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Abstract

Ant colony optimization (ACO) algorithm is a meta-heuristic and reinforcement learning algorithm, which has been widely
applied to solve various optimization problems. The key to improving the performance of ACO is to effectively resolve
the exploration/exploitation dilemma. Epsilon greedy is an important and widely applied policy-based exploration method
in reinforcement learning and has also been employed to improve ACO algorithms as the pseudo-stochastic mechanism.
Levy flight is based on Levy distribution and helps to balance searching space and speed for global optimization. Taking
advantage of both epsilon greedy and Levy flight, a greedy–Levy ACO incorporating these two approaches is proposed
to solve complicated combinatorial optimization problems. Specifically, it is implemented on the top of max–min ACO to
solve the traveling salesman problem (TSP) problems. According to the computational experiments using standard TSPLIB
instances, greedy–Levy ACO outperforms max–min ACO and other latest TSP solvers, which demonstrates the effectiveness
of the proposed methodology.

Keywords Ant colony optimization · Epsilon greedy · Levy flight · Levy distribution

Introduction

Ant colony optimization (ACO) algorithm is a meta-heuristic
algorithm based on the ants’ foraging behaviour. ACO algo-
rithm was first proposed in Dorigos doctoral dissertation [11]
and more details of this algorithm were provided in paper
[14]. The ACO implementation to solve the traveling sales-
man problem (TSP) and a survey of other ACO applications
were presented in paper [12].

Since the birth of the ACO algorithm, there were many
researchers conducted in-depth studies and proposed vari-
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ous improved versions. For instance, some variants of ACO
such as elite ant colony algorithm [14], rank-based ant colony
algorithm [6], max–min ant colony optimization algorithms
[42] and ant colony system algorithm [12] were developed.
These improved ACOs focused on either selecting which
best solutions for pheromone updates or improving the can-
didate selection mechanism. Furthermore, ACO algorithm
was applied not only for solving TSP [1,12,17,28,48] but
also for other optimization problems such as vehicle rout-
ing problem (VRP) [5,18,33,38,39,53], quadratic assignment
problem (QAP) [9,19], and job-shop scheduling problem
(JSP) [24,25,54].

In the latest ACO survey papers [13,29], the authors
stated that the most current research activities in this area
were focusing on (1) incorporating ACO with other meta-
heuristics such as simulate annealing [3,31,32], genetic
algorithm [8], and tabu search [15], particle swarm opti-
mization [21,30], and (2) various applications of ACO.
Although there are many theoretical studies on the conver-
gence [4,22,41], runtime and parameter tuning [10,34,43,55]
for ACO, few improved ACO was proposed after the year
2006. Max–min ACO and ant colony system are still state-of-
the-art ACOs according to Dorigo and Sttzle’s survey paper
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Fig. 1 ACO prototype (left) and reinforcement learning diagram (right)

in 2019 [13], so max–min ACO is selected in the benchmark
of this paper.

ACO is a kind of reinforcement learning algorithm [12,
16]. In Fig. 1, the ants, pheromone, road network in ACO
are equivalent to the agents, reward, environment in Rein-
forcement Learning. “One of the challenges that arise in
reinforcement learning, and not in other kinds of learning,
is the trade-off between exploration and exploitation” [44].
The proposed greedy–Levy ACO is designed to resolve the
exploration/exploitation dilemma.

In reinforcement learning, important exploration strate-
gies include epsilon greedy (ǫ-greedy) and Boltzmann explo-
ration (Softmax) policies [44]. The ǫ-greedy policy adopts
the current best selection from candidates with the probabil-
ity of ǫ, and a random selection with the probability of 1− ǫ.
Ant colony system (ACS) algorithm employs the ǫ-greedy
policy and achieves better performance [12]. Greedy–Levy
ACO integrates ǫ-greedy policy and employs the Levy flight
mechanism attempting to improve the ǫ-greedy policy fur-
ther.

