
DCA1BND 31.34% 26.34% 18.87% 14.00%
PSICOV 31.94% 25.02% 17.53% 13.18%
PSICOV1ND 31.57% 24.47% 16.35% 12.21%
PSICOV1BND 33.70% 26.21% 17.38% 12.94%
gDCA 34.29% 27.66% 20.71% 15.23%
gDCA1ND 35.32% 28.57% 20.02% 14.89%
gDCA1BND 35.87% 29.06% 20.10% 14.68%

Table IV
Long-range residue contact (residue separation>23) prediction accura-

cies on PSICOV dataset by applying the BND to filter transitive noises
on five prediction algorithms.

Method Top L/10 Top L/5 Top L/2 Top L

MI 29.12% 23.15% 16.33% 12.42%
MI1ND 55.04% 46.89% 33.58% 24.18%
MI1BND 60.76% 52.23% 38.61% 27.99%
MIp 29.12% 23.15% 16.33% 12.42%
MIp1ND 55.15% 46.96% 33.86% 24.35%
MIp1BND 60.20% 52.29% 38.73% 28.11%
DCA 54.92% 50.55% 40.00% 29.18%
DCA1ND 56.06% 51.42% 40.81% 29.58%
DCA1BND 58.03% 53.44% 42.39% 30.72%
PSICOV 71.77% 62.56% 44.74% 31.48%
PSICOV1ND 70.53% 60.69% 42.10% 28.60%
PSICOV1BND 71.22% 62.42% 44.05% 29.91%
gDCA 72.86% 64.70% 50.61% 36.90%
gDCA1ND 72.86% 64.31% 47.27% 32.24%
gDCA1BND 73.62% 66.38% 50.39% 35.19%
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eigenvalues kdir smaller than that of maximum trans-

formed eigenvalues kdir, similar to the range of the input

eigenvalues kobs. And this is also in consistence with k
2 ½20:9874; 297:82� derived from the benchmark true

contact matrices. The eigenvalue distribution of BND

plus MI-predicted matrices has a sharper peak and con-

centrates on the area where eigenvalues are around mini-

mum, which is more similar to that of the distribution

shape of true contact map than that of ND plus MI and

MI-predicted ones (Fig. 6). These results indicate that

the reconstructed direct matrix by BND is much closer

to the benchmark true contact matrix, and this is the

reason that BND performs better than ND.

According to our experimental results, the improve-

ments obtained by the BND on MI, MIp, DCA, gDCA,

and PSICOV are different. Why does the BND model

work better for MI and MIp than DCA, gDCA, and PSI-

COV? The reason is that DCA, gDCA, and PSICOV have

already contained specifically designed modules for

removing the transitive noise, and hence their outputted

contacted matrix have filtered part of the transitive

noises. Even in such cases, the BND is found helpful for

enhancing the prediction power on DCA, gDCA, and

PSICOV, and this probably indicates that there are still

some levels of transitive contact noises remaining in the

prediction, which have been further filtered out by the

BND and ND methods. For example, DCA will predict

the long-range contacts on the top L/5 in three bench-

mark datasets with an accuracy of 40.13%, but will be

improved to 42.21% by applying BND as a postprocess.

These results suggest that the noise model of the pre-

dicted contact map is complicated and can be a mixture

of several different types, in which case, single filter is

not enough.

It is also interesting to observe from the experiments

that the improvement by applying BND on PSICOV

algorithm on different datasets is also different. For

example, the improvement on the CASP9 and CASP10

datasets is higher than that on the 150 proteins in PSI-

COV dataset. The MSA quality may be the reason. The

average size of MSA in PSICOV dataset is approximately

6245, which is rather larger than that in the other two

datasets, that is, 991 in CASP9 and 3794 in CASP10.

This feature reveals that the more sufficient co-evolution

information, the higher prediction accuracy, with less

amount of transitive noise. A detailed comparison by

applying the BND filter on the PSICOV outputs for

CASP datasets and PSICOV dataset is shown in Figure 7.

