
Improving Ant Colony Optimization Performance
through Prediction of Best Termination Condition

M. Veluscek1, T. Kalganova1, P. Broomhead1

1 Electronic and Computer Engineering, School of Engineering and Design
Brunel University

Kingston Lane, Uxbridge, UB8 3PH, United Kingdom

Abstract— The Ant Colony System (ACS) is a well-known bio-
inspired optimization algorithm which has been successfully
applied to several NP-hard optimization problems, including
transportation network optimization. This paper introduces a
method to improve the computational time required by the
algorithm in finding high quality solutions. The purpose of the
method is to predict the best termination iteration for an unseen
instance by analyzing the performance of the optimization
process on solved instances. A fitness landscape analysis is used to
understand the behavior of the optimizer on all given instances. A
comprehensive set of features is presented to characterize
instances of the transportation network optimization problem.
This set of features is associated to the results of the fitness
landscape analysis through a machine learning-based approach,
so that the behavior of the optimization algorithm may be
predicted before the optimization start and the termination
iteration may be set accordingly. The proposed system has been
tested on a real-world transportation network optimization
problem and two randomly generated problems. The proposed
method has drastically reduced the computational times required
by the ACS in finding high quality solutions.

Keywords— Transportation Network Optimization, Ant Colony
Optimization, Termination Condition Adaptation, Hardness
Prediction, Instance Difficulty;

I. INTRODUCTION

In the past decade or so, meta-heuristics approaches have been
successfully applied to many NP-hard optimization problems.
These approaches are popular due to their adaptability and
application potential across differing problem domains. They
are known for the reduced effort involved in their application
and for their ability to find high-quality solutions to the most
complex of combinatorial optimization problems. Equally,
they are also known for their high computational complexity.
In this work, we address the task of improving the runtime
complexity of the Ant Colony System (ACS) when applied to
a real-world transportation network optimization problem. The
improvement is achieved by adopting a machine learning
approach. Given an unseen problem instance, the best
termination point for the optimization process is predicted by
analysing its behaviour on previously solved instances which
are the most similar to the current one.
This paper is structured as follow: in section II we explain the
motivations and analyse related work. In section III we present
the fitness landscape analysis used to gather information on

the optimizer behaviour. In section IV we define the features
used to characterize different problem instances. Two differing
class definitions are presented in the section. Such definitions
are based on knowledge from the fitness landscape analysis
and allow the setting of a termination criterion for a given
problem instance. In section V we present the results of the
optimization experiments carried out using the proposed
method. In section VI we draw the conclusions and discuss
future research directions.

II. MOTIVATIONS AND RELATED WORK

According to Arisha et al. [1] the most frequently adopted
approaches used when solving supply chain optimization
problems are gradient-based methods, metamodel-based
methods, statistical methods and random search /
metaheuristics. Arisha et al. [1] also discusses the limitations
of traditional techniques such as linear programming, integer
programming and mixed-integer programming when handling
the inherent interdependencies found in the current generation
of supply chain networks. A review conducted by Ogunbanwo
et al. [2] identified a trend towards the use of meta-heuristic
approaches as the solution basis for solving transportation
networks problems. The most common approaches include
(Multi Objective) Genetic Algorithm, Ant Colony
Optimization (ACO), and Swarm Particle Optimization. The
ACS is a variation of the ACO and is defined in Dorigo et al.
[3]. A successful application to the problem of transportation
network optimization may be found in Musa et al. [4].
In the context of Ant Colony System and Meta-heuristics
approaches, much work has been done in reducing the runtime
requirements of the methods. Typically, the most common
approaches either employ methods to reduce the search steps
and arrive more quickly at higher quality solutions or they
exploit parallelization / hardware acceleration techniques.
Tseng et al. [5] presented a novel method to generally speed
up the Ant Colony Optimization (ACO) for the Travelling
Salesman Problem (TSP), by reducing redundant steps in its
search. Pedemonte et al. [6] present a survey of recent
advances in the parallel implementation of Ant Colony
Optimization. In this work, we approached the problem of
runtime reduction by focusing on the optimal setting of
termination criteria to minimize the runtime required for a
given instance.