In swarm intelligence and evolutionary computation, local
search focuses on the feasible neighborhood space of the cur-
rent solution and seeks better solutions. For a local search,
there is no guarantee to obtain a global optimum. Global
search tries to explore all feasible solutions in the solu-
tion space to achieve the global optimum; however, it is
quite time-consuming if not impossible. Combing global
and local search is an important research method for swarm
intelligence and evolutionary computation [20,35,36,47].
In this paper, the proposed algorithm attempts to balance
global and local search by applying epsilon greedy and Levy
flight in ACO so that better solutions can be found more
efficiently.

The random mechanism is embedded in ACO algorithms,
and the probability distribution for choosing the next node
to be visited plays a key role in solving a TSP. Among the
continuous distributions, one attracting our attention has the
property called fat tailed or heavy tailed, which means the
tail of this distribution is thicker than others such as normal
or exponential distribution. In a fat-tailed distribution case,
the tail portion will have a higher probability to be chosen
by ACO algorithms for the diversity purpose. Furthermore,
the increase in diversity of solutions would be more likely
to find an optimal solution. Specifically, Levy distribution
possesses the fat-tailed feature and it may help to deliver
diversified solutions efficiently.

Levy flight [40] is a type of random walking pattern
conforming to Levy distribution named after the French
mathematician Paul Levy. The step length of Levy flight fol-
lows the fat-tailed distribution. Steps have isotropic random
directions when walking in a multi-dimensional space. Many
animals’ foraging movements have Levy flight features, e.g.,
they spend most feeding time around a current food source,
and occasionally need long-distance travel to find the next
food source efficiently [45,46]. Levy flight has also been
applied to improve other meta-heuristic algorithms such as
particle swarm optimization (PSO) [23,26,50], artificial bee
colony algorithm [2], cuckoo search algorithm [51,52], etc.
Levy flight mechanism has been employed in spatial search
approaches, i.e. PSO and cuckoo search algorithm, but can-
not directly be applied in ACO without any special design.

In this paper, both ǫ-greedy policy and Levy flight
approaches are employed in the proposed greedy–Levy ACO
aiming to improve searching speed and efficiency and resolve
the exploration/exploitation dilemma.
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Fig. 2 Selection probability of
sorted candidate nodes for a
instance with 100 nodes

Methods

Candidate selectionmechanism in ACO

ACO algorithm consists of three major steps including con-
structing a solution, optional daemon actions, and pheromone
updates. Constructing a solution means to find feasible solu-
tions regarding a specific problem. Daemon actions are some
optional operations, i.e., certain local search to improve cur-
rent solution quality. Updating pheromone according to the
solution quality is important for fast convergence and guiding
the upcoming ants to seek better solutions in ACO.

Most ACOs employ a uniform-distribution-based random
number between 0 and 1 as the probability to select one of
the candidates when constructing a feasible solution. In the
following discussions, a candidate means a node to be vis-
ited by an ant at a certain stage when solving a TSP, and the
probability formula to select the next node from candidates is
listed in formula (1); the parameter τ represents pheromone
value and η represents the attractiveness which in most occa-
sions is the reciprocal of edge length between node i and j ,
α and β are exponents for τ and η, respectively.

Pi j =

{

(τi j )
α(ηi j )

β

∑

(τis )
α(ηis )

β , j, s ∈ allowed

0, otherwise
. (1)

The selection probabilities for candidates are exponen-
tially distributed due to the power function of attractiveness
η in formula (1). The list of candidates sorted in descending
order of their selection probabilities is called candidate list

in the following discussions. The selection probability for a
candidate declines quickly with the decreasing of its attrac-
tiveness and close to zero if it is not located in the front part of
the candidate list. Figure 2 depicts the selection probabilities
computed for 5 nodes in the candidate list of a TSP instance

with 100 nodes, where the x-axis represents indices of nodes
in the candidate list. Since nodes are sorted in descending
order of their selection probabilities, a node with a smaller
index means its selection probability is relatively higher than
those nodes with greater indices. Selection probabilities of
most nodes are less than 1% in Fig. 2 which means they
almost have no chance to be chosen. This limits the selection
for candidates who have a lower probability to be selected
and compromise the exploration of solution spaces. The pur-
pose of this paper is to improve the exploration strategy and,
therefore, improves the diversity of solutions for achieving a
better solution faster.

