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Abstract— In this paper we study the ingress and egress
of pedestrians and vehicles in a parking lot. We show how
local maneuvers executed by agents permit them to create
trajectories in constrained environments, and to resolve the
deadlocks between them in mixed-flow scenarios. We utilize
a roadmap-based approach which allows us to map complex
environments and generate heuristic local paths that are feasible
for both pedestrians and vehicles. Finally, we examine the effect
that some agent-behavioral parameters have on parking lot
ingress and egress.

I. INTRODUCTION

Many people simultaneously arrive and leave an environ-

ment every day all over the world [1]. Moving in a crowded

space can be a source of stress for those involved, time con-

suming if there are many bottlenecks, and dangerous if some

basic rules and restrictions are not followed [2], [3]. Being

able to accurately simulate such a scenario would allow a

designer to identify and solve problems in their conceived

worlds. For example, it might be found that drivers should

leave some minimum amount of space between neighboring

vehicles or always allow someone backing out to have right

of way. In another case, pedestrians on foot should perhaps

stick to paths away from the aisles of a parking lot so that

incoming and outgoing traffic is not blocked. We will refer to

these situations where agents are arriving and leaving an area

under normal conditions as ingress and egress, respectively.

To adequately support egress/ingress simulations, we uti-

lize local maneuvers to resolve conflicts between agents.

Our distributed approach to this scenario allows us to equip

agents with local maneuvers that can be applied in a local

area of the space without affecting or considering other

agents that are far away. This is an intuitive approach and

more scalable than a centralized approach that must consider

every agent. We explore both cooperative and individual

maneuvers with a focus on those needed to address local

motion requirements for vehicles in parking lots. An example

environment consisting of buildings and a parking lot is

shown in Figure 1.

The main contributions of this work include:

• A tunable model for ingress and egress behaviors in our

roadmap-based approach.
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Fig. 1: An actual environment from our college campus.

• Parking lot planning in complex structures with group-

ing and respecting agent dynamics.

• Maneuver planning within a parking structure.

In parking lots, mixed flows of vehicles occur often as drivers

identify different routes toward exits. As the drivers attempt

to plan their paths, they are restricted by vehicle dynamics

that must be respected as well as the presence of other vehicle

agents and nearby pedestrians. Our tunable approach can

model these higher level behaviors, factors that influence

agent perception, and encode restrictions on different types

of agent motion and dynamics. Another important factor

to consider is groupings amongst agents. Agents may be

statically grouped with one another, for example sharing a

vehicle. Dynamic groups of agents must also be considered

as local planning needs to be done, for example between

nearby vehicles. The local maneuvering strategies we utilize

allow us to model parking lot motions such as pulling out

and in and resolving deadlocks that occur as vehicles move

near one another. Our approach allows us to handle complex

environments respecting pedestrian and vehicle motion and

constraints.

The remainder of this paper is organized as follows. In

Section II we describe work that is related to our approach.

In Section III an overview of the important components of

our system is described, Section IV describes the vehicle

motion we consider, and in Section V the ingress and

egress behaviors are described. Local interactions are then

described in Section VI. Simulation results are presented in

Section VII.
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II. RELATED WORK

A number of issues are relevant when simulating agent

egress in virtual environments. Here we describe a few

of the most relevant ones, including modes of transporta-

tion considerations, environmental complexity, and collision

avoidance. As described below, there has been a lot of work

in virtual environments, some focused on evacuation and

planning in dynamic environments. Our work is informed

by and incorporates aspects of these approaches into a full

system for general ingress and egress planning with varying

agent types, addressing a broader range of problems.

This work has similarities to the approaches presented

in [3], [4]. In [3], a similar approach to the scenario we are

studying was presented at an airport parking lot. However,

they considered a cellular automata-based approach with

simplified agent dynamics. Movement is restricted in the

direction of the grid cell, and each cell can only hold one

vehicle at a time. They can capture elements of microscopic

simulations including following, lane changes, protected

turns and unprotected turns. Different types of steering

algorithms were presented in [4] for pedestrians to allow

them to choose the appropriate steering method depending

on the scenario, however they focused solely on pedestrian

agents. This included reactive steering and planned state-time

steering.

The complex relationship between different modes of

transportation is an issue in the full scale egress scenario.