As it clearly shows, BND helps to improve PSICOV bet-

ter on the CASP datasets, where the MSA sizes are small.

Comparison of BND-enhanced methods with
ab initio structure predictions

Apart from sequence-based contact predictions, resi-

due–residue contact maps can also be derived from

Figure 6
The eigenvalue distribution of contact matrices from true contact matrix (a), MI-predicted (b), reconstructed direct matrix by BND (c), and recon-

structed direct matrix by ND (d) on the CASP9 dataset.
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protein structure prediction methods. It is of interest to

compare the performance on the two methods. In an

early study,3 it was concluded that the relative perform-

ance of the two methods depends on the availability of

homologous templates in the PDB because structure pre-

dictions with homologous templates have a much higher

accuracy than the sequence-based ab initio predictions.

Here, we focus our comparison on the new fold (NF)

targets in the CASP9 and CASP10 experiments,26,27

which have been verified not having homologous tem-

plates, where sequence-based contact predictions are

most promising in helping the tertiary structure con-

struction. As a control, we chose models from three suc-

cessful free modeling methods in the CASP experiments,

including QUARK,28 Zhang-server,29–31 and Mufold.32

These methods also represent three different approaches

to the ab initio folding, where QUARK constructs models

by assembling continuously distributed fragments,

Zhang-Server ab initio models were built based on

QUARK models followed by iterative assembly refine-

ments, and Mufold builds models by multidimensional

scaling restraints followed by molecular dynamics

refinement.

Five NF targets were selected from the CASP9 (includ-

ing T0534-D2, T0537-D1, T0537-D2, T0544-D1, and

T0531-D1), and eight NF targets selected from CASP10

(including T0658-D1, T0684-D2, T0693-D1, T0719-D6,

T0726-D3, T0735-D2, T0737-D1, and T0740-D1). One

reason for selecting these targets is that there is no dele-

tion in final PDB structure determination, which facili-

tates the comparisons because both sequence-based and

structure-based contact predictions are based on the

same full-length sequences. The predicted 3D models

were downloaded from the CASP website (http://www.

predictioncenter.org).

As shown in Figure 8, the relative accuracy by the two

methods is contradictory in the CASP9 and CASP10

datasets. When considering the long-distance contacts,

for example, the accuracy of the BND-enhanced co-evo-

lution predictions is considerably higher than that from

the ab initio structure predictions on the CASP9 pro-

teins. But, the performance of the sequence-based con-

tact predictions is much worse on the CASP10 dataset.

Although the average accuracy from ab initio structure

predictions in CASP9 (15.86%) is quite close to that in

CASP10 (15.76%) (i.e., reduced only by 0.66%), the

reduction of the BND-enhanced co-evolution predictions

from CASP9 to CASP10 is marked, that is, reduced from

24.05% to 10.83% by 54.97%.

Why is the performance from the sequence-based con-

tact predictions so different on the two CASP datasets?

As discussed in the Results of Filtering Noise from the

Predicted Residue Contact Maps section, examining the

number of homologous sequences in the MSAs may help

provide an answer to the question because all the co-

evolution-based methods use the MSAs to derive the

contact information. To get accurate prediction, a high

number of homologous sequences are often needed. In

fact, the average MSA size in evaluated proteins from

CASP10 is 115, where in four cases the number of

homologous sequences is less than or equal to 5. On the

contrary, the average MSA size in evaluated proteins

from CASP9 is 260, and there is only one protein whose

number of homologous sequences is less than or equal

to 5. Therefore, the contact predictions for the CASP9

dataset by the five co-evolution methods (MI, MIP,

DCA, gDCA, and PSICOV) are more accurate than those

on the CASP10 dataset, which resulted in the different

performance of the BND predictions. These data suggests

that an essential condition for the current co-evolution

contact predictions to be helpful to the 3D structure pre-

diction is that sufficient number of homologous sequen-

ces should exist in the sequence databases, so that a set

of accurate contact predictions can be made beyond that

from the traditional ab initio structure prediction

approaches.