According to Dorigo et al. [7], for all meta-heuristics, there is
no general termination criterion. In practice, a number of rules
of thumb have been used: the maximum CPU time elapsed,
the maximum number of solutions generated, the percentage
deviation from an optimum lower/upper bound, and the
maximum number of iterations without improvement in
solution quality are examples of such rules [7]. Lv et al. [8]
analysed recent reviews of Ant Colony Optimization
applications with a view to answer the questions “how to
evaluate improvement?” and “what are the termination
conditions?”. However, their survey did not provide concrete
answers, they found that all termination criteria are described
with vague phrases, such as “no improvement is possible”, or
“termination conditions are met” [8]. More generally, Lv et al.
[8] considered some of the earlier fundamental work on meta-
heuristics without finding a consensus about termination
criteria. More recently, Zhang et al. [9] analysed the
approximate termination condition for the ACO applied to
TSP. They found that many of the termination condition are
only used in experimentation and are often too difficult or
uneconomic for deployment in solving practical problem [9].
The approach taken in this work learns from the behaviour of
the optimization process on previous problem instances in
setting the termination criteria. It was observed that in many
instances the optimization algorithm finds the best solution
early in its search and then stalls, continuing the search for
many more iterations without finding a better solution. This
phenomenon is referred to as the stalling effect, Stomeo et al.
[10] state: “The problem of stalling effect in fitness functions
is related to the non-improvement of the fitness values during
the evolutionary process”. Figure 1 shows an example of the
stalling effect. In this work we search for a relationship
between the problem characteristics and the performance of
the optimization process, with the intent of predicting how the
solver will perform on a given instance and set the termination
criteria to minimize the solver search time.
In the course of the paper, we will show how this method
answers the concerns raised by Lv et al. [8] and Zhang et al.
[9]. We will provide a definite procedure to evaluate
improvement and set proper termination conditions. Using
well-known machine learning algorithms for prediction and
existing and open source libraries for the implementation, the
difficulty of adoption of the proposed system is kept low,
making it economic for deployment in real-world application.
Complexity wise, both the learning and prediction steps do not
significantly affect the performances: the learning step, which
is required to be performed only once, is expected to be fast
due to the small number of features involved, and including
the prediction step into the optimization process will
significantly reduce the time requirements as the termination
criteria are dynamically set to the optimum of each instance.
Understanding the relationship that exists between the
problem instances and the optimization algorithm has led to
improvements in the optimization process. Smith-miles et al.
[11] used a knowledge discovery approach to seek insight into
the relationship between the Scheduling Problem structure and
the effectiveness of heuristics. Rules from a decision tree were

used to select the best heuristic from a portfolio. Similar work
has been undertaken in Smith-miles et al. [12] for the Travel
Salesman Problem. We present a similar approach where
instead of using the acquired knowledge to select the most
promising algorithm from a portfolio, we use it to improve the
performance of the current one.

III. FITNESS LANDSCAPE ANALYSIS

Fitness landscape analysis [13] provides a vivid metaphor of
the search space as perceived by an optimization process [14].
Metaphors of a landscape are commonly used to aid the
understanding of heuristic search methods when solving
combinatorial optimization problems. Furthermore, the
concept has been shown to be useful for understanding the
behaviour of combinatorial optimization algorithms, and can
help in predicting their performance [15].

Figure 1 – The stalling effect in fitness function analysis refers to the
phenomenon where the fitness values do not improve during most of the
optimization process. Source of the figure is Stomeo et al. [10].

Given a vector of variables x∈Rn and a vector of cost

coefficients c∈ Rn , a combinatorial optimization problem
may be defined as:

v¿
=min {cT x|Ax=b∧ x≥0 }, (0)

where A∈Rm×n is a matrix of coefficients, b∈Rm

is a vector of coefficients and v¿∈Rn is a vector of

assignments for the variables x such that the value of the

objective function cT x is minimum. The matrix A
and the vector b define the constraints over the decision
variables x and define the problem search space.
Therefore, an optimization problem is defined by the tuple
lp≔(c , A ,b) .