In [1], the need to consider the vehicle aspect of actual evac-

uations where vehicle and pedestrian flows are considered

together is described. They claim that in an evacuation of an

area, pedestrians can vastly influence the overall evacuation

and prevent planned direction from optimizing movement.

An underlying independent graph-based model is used for

vehicles and pedestrians with the combined network used

to analyze conflicts. In this work, motion was considered

only on the graph which greatly simplifies actual motion

constraints.

A number of approaches for pedestrian-only navigation

have been studied. A survey focused on virtual crowds [5]

described many approaches and models that have been pro-

posed for crowd simulation. One approach attempted to sim-

ulate agent panic when evacuating simple environments [2].

An approach to find the optimal evacuation time in simple

2D environments is described in [6] where the occupants

have n possible exits and use an evacuation function to select

routes. The idea of different levels of agent knowledge and

planning ability is considered in [7]. In [8], a system is

developed for simulating the local motion and global way

finding behaviors of crowds moving in a natural manner

within dynamically changing virtual environments. They are

able to simulate levels of patience and pushing between

agents. Improvements on previous work, [2], were made

by considering factors that reduced shaking and vibration

caused by social forces models in densely crowded areas.

They also consider the challenge of avoiding bottlenecks.

These approaches focus on pedestrian motion and usually

only in basic two dimensional environments.

Physical factors are considered in [9], but the ability and

need to include social grouping is also described. There

are also known evacuation scenarios where agents have

vastly different traveling speeds which includes people with

disabilities [10] who may require evacuation in groups.

Another work that describes the need to consider grouping in

evacuation is [11], where depending on the population type,

agents may be either individuals or be considered familial

groups which may contain small children.

There has been some work focused on more complex

environments which are encountered in the real world.

Pedestrians evacuating a large stadium are shown in [12].

These agents operate on a simplified network graph of the

stadium and generally follow the agent ahead of them given

the constrained environment. Restricting motion within the

graph results in ignoring the actual motion constraints of

individual agents. Evacuation in high-rise buildings is shown

in [13] using a cellular automata approach. The environment

is discretized into grid-cells of free space or blocked space

and agents select evacuation routes based on finding a

path through unoccupied cells. They stated their limitations

as being factors such as the grid size, uneven usage of

stairwells, and their difficulty in simulating stairwells using

this approach. While these approaches are very interesting

given the complexity of the environment, the abstraction

of the problem results in a great deal of factors about the

environment being ignored.

There have been a number of approaches proposed where

nearby agents coordinate with one another. Some approaches

consider other nearby agents as velocity obstacles [14], [15].

This allows the agents to plan valid paths in very con-

strained environments while avoiding collisions with nearby

pedestrian agents. In a similar approach [16], all agents

use an optimization function to avoid congested areas by

minimizing energy usage.

III. OVERVIEW

In this section we describe essential components of our

system used to simulate ingress and egress scenarios. For

more detailed descriptions of our roadmap-based multi-agent

system approach for simulating group behavior we refer the

reader to our prior work [17], [18], [19]

Agents in these scenarios consist of pedestrians and vehi-

cles. Whereas pedestrians are modeled as holonomic agents

that can move more freely, vehicles are nonholonomic and

must obey dynamics restrictions. Each agent is also encoded

with its own set of environmental knowledge, including

semantically labelled areas and destinations as well as a vol-

ume of the environment that is mapped. All agents perceive

the world given their abilities which we encode by view

radius and angle values with the perception being updated

at each time step of the simulation. The behavior the agent

is executing dictates how the agent reacts throughout the

simulation. The behavior is responsible for using the agent’s

perceived information and knowledge of the environment to

determine a set of actions that the agent can take. The specific

behaviors used in this work are described in Section V.
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For pedestrians and vehicle agents we use a goal-based

force model to integrate an agent’s position along the path

it is following. The force is in the direction of the last sub-

goal along the path. Our vehicle force rule is similar to the

standard goal-based force rule but with added restrictions.

One restriction is that agents must stop if another agent is

within some predefined relative distance and angle to itself.