DISCUSSION

BND filtering does not work for machine-
learning-based contact predictions

The BND method is designed for filtering the false-

positive contacts introduced by the indirect and transi-

tive contacts, which most often occur on the co-

evolution contact predictions because the predictions of

these approaches are derived based on correlation of

Figure 7
Comparison of the performance of BND on PSICOV in different

benchmark datasets on top L/5 long-range contact (residue sequence
separation> 23) predictions. Proteins are listed according to their pre-

dicted precision in a descending order.
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evolutionary mutations. Apart from the co-evolution-

based approaches, there are another type of approaches

that derive the residue contacts based on machine learn-

ing, for example, the support vector machine-based

SVMSEQ3 and SVMcon,33 and neural network-based

NNcon.34 Because these approaches trained the contacts

of residue pairs independently, it is expected that the

transitive contact effect from these approaches should be

minimum. As a test, we applied the SVMSEQ, SVMcon,

and NNcon methods on the same set of test proteins

from CASP9 and CASP10 experiments, followed by the

BND filtering. Our results indeed showed that the filter-

ing procedure did not help to improve the prediction

accuracies for the tested machine learning-based predic-

tors. On the contrary, the accuracy even dropped a little

bit for both ND and BND cases (data not shown).

Generality of BND for gene and social
network construction

As the proposed BND algorithm is a data-driven

approach, which filters the transitive contact noise by ana-

lyzing the eigenvalue characteristics of the input matrix, it

is expected to be a general algorithm that can also be

directly applied in different domains. To examine the gen-

erality of BND, we conducted an experiment of recon-

structing two real-world Escherichia coli and Saccharomyces

cerevisiae gene regulatory networks, in comparison with

the ND model.18 In this experiment, the inputs to ND

and BND are from 10 popular prediction methods. The

final results from the ND and BND were compared with

the experimentally verified data, with the evaluations

based on the area under the precision-recall and receiver

operating characteristic curves.35 Our results showed that

the BND achieves 1% and 25% higher average scores on

the average of the 10 methods on the E. coli and S. cerevi-

siae networks than the ND approach, respectively.

The other experiment we did to demonstrate the gen-

eralization ability of BND is on a social co-authorship

network. The network consists of 1589 nodes,36 which

were constructed strictly and of high data quality. The

edges weights equal or bigger than 0.5 are considered

strong ties,18 where 36% of edges are strong ties in the

this network. By performing ND and BND algorithms,

the edges will be re-weighted. The comparison between

ND and BND is made on their abilities for maintaining

those strong ties because they are reliable. The correla-

tion coefficients between original and re-weighted

weights for the strong ties are 0.72 (BND) vs. 0.70 (ND).

The result suggests again that BND outperforms ND on

the robustness and is less likely to deteriorate the data

quality when the input matrix is reliable.

CONCLUSIONS

We have extended the ND theory to a general BND

model by introducing an odd-power expansion of the

network matrix. One advantage of the balanced ND is

that the odd-power extension does not have limit on the

eigenvalue range and, therefore, results in a closer

approximation to the true network.

For the first time, the BND model was used to

improve the residue–residue contact predictions of pro-

tein structures by recognizing and filtering the transitive

noise. The efficiency of BND was demonstrated by test-

ing with five protein residue–residue contact prediction

methods, including MI, MIp, DCA, gDCA, and PSICOV,

on the CASP9, CASP10, and PSICOV datasets. Signifi-

cant improvements can be achieved on both long- and

medium-range contacts after the application of the

BND-based filtering.

Data analysis of this study reveals that the contact

maps generated by co-evolution-based and machine

learning-based methods have different transitive effects

and should be treated in distinct ways. BND is most effi-

cient in improving the co-evolution-based contact pre-

dictions because the correlation matrix from MSAs can

induce inherent transition noise in the contact

Figure 8
Comparison of the BND-enhanced co-evolution methods with three state-of-the-art ab initio 3D structure prediction methods on the long-range

contact predictions. Only the precisions of the contacts with a sequence separation> 23 are presented.
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predictions. But, for the machine learning-based contact

predictions, because the pair-wise contacts were trained

independently, there are much less transitive

contaminations.