�-Greedy policy

ACO is one type of reinforcement learning algorithm [12,16].
The ǫ-greedy and Softmax policies are important exploration
strategies in reinforcement learning [44]. The ǫ-greedy pol-
icy defines the policy of the selection probability p in formula
(2), which focuses on the exploitation with a probability of ǫ

by using the best candidate while conducting the exploration
with a probability of 1 − ǫ by applying Pi j defined in for-
mula (1). The ǫ-greedy policy balances the exploration and
exploitation well via parameter ǫ and is widely employed
in many artificial intelligent algorithms [35–37,49]. The ǫ-
greedy policy is also adopted in an improved ACO named ant
colony system (ACS) as the pseudo-stochastic mechanism
[12]. The original ǫ-greedy policy uses uniform distribution
to select a candidate in the case of 1 − ǫ. Levy flight mech-
anism will be employed to improve the case of 1 − ǫ in this
paper.

p =

{

arg max{(τi j )
α(ηi j )

β}, if p ≤ ǫ

Pi j , otherwise
. (2)
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Fig. 3 Normal vs Levy
distribution (left) and Levy
flight vs Brownian walk (right)

Levy flight and Levy distribution

The left part of Fig. 3 shows the difference between Levy,
normal and Cauchy distributions. Levy distribution is a
fat-tailed one in which possibility values at the tail of its
curve is larger than other distributions. The right part of
Fig. 3 from paper [45] depicts the Brownian motion upon
uniform distribution and Levy flight following Levy dis-
tribution. The search area covered by Levy flight is much
larger than the one by Brownian motion within the same
1000 steps. Part b in the right part of Fig. 3 illustrates
the detailed trajectory of corresponding Brownian motion
bouncing mainly around the current spot with a step length
of 1. In Levy flight, flying distance is defined as the
step length in this paper and is sometimes greater than
1.

The standard Levy distribution is given in formula (3):

S =

{

μ

ν|1/β , if S > 1

1, else
, μ ∼ N (0, σ 2

μ), ν ∼ N (0, σ 2
ν ).

(3)

Formula (3) illustrates how the step length S is com-
puted, which is the most important part of Levy flight.
Parameters μ and ν follow a normal distribution while β

is a fixed parameter. Step length is a non-negative random
number following Levy distribution and is associated with
the direction that is uniformly distributed in two- or three-
dimension depending on particular applications. There is no
direction needs to be considered when Levy flight is one-
dimensional. The step length will be applied as an altering
ratio of selection probability to choose a candidate in greedy–
Levy ACO.

Integration of epsilon greedy and Levy flight
mechanism

Computation of original Levy flight using formula (3) is com-
plicated and cannot directly be employed in ACO. In the
proposed greedy–Levy ACO, a Levy flight conversion for-
mula is designed for candidate selection mechanism using
formula (6).

Formula (4) is an improved version of formula (3), two
normal distribution-based random numbers μ and ν are
required in the latter while only one uniform distribution-
based random variable PLevy is required in the former to
reduce computational cost. Altering ratio A and Levy flight
threshold Pthreshold are fixed parameters in formula (4). For-
mula (5) is specially designed to ensure that the altered
selection probability still ranges between 0 and 1. For-
mula (6) is derived by combining formulas (4) and (5).

Snew =

{

1
A

×
1−Pthreshold

1−Plevy
, if Snew ≥ 1

1, else,
(4)

1 − Pnew =
1

Snew
× (1 − Pnow), (5)

Pnew =

{

1 − A ×
1−Plevy

1−Pthreshold × (1 − Pnow), if Plevy ≥ Pthreshold

Pnow, else,

(6)

– Snew: new step length for Levy flight, Snew ≥ 1;
– A: altering ratio for Levy flight, A ≥ 0;
– Pthreshold: parameter for Levy flight threshold, 0 <

Pthreshold < 1;
– Plevy: probability for turning on/off Levy flight altering, a

uniform distribution based random number, 0 < Plevy <

1;
– Pnow: original selection probability before Levy flight

altering, a uniform distribution-based random number,
0 < Pnow < 1;
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– Pnew: final selection probability after Levy flight altering,
0 < Pnew < 1.