Another is a restriction on the agent’s maximum steering

angle to respect the agent’s minimum turning radius. A

third restriction is that an agent must reverse occasionally

to allow for more space to reach a subgoal along the global

path. Vehicles use this reactive steering unless a local path

(e.g., pull-in or pull-out) is required. Other forces we utilize

for pedestrians include avoidance forces between walls and

nearby agents.

We have the ability to encode both basic and com-

plex environments using our roadmap-based approach. The

roadmap encodes valid transitions between free regions in the

environment. Nodes in the roadmap represent free areas in

the environment, and transitions between nodes are allowed

if the edge connecting them also lies in the free space.

Node samples can be biased to be in certain portions of the

environment. For example, by pushing nodes near the medial

axis of the free space of the environment, we can emulate

lanes that are traversed by vehicles.

At each step of the simulation cycle, the agents execute

their behavior, attempt to move according to the planned

action, resolve their state in the environment, and evaluate.

This is the overall process that allows us to simulate agents

with any number of behaviors. In resolving the state of the

agent, we allow some amount of overlap between agents

before requiring that the state between agents be resolved.

IV. VEHICLE DYNAMICS

While our system can handle any type of vehicle motion,

for simplicity we consider a planar unicycle model whose

state x consists of its x-y position and heading angle θ, i.e.,

x = [x, y, θ].
The control vector u = [V, φ] consists of the linear velocity

V ∈ {−v, v} and steering angle φ ∈ (−π
2 , π

2 ). Note that v
corresponds to forward motion and −v to reverse motion.

When a vehicle applies steering angle φ, it will circum-

scribe a circle with radius r = l
sin(φ) , where l refers to

the length between the front and rear axle. Knowing this

turning radius r, we can derive the vehicle’s angular velocity:

ω = V r−1

Vehicle dynamics can be modelled as a system of ODEs:

ẋ = V cos (θ) (1)

ẏ = V sin (θ) (2)

θ̇ = ω = V sin(φ)/l (3)

The above formulation allows us to modify parameters such

as the velocity constant v, maximum steering angle φmax,

and wheelbase length l to model a variety of real world

vehicles. To update the system, we use Eulerian integration

with fixed timestep δ, yielding the update equations:

xk = xk−1 + δVk−1cos (θk−1) (4)

yk = yk−1 + δVk−1sin (θk−1) (5)

θk = θk−1 +
δVk−1

rk−1
(6)

V. INGRESS AND EGRESS BEHAVIOR

Our egress and evacuation behaviors have been described

in [17], [19], [18]. The egress behavior is dependent on the

exits and final destinations known to the agent. Using the

roadmap, the agent extracts a path that will guide it from

its current location through one of the known exits to a final

destination. Given the agent’s knowledge of the environment,

there may be many routes that exist. The agent evaluates

each route and selects the one with the lowest weight along

its edges, which in the most basic case is the shortest route.

The ingress behavior utilized here is required for simu-

lating normal conditions seen daily with some set of agents

arriving. An arriving agent will consider the known entrances

to the environment and the final destination when selecting a

route to the goal configuration. It is important to note that we

use the same behavior rule for both pedestrians and vehicles.

For vehicle agents, the final configuration is important, and

we utilize local maneuvers to enable the agent to reach it. In

our current implementation of ingress, an agent has a single

goal configuration. A more accurate behavior would allow

an agent to have multiple goals in mind when arriving or

even allow an agent to select a goal on the fly. We leave this

for future work.

The roadmap-based approach is extremely beneficial in

this type of scenario. It allows us to handle complex envi-

ronments such as multi-level buildings and parking lots. We

are able to bias sampling so that the majority of it is done

near the medial axis of the environment. In this way, an

agent can move through the environment near the center of

the lane. Lanes can be adjusted to the right or left depending

on the application (e.g., lanes in the US versus the UK). This

allows agents coming toward one another to pass by safely.

A time lapse of a simulation that uses this approach is shown

in Figure 3.

The ingress and egress of agents causes mixed flow.

We employ a stop-and-wait criteria among agents moving

near one another to identify a potential collision. Without

considering some of the local maneuvers (described next), a

queue of vehicles would form resulting in complete deadlock

and no flow in or out of the environment.

VI. RESOLVING LOCAL INTERACTIONS

In this work we consider a parking lot scenario where

vehicle-bound agents need to plan in a parking lot. While

methods for motion planning under dynamics constraints

certainly exist, many do not scale very well or fail to create

realistic and predictable paths. Frazzoli et. al [20] showed

that concatenating well-defined motion primitives facilitates

solving even complicated motion planning problems.