A further comparison was made on the sequence-

based contact prediction with the contact maps derived

from the ab initio folding simulations. The results

showed that the relative performance by the two

approaches is sensitive to the number of homologous

sequences available in the sequence databases, which, as

an essential factor, influences the usefulness of the

sequence-based contact predictions on the ab initio 3D

structure constructions.

Overall, the BND can be used as a general filtering

method to improve the accuracy of the co-evolution-

based contact prediction without additional central proc-

essing unit cost. The BND program is freely available at

http://www.csbio.sjtu.edu.cn/bioinf/BND/.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Jeffrey Brender and Dr.

Richard Jang for reading the manuscript.

REFERENCES

1. Di Lena P, Fariselli P, Margara L, Vassura M, Casadio R. Fast over-

lapping of protein contact maps by alignment of eigenvectors. Bio-

informatics 2010;26:2250–2258.

2. Yang J, Jang R, Zhang Y, Shen HB. High-accuracy prediction of

transmembrane inter-helix contacts and application to GPCR 3D

structure modeling. Bioinformatics 2013;29:2579–2587.

3. Wu S, Zhang Y. A comprehensive assessment of sequence-based and

template-based methods for protein contact prediction. Bioinfor-

matics 2008;24:924–931.

4. Vassura M, Margara L, Di Lena P, Medri F, Fariselli P, Casadio R.

Reconstruction of 3D structures from protein contact maps. IEEE/

ACM Trans Comput Biol Bioinform 2008;5:357–367.

5. Nugent T, Jones DT. Predicting transmembrane helix packing

arrangements using residue contacts and a force-directed algorithm.

PLoS Comput Biol 2010;6:e1000714.

6. Taylor WR, Jones DT, Sadowski MI. Protein topology from pre-

dicted residue contacts. Protein Sci 2012;21:299–305.

7. Gromiha MM, Selvaraj S. Inter-residue interactions in protein fold-

ing and stability. Prog Biophys Mol Biol 2004;86:235–277.

8. Schlessinger A, Punta M, Rost B. Natively unstructured regions in

proteins identified from contact predictions. Bioinformatics 2007;

23:2376–2384.

9. Izarzugaza JM, Vazquez M, del Pozo A, Valencia A. wKinMut: an

integrated tool for the analysis and interpretation of mutations in

human protein kinases. BMC Bioinformatics 2013;14:345.

10. G€obel U, Sander C, Schneider R, Valencia A. Correlated mutations

and residue contacts in proteins. Proteins 1994;18:309–317.

11. Olmea O, Valencia A. Improving contact predictions by the combi-

nation of correlated mutations and other sources of sequence infor-

mation. Fold Des 1997;2:S25–S32.

12. de Juan D, Pazos F, Valencia A. Emerging methods in protein co-

evolution. Nat Rev Genet 2013;14:249–261.

13. Berenger F, Zhou Y, Shrestha R, Zhang KY. Entropy-accelerated

exact clustering of protein decoys. Bioinformatics 2011;27:939–945.

14. Berenger F, Shrestha R, Zhou Y, Simoncini D, Zhang KY. Durandal:

fast exact clustering of protein decoys. J Comput Chem 2012;33:

471–474.

15. Kajan L, Hopf TA, Kalas M, Marks DS, Rost B. FreeContact: fast

and free software for protein contact prediction from residue co-

evolution. BMC Bioinformatics 2014;15:85.

16. Chiu DK, Kolodziejczak T. Inferring consensus structure from

nucleic acid sequences. Comput Appl Biosci 1991;7:347–352.

17. Dunn SD, Wahl LM, Gloor GB. Mutual information without the

influence of phylogeny or entropy dramatically improves residue

contact prediction. Bioinformatics 2008;24:333–340.