The fitness landscape of an optimization problem lp is the
tuple fl≔(S , f , d) , where

S (A ,b)= {v∈ Rn|Av=b } is the set of all possible

solutions, f :Rn⟶R is the fitness function defined as

f : v↦ cT v and d :Rn× Rn⟶ R is the distance
between two feasible solutions. In Evolutionary Computation,
for binary coded problems, the distance measure is usually the
Hamming distance between bit strings [15]. For problems
where the solution is a vector of real number, the Euclidean
distance may be applied.
Usually, the fitness landscape is interpreted as a graph
G={V , E } with vertex set V=S and edge set

E={(v , v ')∈S×S∨d (s , s ')=dmin} with dmin

denoting the minimum distance between two points in the
search space [15]. Such interpretation allows for effective
analysis and visualization of the search space. However, for
the purpose of this work, we are interested in analysing how
the search for the optimal solution evolves over time and in
predicting the best termination point based on instance
features. Let us define the search process or walk on a
landscape [16] as the t -tuple Γ=(v0, v1 ,…,v t−1)
being the sequence of visited solutions during the
search/optimization process. The fitness landscape analysis
adopted in this work is, therefore, the sequence of fitness
function evaluations at each iteration:

Φα=(f (v0) , f (v1) ,…, f (v t−1))
.

(0)

The performance of the search process may be measured as
the number of iterations required to find the optimal solution.
Let us define the speed of the search process and its
acceleration, respectively as the improvement of the best
known solution over the first one and the rate of change in the
speed. Given the iteration i∈(0, t) , the speed of the
optimization process for the tuple Φ is:

+¿→R
s :Z¿ ,

i↦ (Φ (i)−Φ(0))/ i ,

(0)

and the acceleration is:
+¿→R
a:Z¿ ,

i↦ (sΦ (i)−sΦ (0))/ i .

(0)

Such definitions of speed and acceleration describe the rate of
improvement of the best known solution at any given iteration.
Figure 2 shows an example of the result of this analysis.
As a variation, the fitness landscape analysis can be modified
to include the topology of the search space by considering the
mean pair-wise distance of visited solutions at any given
iteration. The updated definition of fitness landscape analysis
would be as follow:

Φβ=(p (0) , p (1) ,…, p (t−1))
.

(0)

where let p be the function that measure the mean pair-
wise distance of the visited solutions:

+¿→R
p :Z¿ ,

i↦
∑

k∈ [0, i]
∑
j∈¿

d (vk , v j)

i∗(i−1)/2
,

(0)

and consequently the standard deviation on the pair-wise
distance is:

+¿→R
psd :Z

¿ ,

i↦ √ ∑
k∈[0,i]

∑
j∈¿

(d (vk , v j)−p (vk))
2

i∗(i−1)/2
,

(0)

Figure 3 shows an example of the modified fitness landscape
analysis.

Figure 2 - Example of fitness landscape analysis as defined in Eq. (0) with
speed and acceleration improvement. The definition of speed and
acceleration is respectively in Eq. (0) and (0).

Figure 3 – Example of fitness landscape analysis as defined in Eq. (0). The
solid line is the mean pair-wise distance of the visited solutions as defined
in Eq. (0) and the dash-dot lines are the standard deviation on such mean
as in Eq. (0).

IV. FEATURES OF A TRANSPORTATION NETWORK

OPTIMIZATION PROBLEM

The optimization of transportation networks commonly
consists of finding the best route to send products from a set of
suppliers to a set of customers/dealers. As a generic problem,
transportation network optimization is defined by a set of
suppliers, a set of dealers and a distribution network. Each
supplier is associated with a production capacity and cost,
each dealer has a product demand which may vary over time
and the distribution network is defined in terms of
transportation times and costs between network nodes.
Solutions to such problem are usually sought by the
application of mathematical programming and artificial
intelligence techniques. A minimal model for the problem is as
follow:

min∑
i=1

p

∑
j=1

q

w ij yij
(0)

s .t .:∑
j=1

q

yij ≤Si
+¿∧ i≤ p
∀ i∈Z¿

(0)

∑
i=1

p

y ij=D j
+¿∧ j≤q
∀ j∈Z¿

(0)

y ij≥0 +¿
+¿∧∀ j∈Z¿

∀ i∈Z¿

(0)

where
+¿

p∈Z¿ is the number of manufacturers,
+¿

q∈Z¿

is the number of dealers with demand, S i∈Z¿
 is the

production capacity at manufacturer i , D j∈Z¿
 is the

demand from dealer j , y ij∈Z¿
is the number of units

transported from manufacturer i to dealer j ,
w ij∈R is the cost of sending product from the source

i to the dealer j . Equations (0) and (0) represent
respectively the constraints about capacity and demand.
The optimization algorithm implemented in this work is the
Ant Colony System [3], the Vogel’s Approximation Method of
Allocation as described by Samuel et al. in [17] has been used
to establish the starting solution. The parameters used for the
test cases are as reported in Table 1.