The key benefit to this method is that it allows the designer

to take advantage of a priori information about the given
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planning problem to shrink the solution space. A smaller

solution space begets targeted maneuvers that solve a small

class of motion planning problems for the agent quickly and

efficiently.

A. Maneuver Planning

For our application, traditional kinodynamic planners are

inadequate because we need to plan for many vehicles simul-

taneously on the order of a few milliseconds. We decided to

combine our reactive force-based controller with a priority-

based decoupled-planning approach in which agents would

plan in order of priority. Agents effect low-overhead reactive

behaviors until they reach a state at which they determine that

reactive planning is insufficient. At that point the prioritized

decoupled-planner is invoked to create a composite local plan

for multiple agents.

In the composite local plan, some agents will plan before

others, and later agents will treat preexisting agent plans

as time-varying obstacles. This formulation results in an

incrementally built composite local motion policy, Πcomp, for

all active agents that guarantees no collisions, but potentially

sacrifices some degree of completeness and optimality. In

practice, this heuristic planner is fast and creates good quality

paths when planning over short time windows.

The high level description of the Maneuver Planning

algorithm is described in Algorithm 1. The routine is given

an environment, E that describes the static obstacles, as well

as a list of agents A, that need to plan a maneuver. It also

receives starting configurations for agents, SA, as well as

goal positions GA. The planner randomly staggers the start

times of the agents. The staggered start strategy is a simple

and useful one for modelling yielding. Planning is decoupled

in that agents will only attempt to plan trajectories for them-

selves. It is prioritized by starting times; the agent scheduled

to begin planning first will attempt to plan its entire local

trajectory before any other agent, and agents that plan later

must not collide with the first one’s time-varying trajectory.

The subroutine ATTEMPTLOCALMANEUVER called by MA-

NEUVERSPLANNER is a stand-in for the local maneuvering

routine that will actually be called (PULLOUT, PULLIN,

DEADLOCK1, DEADLOCK2).

MANEUVERSPLANNER is convenient because it allows

for partial solutions. That is, if one agent is unable to

plan, the entire composite trajectory is not thrown out.

Instead, those agents that were unable to find collision-free

trajectories simply do not move during this planning interval,

but will try to plan again later.

Vital to all our strategies is the subroutine TRYTO-

PLAN(Environment E, TrajectoryPolicy Πcomp, Trajectory

Πi, Agent i, Controls u, TimeSteps t, Current Time

timestep) shown in Algorithm 2, which will attempt to ap-

pend additional states created using u over time interval t to

agent i’s current trajectory. The subroutine fails if an update

causes the agent to be in collision with an obstacle or another

agent at the current timestep. If it succeeds, the successful

plan is returned to the caller. The subroutine NEXTSTATE

applies the update equation to the current state to produce

Algorithm 1 MANEUVERSPLANNER

Input: E,A, SA, GA

Output: Πcomp

for Agent a ∈ A do

StartT imes.push back(a,RandInRange(0,max))
end for

// StartT imes is sorted by time

timestep← 0
Πcomp[timestep]← XA

for (Agenti, StartT imest) ∈ StartT imes do

trajectorySuccess← false
for (attempts← 0; attempts < maxAttempts
&& !trajectorySuccess; attempts← attempts+1)
do

trajectorySuccess←
ATTEMPTLOCALMANEUVER(E,Πcomp, i, st, GA[i])

end for

end for

the new state x′, and the subroutine ISVALID checks for

collision between x′ and obstacles in the environment, as

well as other agent states at time timestep in the local

composite trajectory Πcomp.

Algorithm 2 TRYTOPLAN

Input: E,Πcomp,Πi, i, u, t, timestep
Output: Πi

x← Πi[timestep]
for j = 1 to t do

x′ ← NEXTSTATE(x, u)
timestep = timestep+ 1
if ISVALID(E, x′,Πcomp, timestep) then

Πi.push back(x′)
else

return INV ALID
end if

x← x′

end for

return Πi

A similar subroutine to TRYPLAN called TRYTOPLAN-

TOWARDGOAL in which the agent greedily attempts to move

toward the goal assuming no obstacles. This subroutine is

useful not only as a basic naı̈ve movement strategy, but also

to guide an agent’s trajectory if it has used quasi-random

turning to set its heading in the vicinity of the goal.