18. Feizi S, Marbach D, Medard M, Kellis M. Network deconvolution as

a general method to distinguish direct dependencies in networks.

Nat Biotechnol 2013;31:726–733.

19. Jones DT, Buchan DW, Cozzetto D, Pontil M. PSICOV: precise

structural contact prediction using sparse inverse covariance estima-

tion on large multiple sequence alignments. Bioinformatics 2012;28:

184–190.

20. Morcos F, Pagnani A, Lunt B, Bertolino A, Marks DS, Sander C,

Zecchina R, Onuchic JN, Hwa T, Weigt M. Direct-coupling analysis

of residue coevolution captures native contacts across many protein

families. Proc Natl Acad Sci USA 2011;108:E1293–E1301.

21. Baldassi C, Zamparo M, Feinauer C, Procaccini A, Zecchina R,

Weigt M, Pagnani A. Fast and accurate multivariate Gaussian mod-

eling of protein families: predicting residue contacts and protein-

interaction partners. PloS One 2014;9:e92721.

22. Ezkurdia I, Grana O, Izarzugaza JM, Tress ML. Assessment of

domain boundary predictions and the prediction of intramolecular

contacts in CASP8. Proteins 2009;77(S9):196–209.

23. Wigner EP. Random matrices in physics. SIAM Rev 1967;9:1–23.

24. Monastyrskyy B, D’Andrea D, Fidelis K, Tramontano A,

Kryshtafovych A. Evaluation of residue-residue contact prediction in

CASP10. Proteins 2014;82(Suppl 2):138–153.

25. Karthikraja V, Suresh A, Lulu S, Kangueane U, Kangueane P. Types

of interfaces for homodimer folding and binding. Bioinformation

2009;4:101.

26. Kinch L, Yong Shi S, Cong Q, Cheng H, Liao Y, Grishin NV. CASP9

assessment of free modeling target predictions. Proteins 2011;

79(Suppl 10):59–73.

27. Tai CH, Bai H, Taylor TJ, Lee B. Assessment of template-free mod-

eling in CASP10 and ROLL. Proteins 2013;82(Suppl 2):57–83.

28. Xu D, Zhang Y. Ab initio protein structure assembly using continu-

ous structure fragments and optimized knowledge-based force field.

Proteins 2012;80:1715–1735.

29. , Zhang Y. ITASSER server for protein 3D structure prediction.

BMC Bioinformatics 2008;9:40.

30. Roy A, Kucukural A, Zhang Y. ITASSER: a unified platform for

automated protein structure and function prediction. Nat Protocols

2010;5:725–738.

31. Roy A, Yang J, Zhang Y. COFACTOR: an accurate comparative algo-

rithm for structure-based protein function annotation. Nucleic

Acids Res 2012;40(Web Server issue):W471–W477.

32. Zhang J, Wang Q, Barz B, He Z, Kosztin I, Shang Y, Xu D.

MUFOLD: a new solution for protein 3D structure prediction. Pro-

teins 2010;78:1137–1152.

33. Cheng J, Baldi P. Improved residue contact prediction using support

vector machines and a large feature set. BMC Bioinformatics 2007;

8:113.

34. Tegge AN, Wang Z, Eickholt J, Cheng J. NNcon: improved protein

contact map prediction using 2D-recursive neural networks. Nucleic

Acids Res 2009;37(Web Server issue):W515–W518.

35. Marbach D, Costello JC, K€uffner R, Vega NM, Prill RJ, Camacho

DM, Allison KR, Kellis M, Collins JJ, Stolovitzky G. Wisdom of

crowds for robust gene network inference. Nat Methods 2012;9:796–

804.

36. Newman ME. Scientific collaboration networks. II. Shortest paths,

weighted networks, and centrality. Phys Rev E 2001;64:016132.

H.-P. Sun et al.

496 PROTEINS

http://www.csbio.sjtu.edu.cn/bioinf/BND/

	l