Parameter Value
Number of Ants 20

Maximum N ° of Iterations 1,000

Pheromone Evaporation Rate (ρ) 0.1

Weight on Pheromone Information (α) 1

Weight on Heuristic Information (β) 20

Exploitation to Exploration Ratio (Q 0) 0.9

Table 1 - Ant Colony System set of parameters for all tested problem
instances. These parameters are from the original definition of the Ant
Colony System in Dorigo M. et al. [18].

The following sections, IV.A and IV.B, characterize features of
the problem instances and propose two class definitions
related to the solver behaviour. The purpose of the class
definitions is to provide an understanding of the complexity of
a given instance by considering the behaviour of the
optimization algorithm. These class definitions allow the
termination condition to be set according to the difficulty level
of the instance. These are mostly related to the maximum
number of iterations or to the maximum number of visited
solutions. As described above, this work focuses on
termination condition since we are interested in addressing the
stalling effect problem and improving the time complexity of
the optimization process over a given set of instances.
However, it is reasonable to assume the same principle may
very well be adopted to set others parameters. Arguably, for
example a more difficult instance might require a higher
number of ants or a lower exploitation to exploration ratio.

Figure 4 – Centroids result of the clustering of the fitness function analysis based on the definition in Eq. (0). The fitness function values are normalized
for visualization purposes. The speed and acceleration of the resulting centroids is also measured according to Eq. (0) and (0).

Figure 5 – Centroids result of the clustering of the fitness landscape analysis based on the definition in Eq. (0), (0), and (0). The speed and acceleration of
the resulting centroids is also measured.

A. Problem Features

Supply chain optimization problems usually differ in the
demand, the production capacity and some details of the
distribution network.
The features we have adopted to summarize variations in
demand and production capacities are:

 Percentage of active dealers. The total number of
dealers is known from the definition of the full
distribution network. Instances with more active

dealers typically will be more difficult to solve and
probably require more iterations.

 Mean and standard deviation of the demand. Such
statistics briefly summarize the distribution of the
demand through the network.

 Mean and standard deviation of the capacity. As with
the demand, this feature describes the distribution of
the capacity throughout the network.

 Mean and standard deviation of the capacity per
demand. The purpose here is to measure how much

capacity is available on average to satisfy the demand
of a given dealer.

 Ratio of total demand to total production capacity.
This feature is a generalization of the previous one.

The features to describe the distribution network are:
 The ratio of production sources to dealers. This

highlights how many production sources are available
to satisfy a given dealer’s demand.

 The total number of connections between production
sources and dealers. This describes the level of
connectivity in the underlying network.

 Mean and standard deviation of the values in the
heuristic information matrix. In this context, the
heuristic information refers to the information held on
the routes in the network which guide the solver in
building the distribution plan. For instance, if the goal
is to maximizing the profit of a distribution plan, then
the heuristic information is likely to be the
transportation cost on the routes. Such a feature
should distinguish between instances with different
variations in transportation costs. Instances with
uniformly distributed costs are likely to be easier to
solve as small variations in the distribution plan will
not fundamentally affect the overall profit.

B. Class Definition

As the intent of this work is to reduce the task of finding the
best termination condition to a classification problem, the
following class definitions need to be discrete and preferably
of nominal type. A discretization of the class features has been
achieved by applying a simple clustering on their values using
instances of the training set. Three obvious class values
{easy ,medium ,hard } may be produced from the

application of K-means [19] with 3 clusters.

1) Fitness Function Values Through Iterations
The first class definition is based on the fitness
landscape analysis as define in Eq. (0). A smaller
sample containing a sequence of fitness values is
considered for each problem instance. The number of
samples is 10% of the total number of iterations and the
sampling rate is quadratic so that more iterations at the
beginning of the search process are considered and
hence more details are collected prior to the best
solution being found. These sequences are the input to
the clustering step and the output centroid are
themselves sequences of fitness values. The speed and
acceleration of the centroid sequences are measured as
in Eq. (0) and (0). Figure 4 shows an example depicting
the result of clustering the sequences of fitness function
values. The termination condition is the average value
of the following criteria:

 The first iteration when the best solution is

found, (argmax i∈ [0, t)
Φα (i))0 .