B. Pull-Out

The Pull-Out maneuver, like all maneuvers, takes in a

description of the Environment, E, the current state of the

composite trajectory, Πcomp, and the current timestep. It

attempts to plan a trajectory out of a parking spot for agent

i. Upon success, it will update Πcomp to account for agent

i’s plan using the subroutine MERGETRAJECTORYWITH-

COMPOSITE. Any calls to TRYTOPLAN or TRYTOPLAN-

TOWARDGOAL that fail will cause the entire local maneuver
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to fail, returning control to MANEUVERSPLANNER, which

will try again for a preset number of attempts.

Algorithm 3 PULLOUT

Input: E,Πcomp, i, timestep, xgoal

Output: Πcomp

LocalTrajectory Πi

if |ANGLETOTURN(i, xgoal) ≤
π
2 | then

velocity ← v
else

velocity ← −v
end if

TAXISTRAIGHT(E,Πcomp,Πi, i, timestep, velocity, α)

TURNTOWARDGOAL(E,Πcomp,Πi, i, timestep, velocity, β)

if veloicty == −v then

TRYTOPLANTOWARDGOAL(E,Πcomp,Πi, i, γ, timestep)

end if

MERGETRAJECTORYWITHCOMPOSITE(Πcomp,Πi, i)

When an agent needs to exit a parking space, it assumes

other parked agents may be present near its flanks. It may

also assume that the goal configuration lies in the “aisle” of

the parking lot. The routine ANGLETOTURN computes the

angle between the agent’s heading and the goal position. We

assume that a goal position that would cause a forward turn

of more than π
2 is placed behind the agent such that it should

reverse out of the parking stall. This assumption allows us

to not need to track any parking-stall specific information in

the agent’s state space.

If the agent determines that it must pull forward, then

it first moves straight forward a short distance α using

the TAXISTRAIGHT routine, and then turns in the direction

of the goal position using TURNTOWARDGOAL as shown

in Figure 2(a). TURNTOWARDGOAL uses randomness in

the steering angle used to turn so that turns are wider

or narrower to potentially plan around unseen obstacles.

Generally speaking, all arcs that make up a maneuver are

tuned to be within some threshold that gives both an adequate

amount of randomness as well as good quality solutions.

Subroutines like TAXISTRAIGHT TURNTOWARDGOAL uti-

lize TRYTOPLAN to update Πi and the current timestep.

If the agent will attempt to reverse out of the space it

performs all the same maneuvering as a forward strategy,

but in reverse. After the reverse turn is completed though,

the agent attempts a short forward plan of length γ toward

the goal position like in Figure 2(b).

C. Pull-In

PULLIN is the only local maneuver where we attempt

to plan all the way to a goal configuration. The algorithm

is described in Algorithm 4. The configuration’s rotation,

however is assumed to be constrained to that of a vehicle

facing forward in the parking stall (i.e, it did not reverse

into it). This does not constrain the agent’s final rotation in

the stall, but rather instead provides useful information to the

planner.

Before we call the maneuver, we assume that the agent

has positioned itself to be in the aisle the parking spot is

located. A basic driving behavior is sufficient for taxiing the

agent until it is in a position such that the maneuver is valid.

In PULLIN, the goal configuration xgoal is a full config-

uration that not only specifies an (x, y) position but also a

rotation about the vertical axis, θ.

PULLIN first attempts to maneuver the agent such that

its heading constitutes a vector that is perpendicular to

the heading of the goal configuration using the TURNTO-

FACEPERPGOAL subroutine. Afterwards it chooses a turning

radius at which to turn into the parking stall. This radius

may be equivalent to the smallest turning radius the agent

is capable of, or something slightly larger (but less than

infinite). With this turning radius in mind, the agent taxis

forward toward the intersection point between a ray in the

direction of its heading and a ray from the goal position in the

opposite direction of the goal configuration’s heading using

the TAXIFORWARD subroutine. This subroutine will stop

planning r distance short of the intersection point between

the perpendicular rays, at which point the maneuver decides

whether to pull into the stall normally or in reverse.