Formula (2) of ǫ-greedy presents two scenarios in select-
ing a candidate, (a) choosing the candidate with the maximum
probability when p ≤ ǫ, and (b) selecting a candidate ran-
domly when p > ǫ. Formula (7) is the core design in this
paper by replacing the random selection in formula (2) with
the Levy flight mechanism in formula (6).

Pi j =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

arg max{(τi j )
α(ηi j )

β}, if p ≤ ǫ

1 − A ×
1−Plevy

1−Pthreshold ×

(

1 −
(τi j )

α(ηi j )
β

∑

(τis )
α(ηis )

β

)

, if p > ǫ, Plevy ≥ Pthreshold

(τi j )
α(ηi j )

β

∑

(τis )
α(ηis )

β , else.

(7)

Since the candidate selection mechanism is the only dif-
ference between greedy–Levy ACO and max–min ACO, we
present the pseudocode of candidate selection mechanism for
them in Algorithms 1 and 2, respectively. We refer the inter-
esting reader to the max–min ACO paper [42] for details.

Algorithm 1 The candidate selection mechanism in greedy-
Levy ACO
1: Sort the nodes in the candidate list by their probabilities of being

selected
2: Remove the nodes cannot be selected in the candidate list, i.e. visited

node
3: Generate a uniform random number Pnow between 0 and 1
4: if Pnow ≤ ǫ then

5: return The next node with the max probability of being selected
from the candidate list.

6: else

7: Generate another uniform random number Plevy between 0 and 1

8: if Plevy ≥ Pthreshold then

9: Pnew = 1 − A ∗
1−Plevy

1−Pthreshold
∗ Pnow

10: else

11: Pnew = Pnow

12: end if

13: return The next node be selected using Pnew from the candidate
list

14: end if

Algorithm 2 The candidate selection mechanism in max–
min ACO
1: Generate a uniform random number Pnow between 0 and 1
2: return The next node be selected using Pnow from the candidate

list

Computational experiments

Data and environment settings

Computational experiments were carried out to benchmark
the proposed greedy–Levy ACO against max–min ACO and
the last TSP solvers.

The code of greedy–Levy ACO was implemented on
the top of publicly available source code http://www.aco-
metaheuristic.org/aco-code/ developed by Thomas Sttzle

(the author of max–min ACO). The source code covers max–
min ACO and other improved ACO algorithms including
basic ant system, elitist ACO, rank-based ACO, best–worst
ACO and ant colony system. Though TSP is a classic
and well-studied combinatorial problem, it is an NP-hard
problem used quite often for ACO performance bench-
mark. Furthermore, max–min ACO source code used in this
paper is merely designed for TSP and supports the stan-
dard TSPLIB instances with best-known solutions. Every
benchmark case ran 100 trials for each TSPLIB instance
considering the stochastic property of ACO algorithm, with
same parameter setting for all trials on the same com-
puter. Twelve instances including ch150, kroA200, kroB200,
gr202, ts225, tsp225, pr226, gr229, gil262, a280, pr299
and lin318 from TSPLIB https://www.iwr.uni-heidelberg.
de/groups/comopt/software/TSPLIB95/tsp were selected for
the benchmark. Parameters used both in max–min and
greedy–Levy ACOs were the same, specifically, the parame-
ter vector (pheromone evaporation rate, alpha, beta, popula-
tion size) was set to be (0.1, 1, 2, 50). The maximum running
time for each trial was 86,400 s attempting to obtain the best-
known solutions. Source code and running script of max–min
ACO and greedy–Levy ACO are available at https://github.
com/akeyliu/greedylevyacotsp/.

Both max–min ACO and greedy–Levy ACO in this paper
employ a pheromone re-initialization mechanism. It mon-
itors the solution procedure continuously and resets all
pheromones to their max value when it finds the pheromones
are concentrated on few edges and believes the solution
procedure is trapped at a local optimum. This mechanism
attempts to escape local optima and find the best-known
solution within predefined iterations and/or computational
time. It helps max–min ACO and greedy–Levy ACO to find
the best-known solutions for many small- or medium-scale
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TSPLIB instances including all ones used in this paper when
enough time and iterations are given. During the bench-
mark, both max–min ACO and greedy–Levy ACO employ
other improvement procedures including nearest neighbor
and the 3-opt local search. The iterations when the best-
known solutions are obtained were recorded for comparison
in the experiment as an algorithm performance metric, which
includes the iterations of 3-Opt local search which are the
major iterations in max–min ACO and greedy–Levy ACO.