 The highest iteration when the speed of
change falls below the average speed. Let
I be the set of iteration indexes where the

speed is closer to the average value

I=argma x i∈ [0, t)(sΦα
(i)≅(∑

j∈ [0. t)

sΦα
(j))/ t)

. The iteration of termination is I|I| .
 The highest iteration when the acceleration

falls below to the average acceleration.
Similarly to the step above the set I is

defined as

aΦα
(j)

∑
j∈¿

¿

¿
(¿/ t ¿)
aΦα

(i)≅¿
I=argma x i∈ [0,t) ¿

 and the

iteration of termination I|I| .

2) Pair-wise Distance Between Visited Solutions
The definition of the second class is based on the
fitness landscape analysis as defined in Eq. (0). The
purpose of this definition is to avoid visiting solutions
that are the same or very close to each other. In almost
all practical applications, the optimization process is
stop after a finite number of search operations,
regardless of whether the optimal solution has been
found or not. An approximation to the optimal solution
is generally acceptable provided the quality is
reasonably high. Arguably, if one of the main concerns
is reducing the computational time, then one may be
willing to accept lower quality solutions. This
definition attempts to terminate the optimization
process as soon as the difference between visited
solutions does not significantly improve the quality of
the found solution; that is the tested solutions are not
very different from each other and those perturbations
do not lead to an improvement in the solution. As for
the previous class definition, for each instance, the
sequence of fitness function values is sampled
according to a quadratic rate. These sequences are the
input to the clustering step and an example of centroids
is shown in Figure 5. Again, the termination condition
is the average value of the following criteria:

 The first iteration when the pair-wise distance
between the visited solutions is the highest,

(argmax i∈ [0, t)
Φβ (i))0 .

 The highest iteration when the speed of
change falls below the average speed. The
iteration of termination is I|I| where the

set I is defined as

sΦβ
(j)

∑
j∈¿

¿

¿
(¿/ t ¿)
sΦβ

(i)≅¿
I=argma xi∈ [0, t) ¿

.

 The highest iteration when the acceleration
falls below to the average acceleration.
Similarly to the step above, the termination
iteration is I|I| where the set I is
defined as

I=argma x i∈ [0,t)(aΦβ
(i)≅(∑

j∈ [0.t)

aΦβ
(j)) /t)

.

V. NUMERICAL EXPERIMENTS

The two class definitions described in IV.B have been tested
on a real-world transportation network optimization problem.
The details of the problem can be found in Veluscek et al. [20].
The profit maximization problem has been extended to
consider inventory policy and stochastic variability in
transportation costs (see [21] for examples of models that
consider inventory policy and stochastic variability). As in
[20], the data sets were provided by a real-world
manufacturing company with a worldwide dealership network
and an interest in logistic optimization. The company provided
the transportation network map, demand data for 432 dealers
in the period from January 2010 to December 2011, and data
relating to the manufacturing costs, production capacities and
regional sale prices. The problem complexity is quite
significant due to the fact that the underlying transportation
network is made up of 8 production facilities, 432 dealer
locations and 48 shipping ports. The network representation is
a four layer graph where:

1. The production facilities are connected both to the
outbound shipping ports and the dealer locations.

2. At the outbound shipping ports it is possible to send
product to the set of inbound shipping ports.

3. And the inbound shipping ports are connected to the
dealer locations.

This network design resulted in almost 8 million potential
routes between production facilities and dealer locations. In
the 24 months (from January 2010 to December 2011) the
dealer demands have been split into two independent problem
instances and used as training and test sets. We adopted the
data mining framework Weka [22] to implement and test
several classification systems. The implemented classification
systems are 0R, 1R, Naïve Bayes, Bayes Network, J48,
Random Forest and SMO with a polynomial kernel of degree
3, all of which have been used to build a classification