The user can alter probability parameters that affect the

likelihood the agent pulls into the stall in a normal forward

manner as depicted in Figure 2(c), or attempts to reverse into

the stall as shown in Figures 2(d) and 2(e). PULLINFOR-

WARD will turn at the input turning radius until the agent

is in front of the goal configuration, and then simply plan

forward until the goal is reached. PULLINREVERSE1 causes

the agent to actually overshoot the parking stall, and then turn

backwards at the same turning radius as a forward pull-in.

PULLINREVERSE2 reverses the steering angle of the agent

from the PullInForward scenario to turn away from the goal

until it can reverse in a straight line into the stall.

Algorithm 4 PULLIN

Input: E,Πcomp, i, timestep, xgoal

Output: Πcomp

LocalTrajectory Πi

TURNTOFACEPERPGOAL(E,Πcomp, i, timestep, xgoal)
distToInt← RayIntersection(xgoal.position,
−xgoal.θ, i.position, i.θ)
r ← RandInRange(rmin + α, rmin)
TAXIFORWARD(E,Πcomp, i, timestep, xgoal, distToInt−r)

randNum← RandInRange(0, 1)
if randNum ≤ forwardProbability then

PULLINFORWARD(E,Πcomp, i, timestep, xgoal, r)
else

randNum← RandInRange(0, 1)
if randNum ≤ normalReverseProb then

PULLINREVERSE1(E,Πcomp, i, timestep, xgoal, r)
else

PULLINREVERSE2(E,Πcomp, i, timestep, xgoal, r)
end if

end if

MERGETRAJECTORYWITHCOMPOSITE(Πcomposit,Πi, i)
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D. Deadlock 1

When many car-like agents attempt to enter and exit a

parking lot simultaneously, deadlock situations occur where

two agents may not move toward their next goal without

causing collision. Such a situation calls for a resolution

planner that will allow the agents to avoid collision as well

as still be reasonably on course with their goal. In one very

common case, two agents are attempting to reach goals, each

with its goal behind the opposite agent. In such a situation,

one agent simply yielding to the other agent does not help

— both agents must plan together to resolve the deadlock.

A common rule in western countries to avoid deadlocks is

“stay to the right”. The Deadlock1 local maneuver described

by Algorithm 5 encodes this heuristic to an extent.

DEADLOCK1 first chooses how hard of a right hand turn

the agent should make. With a small input probability, the

agent will actually decide to turn left. After completing the

turn of arclength α, the agent plans forward a short distance

β, and then attempts a turn equal but opposite the initial turn.

Shortly thereafter the agent attempts another short forward

plan of length γ.

The algorithm is described graphically in Figure 2(f). The

DEADLOCK1 maneuver is intended to only resolve deadlocks

between pairs of agents, which we found to be the most

prominently occuring deadlock scenario.

Algorithm 5 DEADLOCK1

Input: E,Πcomp, i, timestep, xgoal

Output: Πcomp

LocalTrajectory Πi

randV al← RandInRange0, 1
if randV al ≤ rightTurnProbability then

TURNRIGHT(E,Πcomp,Πi, i, timestep, α)
else

TURNLEFT(E,Πcomp,Πi, i, timestep, α)
end if

ControlVector u
TAXIFORWARD(E,Πcomp, i, timestep, xgoal, β)
if randV al ≤ rightTurnProbability then

TURNLEFT(E,Πcomp,Πi, i, timestep, α)
else

TURNRIGHT(E,Πcomp,Πi, i, timestep, α)
end if

TAXIFORWARD(E,Πcomp, i, timestep, xgoal, γ)
MERGETRAJECTORYWITHCOMPOSITE(Πcomp,Πi, i)

E. Deadlock 2

Another common deadlock situation occurs when two

agents’ paths toward their goals are intersecting, and the

agents happen to arrive at the intersection point at nearly

the same time. Fortunately, this situation can be solved via

one agent yielding to the other. We add some randomness

to the maneuver by randomly choosing who should yield as

well as varying the evasive steering angle.