The computing environment for the benchmark was Win-
dows 10 × 64, CPU 8 cores at 2.7 GHz, Memory 32 GB. The
programming language for the implementation is C to keep
consistent with max–min ACO algorithm.

Parameters tuning for greedy–Levy ACO

Larger epsilon greedy threshold, smaller Levy flight thresh-
old and Levy flight altering ratio will speed up the conver-
gence, however, easy to fall into local optimal solutions. On
the other hand, more exploration will help to seek more solu-
tion space and yet require prolonged searching time or more
iterations. It is critical to find the most reasonable parameter
setting to balance the exploration/exploitation and converge
to the optima faster.

Additional computational experiments were conducted
for tuning the parameters specific for greedy–Levy ACO,
namely epsilon greedy threshold ǫ, Levy flight threshold
Pthreshold and Levy flight altering ratio A in formula (7).
Twelve instances (ch150, kroA200, kroB200, gr202, ts225,
tsp225, pr226, gr229, gil262, a280, pr299 and lin318) were
chosen from the TSPLIB instances to perform parameters
tuning. For each parameter setting to be evaluated, 100 trials
were carried out, and a few metrics are applied to determine
the best parameter setting.

Parameter tuning

Parameter ǫ in formula (2) varying with value 0, 0.5, 0.6,
0.7, 0.8, 0.9 were evaluated. The larger the ǫ value is, the
less exploration is. Epsilon greedy will be switched off if ǫ

value is set to 0.
Parameter Levy flight threshold in formula (2) varying

from 0 to 1 with a step length of 0.05 was evaluated and
analyzed. The smaller Levy flight threshold is, the more
exploration is. Parameter Levy flight altering ratio in for-
mula (2) varying from 0 to 2 with a step length of 0.2 was
evaluated as well. The larger Levy flight altering ratio is, the
more exploration is. Levy flight will be switched off if Levy
flight threshold value is set to 0 or altering ratio is set to 0.

Greedy–Levy ACO degenerates to max–min ACO when
epsilon greedy and Levy flight are both switched off.

There were 726 parameter combinations for epsilon, Levy
flight threshold and altering ratio in the experiment. Each

Fig. 4 Average performance improvement percentage for parameter
tuning

parameter combination ran 100 trials for all instances and all
trials found the best-known solutions.

To measure the effectiveness of certain parameter set-
ting, the metrics called iteration improvement percentage was
defined as followed:

For the given set of parameters, let Nmm(i) be the aver-
age of iterations to find the best-known solution of the i th
instance in 100 trials for max–min ACO while Ngl(i) be the
one required for greedy–Levy ACO, then the average of iter-
ation improvement percentage over K instances is defined
as

∑K
i=1(1 − Ngl(i)/Nmm(i))/K , and K is 12 in our experi-

ment. It is conceivable that the higher the average iterations
improvement percentage is, the better the performance of
greedy–Levy ACO is for the given parameter setting.

The average of iteration improvement percentage for 726
parameter combinations is illustrated in Fig. 4. No. 609
parameter combination is the best one as shown in Fig. 4
where epsilon is 0.9, Levy flight threshold is 0 and altering
ratio is 0.4, and this parameter setting is employed for later
computational experiments in the following sections.

Benchmarks betweenmax–min ACO and
greedy–Levy ACO

The computational experiments were conducted by employ-
ing instances ch150, kroA200, kroB200, gr202, ts225,
tsp225, pr226, gr229, gil262, a280, pr299 and lin318 from
the TSPLIB, and the results using the suggested parameter
setting for greedy–Levy ACO and max–min ACO during the
experiments are plotted in Fig. 5.