committee. Witten et al [23] in their book describe the theory
and implementation details of all these algorithms. The
algorithm 0R is often used to set a baseline for classification
accuracy, as its predicted class is simply the most frequent
one. As the amount of data available for training and testing is
limited, the performance of each single model has been
assessed through a 10-fold cross validation scheme. In Table 2,
the classification accuracy of the single models is shown.
The method presented in this paper also has been tested on
two randomly generated problems. In both instances, the
number of dealers, production facilities and shipping ports is
the same as in the original problem; it is only the demand
figures, the production capacities, the transportation times and
costs and the sale prices that have been randomly generated. In
the first problem, the figures have been generated according to
a normal distribution with the same mean and standard
deviation as in the original data set (e.g. the demand figures
have the same mean and standard deviation as those found in
the original problem). The figures for the second problem are
randomly generated in an interval between 0 and an upper
limit which is a random increase over the maximum value in
the original data, according to a negative exponential
distribution. Table 3 shows the accuracy measures for the first
generated problem, whereas Table 4 shows them for the
second.

Class
definition

0R
(baseline) 1R

Naïve
Bayes

Bayes
Net J48

Random
Forest

SMO
Poly3 Average (STD)

IV.B.1 45.8 83.3 79.2 83.3 91.7 75.0 83.3 82.6 (5.06)

IV.B.2 41.7 83.3 75.0 95.8 87.5 87.5 79.2 84.7 (6.66)
Table 2 – Classification accuracy for 1000 iterations and K-means with 3
clusters to define the class. The 0R system provides a baseline for the
classification problem. The average and standard deviation do not include
0R. 0R stands for ZeroR, the baseline classifier, 1R [24] for OneR and
SMO [25] for sequential minimum optimization, the algorithm for
training support vector machine.

Class
definition

0R
(baseline) 1R

Naïve
Bayes

Bayes
Net J48

Random
Forest

SMO
Poly3

Average
(STD)

IV.B.1 37.5 100.0 95.8 95.8 87.5 100.0 87.5 94.4 (5.2)

IV.B.2 37.5 100.0 95.8 95.8 87.5 100.0 87.5 94.4 (5.2)
Table 3 - Classification accuracy for 1000 iterations and K-means with 3
clusters to define the class. The problem is randomly generated according
to a normal distribution with mean and standard deviation as in the
original data set. The average and standard deviation do not include 0R.
0R stands for ZeroR, the baseline classifier, 1R [24] for OneR and SMO
[25] for sequential minimum optimization, the algorithm for training
support vector machine.

Class
definition

0R
(baseline) 1R

Naïve
Bayes

Bayes
Net J48

Random
Forest

SMO
Poly3

Average
(STD)

IV.B.1 62.5 83.3 75.0 100.0 87.5 87.5 83.3 86.1 (7.4)

IV.B.2 70.8 87.5 87.5 95.8 92.0 92.0 92.0 91.0 (2.9)

Table 4 - Classification accuracy for 1000 iterations and K-means with 3
clusters to define the class. The problem is randomly generated where the
figures are an interval between 0 and an upper limit which is a random
increase over the maximum value in the original data, according to a
negative exponential distribution. The average and standard deviation do
not include 0R. 0R stands for ZeroR, the baseline classifier, 1R [24] for

OneR and SMO [25] for sequential minimum optimization, the algorithm
for training support vector machine.

A. Performance Improvements

In this section, we compare the performance of the original
optimization process with the one developed in this paper and
deploy it to predict the best stopping iteration for each given
instance. The metrics for the experiment are the profit and
computation time required to find the distribution plan. Table
5 shows the performance improvements when the
classification system is adopted to predict the best stopping
iteration for each given instance. As before, the first random
problem is generated according to a normal distribution with
mean and standard deviation as in the original data set. The
figures for the second random problem are generated in an
interval between 0 and an upper limit which is a random
increase over the maximum value in the original data,
according to a negative exponential distribution. As shown in
Table 5, the application of the class definition from IV.B.1
consistently reduced runtime of about a third, while the found
solutions have no meaningful difference in profit. The
application of the class from IV.B.2 decreased the runtime
furthermore with, however, a more significant loss in profit.