(a) Pulling out forward (b) Pulling out reverse

(c) Pulling in forward (d) Pulling in - reverse 1

(e) Pulling in - reverse 2 (f) Deadlock 1

Fig. 2: Visual depiction of local maneuvers

F. Combining Local and Global Trajectories

In the previous section we used the subroutine MER-

GETRAJECTORYWITHCOMPOSITE, which we explained

merged an agent’s locally planned trajectory with a com-

posite trajectory. The composite trajectory Πcomp can be

considered a 2D matrix where rows consist of individual

trajectories and columns are composite configurations for

individual timesteps, as shown in Table I. The bold con-

figurations in a row indicate those at which the agent started

and completed planning, respectively.

At problem start, this matrix only contains a single column

containing start configurations for each agent. If all agents

planned trajectories of identical duration and began at the

same time, then the matrix would always remain consistent

and MERGETRAJECTORYWITHCOMPOSITE would simply

consist of replacing an entire row in the composite trajectory.

In reality, though, agents can begin and finish planning at any

time. Our only guarantee is that agents with earlier starting

times will plan their trajectories first.

For data consistency when creating a local trajectory Πi

we must account for the possibility that it extends beyond

the planning interval for some higher-priority trajectory Πj .

For example, consider the relationship between ΠA and ΠB

in Table I. Agent B begins planning one timestep after A
completes. When B wishes to perform a collision check

against the time-varying trajectory of A it assumes that A
simply stopped moving after completing its local maneuver

– we do not perform any guessing about or extending of ΠA.

We also assume that A remains stationary for the duration of

ΠB . B’s planned trajectory may therefore be invalid against

what A may potentially do after control exits the local

maneuvers planner, and the maneuvers planner may need to

be called again for B. Because agent A has a higher priority

than B, its assumption that B would remain stationary during

the creation of ΠA is valid; ΠB must consider ΠA an obstacle
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Fig. 3: An example scenario where agents exit and park in

a parking lot

but not vice-versa.

TABLE I: Sample composite trajectory for three agents

Time 0 1 2 3 4 5 6

ΠA A0 A1 A2 A2 A2 A2 A2

ΠB B0 B0 B0 B1 B2 B3 B4

ΠC C0 C0 C0 C0 C1 C2

VII. SIMULATION RESULTS

The example scenario we study for comparison consists

of a building containing pedestrian agents and a two level

parking lot, shown in Figure 3. Some vehicles are initially

in the parking lot with agents in the building leaving to

their vehicles. Another set of vehicles are arriving. We

use this environment because it represents a very complex

planning problem and it allows us to highlight some of the

motion strategies we propose in these ingress and egress

scenarios. We have successfully applied our techniques to

achieve ingress and egress with collision avoidance in this

scenario. We initialize the problem with 25 pedestrian agents,

30 parked vehicles, and 10 vehicles arriving, with a single

pedestrian assigned to each vehicle. The vehicles have prede-

fined initial and goal locations in the parking structure. The

best representation of our work which shows planning in

complex structures, respecting agent dynamics, groupings of

agents, and necessary local maneuvers is through our anima-

tions. Along with the supplied video, additional simulation

results can be found on our webpage:

http://parasol.tamu.edu/groups/amatogroup/research/flock/.

A. Parameters Influencing Scenario

There are a number of agent and behavioral parameters

that will affect the overall outcome of a scenario. These

parameters would allow us to encode those observed from ac-

tual drivers (if the values were available) in order to simulate

a more realistic scene. They would also allow a user to model

scenarios involving self driving cars as they may eventually

become mainstream. One of the parameters that influences

the agents’ ability to plan successfully is the amount of time

it will wait before attempting to resolve a deadlock (WT). A

low wait time represents less patient agents while agents with

a higher wait time can be considered more patient. The view

radius (VR) parameter dictates the level of environmental

knowledge the agent uses when generating locally planned

paths. Agents with a very low view radius will only consider

their local area in the planning process while agents with a

higher view radius will consider more local agents in the

planning process. Additionally, vehicle agents only attempt

to plan out of a parking spot if the number of vehicles moving

nearby is less than a predefined number; in the experiments

this is set to one.

B. Tuning Scenario

Results for this scenario are shown in Table II. Given the

deadlock wait time and view radius for vehicle agents, we

show the success rate (SR) of the scenario where all agents

reach their goal locations, the time (in time steps) for a

scenario to complete, and the attempt and success rate of

each of the local strategies for vehicle motion.