The histograms in Fig. 5 depict the iterations where
the best-known solutions of the tested TSP instances are
obtained. The x-axis represents the experiment trials while
the y-axis indicates the iterations when the best-known solu-
tion is reached. The best-known solutions for all instances
were obtained in the experiment. By glancing at these his-
tograms, it appears that the required average of iterations to
reach the best-known solutions using greedy–Levy ACO is
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Fig. 5 Benchmark for 12
instances
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Table 1 Statistical testing (P

value) for the benchmark
analyses

Instance Wilcoxon Rank sums Mann–Whitney U

ch150 6.03E−04 *** 5.29E−03 ** 2.68E−03 **

a280 0.3173 0.9972 0.5

kroA200 0.2818 0.8523 0.4275

kroB200 0.1201 0.2096 0.1054

gr202 0.0112 * 0.0274 * 0.0138 *

pr226 3.04E−07 *** 3.92E−08 *** 2.00E−08 ***

ts225 3.09E−03 ** 1.35E−03 ** 6.81E−04 ***

tsp225 3.29E−03 ** 2.36E−03 ** 1.20E−03 **

gr229 2.86E−05 *** 4.35E−07 *** 2.21E−07 ***

pr299 1.02E−04 *** 6.12E−04 *** 3.10E−04 ***

gil262 3.12E−04 *** 1.13E−04 *** 5.74E−05 ***

lin318 9.53E−09 *** 1.05E−10 *** 5.37E−11 ***

P value: < 0.05*; < 0.01**; < 0.001***

Table 2 Benchmark for max–min ACO and greedy–Levy ACO

Instance Max–min ACO Greedy–Levy ACO Improvement percentage

Name Average iterations Iteration variance Average iterations Iteration variance Average iterations (%) Iteration variance (%)

ch150 1087.2 1160.61 731.33 522.8509 32.73 54.95

a280 4788.89 5565.808 4042.42 3094.291 15.59 44.41

kroA200 3546.18 2201.672 2921.12 833.6642 17.63 62.13

kroB200 5311.75 3320.334 3956.49 1210.959 25.51 63.53

gr202 37,367.48 39,292.75 21,829.34 27,124.36 41.58 30.97

pr226 35,757.25 38,332.23 6260.73 8624.176 82.49 77.50

ts225 11,380.65 7249.736 8343.69 5525.991 26.69 23.78

tsp225 5292.14 1514.43 4386.75 936.5603 17.11 38.16

gr229 38,1295.5 27,8537 12,9097.82 13,8805.4 66.14 50.17

pr299 31,672.3 20,896.26 20,279.83 13,403.4 35.97 35.86

gil262 31,992.94 27,604 18,980.36 15,854.17 40.67 42.57

lin318 99,586.9 80,655.82 21,902.39 17,059.07 78.01 78.85

Average 40.01 50.24

lower than max–min ACO. It may imply that greedy–Levy
ACO can achieve the best-known solutions faster than max–
min ACO does.

To validate the above statement statistically, three non-
parametric tests called Wilcoxon, rank sums and Mann–
Whitney U tests were applied to check if greedy–Levy
ACO and max–min ACO perform similarly. For each TSP
instance, the iterations of these two algorithms to reach the
best-known solutions for all 100 trials were input to the
function scipy.stats.wilcoxon(), scipy.stats.ranksums() and
scipy.stats.mannwhitneyu() in Python packages. The out-
comes are presented in Table 1. P value for a280 and
kroA200 is litter higher that means the performances of
the compared algorithms are not so differently statistical in
solving this instance because the iterations finding the best-
known solution is small (about 2000–6000 iterations). For

other instances, the performances of underlying algorithms
are significantly different since the associated P values are
less than 0.05 or even 0.001. Together with the histograms,
we conclude that greedy–Levy ACO can achieve best-known
solutions faster than max–min ACO.