Profit Δ
profit

Time (s) Δ
time

Original problem

Regular optimization 3,297,976,866 - 1231.13 -

Class IV.B.1 3,297,480,246 0.015% 366.69 70.215%

Class IV.B.2 3,292,985,613 0.151% 23.65 98.079%

Random problem 1

Regular optimization 2,751,544,955 - 3959.05 -

Class IV.B.1 2,751,606,950 0.002% 1196.28 69.784%

Class IV.B.2 2,751,328,020 0.008% 839.25 78.802%

Random problem 2

Regular optimization 173,440,895,200 - 7355.24 -

Class IV.B.1 173,418,451,300 0.013% 1703.66 76.837%

Class IV.B.2 173,355,955,800 0.049% 442.7 93.981%

Table 5 - Performance improvements when the classification system is
adopted to predict the best stopping iteration for each given instance. The
first random problem is generated according to a normal distribution
with mean and standard deviation as in the original data set. The figures
of the second random problem are generated in an interval between 0 and
an upper limit which is a random increase over the maximum value in the
original data, according to a negative exponential distribution.

VI. CONCLUSION

The aim of this work was to make improvements in the
practical time complexity for the Ant Colony System when
applied to a real-world transportation network optimization
problem. The starting observation was that in many instances
the optimization algorithm finds the best solution early in its
search and then stalls, effectively searching over many more
iterations without finding a better solution. We referred to this

phenomenon as the stalling effect. We postulate that if the
onset of the stalling effect could be predicted, then for that
given instance the search can be terminated with the ensuing
benefit that the overall optimization process might very well
require less time to find a solution of equal or comparable
quality.
The approach we presented learns from the behaviour of the
optimization process itself on past instances in setting the
termination criteria. A relationship between specific
characteristics of the problem and the performance of the
optimization process is sought. The relationship is used to
predict how the solver will perform on a given instance and to
set the termination criteria such that the time spent by the
solver in its search is minimized.
A fitness landscape analysis has been performed to understand
the behaviour of the optimization process. Two class
definitions have been proposed to capture the behaviour of the
process, classify the problem instances and predict the best
termination iteration. Features not related to the optimization
process have been used to characterize different problem
instances. Several classical machine learning classification
algorithms have been employed to learn the relationship
between problem instances and termination classes.
The proposed algorithm has been tested on a real-world
transportation network, plus two random generated problems.
The runtime of the Ant Colony System in all the experiments
has been significantly reduced while the overall difference in
the quality of the solutions was deemed acceptable.
As future work, we will be investigating more features of the
problem in order to gain a better understanding of the factors
that mate the greatest contribution the performance of the
optimization process. Moreover, we would like to improve
either the class definitions or the classification system such
that the found solutions for all intent and purposes are no
difference to the original ones. Finally, as anticipated, we
believe a variation of this approach could be employed to set
other parameters to their appropriate ‘best’ value. Future work
will investigate the effectiveness of the method in setting other
parameters and determining the impact of their relationship
with the problem features.

VII. ACKNOWLEDGEMENT

Authors would like to thank the supporter of this work: the
Logistics Research & Innovation team of Caterpillar Inc.

VIII. REFERENCES

[1] A. Arisha and W. Abo-Hamad, “Optimisation Methods in Supply
Chain Applications: a Review,” in 12th Annual Conference of the
Irish Academy of Management, Galway Mayo Institute of
Technology, 2009.

[2] A. Ogunbanwo, A. Williamson, M. Veluscek, R. Izsak, T.
Kalganova, and P. Broomhead, “Transportation Network
Optimization,” Encyclopedia of Business Analytics and
Optimization, pp. 2570–2583, Feb. 2014.

[3] M. Dorigo and L. Gambardella, “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66,
1997.

[4] R. Musa, J.-P. Arnaout, and H. Jung, “Ant colony optimization
algorithm to solve for the transportation problem of cross-docking
network,” Computers & Industrial Engineering, vol. 59, no. 1, pp.
85–92, Aug. 2010.

[5] S.-P. Tseng, C.-W. Tsai, M.-C. Chiang, and C.-S. Yang, “A fast Ant
Colony Optimization for traveling salesman problem,” IEEE
Congress on Evolutionary Computation, pp. 1–6, Jul. 2010.

[6] M. Pedemonte, S. Nesmachnow, and H. Cancela, “A survey on
parallel ant colony optimization,” Applied Soft Computing, vol. 11,
no. 8, pp. 5181–5197, Dec. 2011.

[7] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge,
MA: MIT Press, 2004.

[8] Q. Lv and X. Xia, “Towards Termination Criteria of Ant Colony
Optimization,” in Third International Conference on Natural
Computation (ICNC 2007) Vol V, 2007, vol. 5, pp. 276–282.