It is important for agents to consider the appropriate

amount of local information when creating local paths. This

was evident for agents with a view radius of 25 where the

agents would often plan local paths that were correct given

this local information, but when following the local path

would cause them to reach unresolvable deadlock with agents

not in the previous planning area. In these cases the agents

had low success rates.

Once an agent has generated a local path, it followed the

path until completion or collision with nearby vehicle agents

was imminent. If a collision is detected, the colliding agents

were reset to their last valid configurations.

As the view radius increases for vehicle agents, the overall

success rate of completing the scenarios also increases. This

is due to the agents including more local information when

generating a local path, and waiting longer if they detect too

many nearby moving vehicles. Increasing the view radius

also results in longer times for the scenario to complete.

Larger view radius values also result in more successful pull-

out rates and less need for deadlock resolution planning.

Increasing wait time also had an effect on the scenario

given a defined view radius (VR). For example, for VR 50,

increasing wait time from 40 to 200 time steps resulted in

better success rate, but when the wait time got too large the

success rate dropped back down. A similar drop in success

rate occurred for VR 150. This is due to a build up of agents

that need local resolution until the number of deadlocks

becomes too high or the deadlock resolution leads agents

to unresolvable states.

To successfully plan this type of scenario, the values given

to agents impact the overall success rate. In these scenarios,

agents with a view radius larger than 50 had better results.

To our knowledge, this type of approach has not been used

to study to ingress/egress while considering agent dynamics

and planning constraints on the agents.

C. Larger Scenarios

We have been able to simulate a larger scale parking lot

scene with ingress and egress behaviors, shown in Figure 1.

This is a simulated model of an actual parking lot and

buildings on our campus. Simulation results are presented in
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TABLE II: Simulation results reporting time for completed

scenario varying wait time (WT) and view radius (VR).

successful/attempts

WT VR SR Time PullOut PullIn Deadlock

40 25 0.0 - - - -
80 25 0.2 5990 32 (94%) 10 (100%) 102 (28%)
200 25 0.2 5974 32 (94%) 10 (100%) 40 (45%)
400 25 0.2 5483 31 (97%) 10 (100%) 9 (89%)

40 50 0.0 - - - -
80 50 0.8 6530 39 (77%) 11 (91%) 28 (98%)
200 50 1.0 6609 35 (86%) 29 (34%) 12 (97%)
400 50 0.8 7236 36 (84%) 60 (17%) 18 (71%)

40 100 0.8 9934 32 (94%) 10 (100%) 5 (100%)
80 100 0.8 10,114 32 (94%) 10 (100%) 3 (100%)
200 100 0.8 11,020 39 (77%) 40 (25%) 6 (94%)
400 100 1.0 10,806 31 (97%) 10 (100%) 5 (90%)

40 150 1.0 17,145 30 (100%) 35 (29%) 3 (100%)
80 150 1.0 17,180 30 (100%) 10 (100%) 1 (100%)
200 150 1.0 17,142 30 (100%) 10 (100%) 5 (78%)
400 150 0.8 18,340 30 (100%) 10 (100%) 1 (100%)

Fig. 4: An actual environment with a parking garage replac-

ing the previous parking lot.

our animations. This represents a larger environmental model

in the size of the area. Our roadmap-based approach scales

well as do the resulting motions. We have also explored

a parking garage structure, shown in Figure 4, that could

replace the lot shown in Figure 1. This type of planning

could allow an urban designer to see the effect of higher

capacity of pedestrians and vehicles and issues that might

arise in expanding an area.

VIII. CONCLUSION

In this paper, we proposed a framework for improving

the overall motion in environments that include parking lots

consisting of pedestrians and vehicles arriving and leaving.

We identified a number of local motion maneuvers that could

be applied in such a scenario to improve agent motion and

resolve deadlocks that occur. Our system can be beneficial

to planners who design parking lots and urban areas. These

tools may be applied to identify bottleneck situations that

may occur during the design process, and propose strategies

to alleviate them in a post-occupancy setting. This system

represents a complex simulation system that accounts for

dependent motion between multi-modal agents. In the future,

we could build upon our library of maneuvers, and more

tightly integrate our local motion planner with the agent

executing the plan.
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