To demonstrate that the proposed algorithm can indeed
reach the best-known solutions faster, further statistical anal-
yses are conducted upon the achieved results. In Table 2, the
computational results are listed for greedy–Levy ACO and
max–min ACO. The following metrics are applied to both
approaches:

– Average iterations: the average iterations to reach the
best-known solution which used to evaluate the perfor-
mance of the algorithm.
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Table 3 Benchmark for ant colony system and greedy–Levy ACO

Instance Ant colony system Greedy–Levy ACO Improvement percentage

Name Average iterations Iteration variance Average iterations Iteration variance Average iterations (%) Iteration variance (%)

ch150 1456.26 1250.36 664.38 507.6224 54.38 59.40

a280 4796.58 5291.796 3916.24 2814.883 18.35 46.81

kroA200 3401.82 1758.022 2977.34 928.4029 12.48 47.19

kroB200 4968.78 2680.551 4165.26 1412.987 16.17 47.29

gr202 41,052.22 42,848.12 25,744.6 34,003.09 37.29 20.64

pr226 43,402.3 45,222.89 6557.5 7231.195 84.89 84.01

ts225 11,328.6 7534.245 6576.96 4590.283 41.94 39.07

tsp225 5542.8 1473.737 4356.44 953.5582 21.40 35.30

gr229 34,5145 255,690.3 131,221.8 129,044.4 61.98 49.53

pr299 29,620.52 23,064.15 19,985.02 11,755.06 32.53 49.03

gil262 38,359.66 26,804.65 16,907.28 12,542.05 55.92 53.21

lin318 98,783.58 102,143.3 23,979.12 19,811.32 75.73 80.60

Average 42.76 51.01

Table 4 Iterations for greedy–Levy ACO to achieve the best-known solution

Trials berlin52 ch150 eil51 eil76 eil101 korA100 korB200 lin105 rat99 st70

1 135 711 142 505 1075 188 3976 188 307 139

2 155 512 136 515 599 176 4069 182 770 146

3 131 2079 133 383 1377 184 2391 203 758 160

4 141 1322 394 640 294 173 3549 190 445 285

5 139 508 883 654 303 164 2260 183 635 145

6 139 820 268 255 146 167 3187 197 805 144

7 137 1162 541 508 1062 353 4501 192 787 147

8 156 501 139 131 1078 354 3474 177 475 140

9 145 1044 133 400 932 174 2487 193 326 138

10 135 1047 134 270 1209 356 3609 198 314 144

11 136 1497 134 374 447 157 1097 181 786 145

12 148 1166 139 130 1047 332 2900 203 315 144

13 135 351 265 519 1509 182 2201 199 315 143

14 144 692 138 385 443 177 3915 213 787 138

15 141 670 141 466 297 185 225 204 160 135

16 145 168 140 251 636 334 2970 187 308 138

17 140 507 121 269 459 181 3018 198 475 413

18 145 1171 268 630 939 176 3279 201 1646 149

19 151 1138 136 521 896 351 2981 194 1214 152

20 139 827 135 381 1531 171 3174 185 646 141

Max iterations 156 2079 883 654 1531 356 4501 213 1646 413

Average iterations 141.85 894.65 226 409.35 813.95 226.75 2963.15 193.4 613.7 164.3

∗The bold number means achieve the best-known solution within 1000 iterations

– Iteration variance: the variance of iterations to reach the
best-known solution which applied to judge the stabiliza-
tion of the algorithm.

Table 2 also presents the improvement magnitude of
greedy–Levy ACO over max–min ACO for all tested TSP
instances concerning the above metrics. Taking the results
shown in Tables 1 and 2 into account, we may conclude that
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Table 5 Best solutions for
greedy–Levy ACO in 1000
iterations