[9] Z. Zhang, Z. Feng, and Z. Ren, “Approximate termination condition
analysis for ant colony optimization algorithm,” in 2010 8th World
Congress on Intelligent Control and Automation, 2010, no.
60875043, pp. 3211–3215.

[10] E. Stomeo, T. Kalganova, and C. Lambert, “Generalized disjunction
decomposition for evolvable hardware.,” IEEE transactions on
systems, man, and cybernetics. Part B, Cybernetics : a publication
of the IEEE Systems, Man, and Cybernetics Society, vol. 36, no. 5,
pp. 1024–43, Oct. 2006.

[11] K. A. Smith-miles, R. J. W. James, J. W. Giffin, and Y. Tu,
“Understanding the Relationship between Scheduling Problem
Structure and Heuristic Performance using Knowledge Discovery,”
in Learning and Intelligent Optimization, 2009.

[12] K. Smith-miles, J. Van Hemert, and X. Y. Lim, “Understanding TSP
Difficulty by Learning from Evolved Instances,” in Learning and
Intelligent Optimization, 2010, pp. 266–280.

[13] S. Wright, The roles of mutation, inbreeding, crossbreeding, and
selection in evolution. 1932.

[14] E. Pitzer, M. Affenzeller, A. Beham, and S. Wagner,
“Comprehensive and Automatic Fitness Landscape Analysis Using
HeuristicLab,” in Computer Aided Systems Theory – EUROCAST
2011, vol. 6927, R. Moreno-Díaz, F. Pichler, and A. Quesada-
Arencibia, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 424–431.

[15] B. Freisleben and P. Merz, “Fitness landscape analysis and memetic
algorithms for the quadratic assignment problem,” IEEE
Transactions on Evolutionary Computation, vol. 4, no. 4, pp. 337–
352, 2000.

[16] J. Humeau, A. Liefooghe, E.-G. Talbi, and S. Verel, “ParadisEO-
MO: from fitness landscape analysis to efficient local search
algorithms,” Journal of Heuristics, vol. 19, no. 6, pp. 881–915, Jun.
2013.

[17] A. E. Samuel and M. Venkatachalapathy, “Modified Vogel ’ s
Approximation Method for Fuzzy Transportation Problems,” vol. 5,
no. 28, pp. 1367–1372, 2011.

[18] M. Dorigo, V. Maniezzo, and a Colorni, “Ant system: optimization
by a colony of cooperating agents.,” IEEE transactions on systems,
man, and cybernetics. Part B, Cybernetics : a publication of the
IEEE Systems, Man, and Cybernetics Society, vol. 26, no. 1, pp. 29–
41, Jan. 1996.

[19] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1:
Statistics, 1967, vol. 233, no. 233, pp. 281–297.

[20] M. Veluscek, A. Ogunbanwo, A. Williamson, T. Kalganova, P.
Broomhead, and A. J. Grichnik, “Benchmarking of Meta-heuristic
Algorithms for Real- World Transportation Network Optimization,”
2014.

[21] J. J. Bravo and C. J. Vidal, “Freight transportation function in supply
chain optimization models: A critical review of recent trends,”
Expert Systems with Applications, vol. 40, no. 17, pp. 6742–6757,
Dec. 2013.

[22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.
H. Witten, “The WEKA Data Mining Software: An Update.” 2009.

[23] I. H. Witten, E. Frank, and M. A. Hall, Data Mining Practical
Machine Learning Tools and Techniques, 3rd ed., vol. 40, no. 6.
Elsevier Inc., 2001, p. 9823.

[24] R. C. Holte, “Very simple classification rules perform well on most
commonly used datasets.,” Machine Learning, vol. 11, pp. 63–91,
1993.

[25] J. Platt, “Fast Training of Support Vector Machines using Sequential
Minimal Optimization,” in Advances in Kernel Methods - Support
Vector Learning, B. Schoelkopf, C. Burges, and A. Smola, Eds. MIT
Press, 1998.

	I. Introduction
	II. Motivations and Related Work
	III. Fitness Landscape Analysis
	IV. Features of a Transportation Network Optimization Problem
	A. Problem Features
	B. Class Definition
	1) Fitness Function Values Through Iterations
	2) Pair-wise Distance Between Visited Solutions

	V. Numerical Experiments
	A. Performance Improvements

	VI. Conclusion
	VII. Acknowledgement
	VIII. References