Trials berlin52 ch150 eil51 eil76 eil101 korA100 korB200 lin105 rat99 st70

1 7542 6528 426 538 631 21,282 29,409 14,379 1211 675

2 7542 6528 426 538 629 21,282 29,451 14,379 1211 675

3 7542 6549 426 538 630 21,282 29,394 14,379 1211 675

4 7542 6533 426 538 629 21,282 29,492 14,379 1211 675

5 7542 6528 426 538 629 21,282 29,463 14,379 1211 675

6 7542 6528 426 538 629 21,282 29,486 14,379 1211 675

7 7542 6544 426 538 630 21,282 29,487 14379 1211 675

8 7542 6528 426 538 630 21,282 29,409 14,379 1211 675

9 7542 6533 426 538 629 21,282 29,446 14,379 1211 675

10 7542 6543 426 538 630 21,282 29,533 14,379 1211 675

11 7542 6533 426 538 629 21,282 29,417 14,379 1211 675

12 7542 6533 426 538 630 21,282 29,420 14,379 1211 675

13 7542 6528 426 538 632 21,282 29,451 14,379 1211 675

14 7542 6528 426 538 629 21,282 29,507 14,379 1211 675

15 7542 6528 426 538 629 21,282 29,368 14,379 1211 675

16 7542 6528 426 538 629 21,282 29,436 14379 1211 675

17 7542 6528 426 538 629 21,282 29,501 14,379 1211 675

18 7542 6543 426 538 629 21,282 29,550 14,379 1212 675

19 7542 6533 426 538 629 21,282 29,469 14,379 1212 675

20 7542 6528 426 538 631 21,282 29,478 14,379 1211 675

best 7542 6528 426 538 629 21,282 29,368 14,379 1211 675

Average 7542 6532.6 426 538 629.6 21,282 29,458.35 14,379 1211.1 675

Worst 7542 6549 426 538 632 21,282 29,550 14,379 1212 675

greedy–Levy logic does help to achieve best-known solutions
faster.

Ant colony system (ACS) is another state-of-the-art ACO
algorithm applied with epsilon greedy strategy [13]. The
result of the benchmark between ACS and greedy–Levy ACO
is presented in Table 3. The epsilon parameter for ACS is 0.9
which is same in greedy–Levy ACO. The performance of
greedy–Levy ACO was better than ACS from the benchmark.

Benchmarks against the latest TSP solver

To benchmark the proposed algorithm against state-of-the-art
TSP solvers developed based on ACO, PSO–ACO–3Opt [30]
and PACO–3Opt [21] that had been cited the most lately in
Google scholar are selected. The algorithms hybridize parti-
cle swarm optimization, ant colony optimization and 3-Opt.
The corresponding paper presented computational experi-
ments for a set of TSP instances, in which each instance
was solved with 20 trials and within max 1000 iterations per
trial to evaluate the performance. Specifically, the TSPLIB
instances berlin52, ch150, eil101, eil51, eil76, kroA100,
kroB200, lin105, rat99 and st70 were employed to perform
the corresponding computational experiments.

To conduct a fair comparison, the proposed greedy–Levy
ACO was applied to solve the same 10 instances mentioned

above, where the best-known solutions were obtained. For
each instance, the iterations to achieve the best-known solu-
tion for the corresponding 20 trials are listed in Table 4. The
best solutions found in 1000 iterations are presented in Table
5. Furthermore, 3-Opt in both greedy–Levy ACO and max–
min ACO were enabled.

PSO–ACO–3Opt and PACO–3Opt algorithm could not
reach all the best-known solutions within the given 1000
iterations according to the outcomes in papers [21,30]. The
details of the performance comparison between PSO–ACO–
3Opt/PACO–3Opt and greedy–Levy ACO within 1000 iter-
ations are presented in Table 6. Given 1000 iterations, the
proposed greedy–Levy ACO can achieve better solutions
comparing to PSO–ACO–3Opt/PACO–3Opt.

Conclusions

In this paper, the proposed greedy–Levy ACO algorithm
was developed on the top of max–min ACO by applying
ǫ-greedy policy and Levy flight mechanism. The parameters
of greedy–Levy ACO were tuned carefully using associated
instances. The computational experiments reveal the superi-
ority of the proposed greedy–Levy ACO. It is observed that
greedy–Levy ACO can reach the best-known solutions with
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fewer iterations comparing to max–min ACO algorithm (an
average 40.01% deduction in iterations and 50.24% deduc-
tion in iteration variance for all tested TSPLIB instances).
Further, other ACO researchers may be able to replicate the
experiments or improve their ACO algorithm by integrating
greedy–Levy mechanism based on the uploaded open-source
code.

For future research, we are planning to apply greedy–Levy
ACO to other optimization problems, i.e. rich VRP [7,27].

Acknowledgements This work was partially supported by the National
Natural Science Foundation of China under Grant number 41771410.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Ariyasingha I, Fernando T (2015) Performance analysis of the
multi-objective ant colony optimization algorithms for the trav-
eling salesman problem. Swarm and Evolutionary Computation
23:11–26
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