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Abstract— The Ant Colony System (ACS) is a well-known bio-
inspired  optimization  algorithm  which  has  been  successfully
applied  to  several  NP-hard  optimization  problems,  including
transportation  network  optimization.  This  paper  introduces  a
method  to  improve  the  computational  time  required  by  the
algorithm in finding high quality solutions. The purpose of the
method is to predict the best termination iteration for an unseen
instance  by  analyzing  the  performance  of  the  optimization
process on solved instances. A fitness landscape analysis is used to
understand the behavior of the optimizer on all given instances. A
comprehensive  set  of  features  is  presented  to  characterize
instances  of  the  transportation  network  optimization  problem.
This  set  of  features  is  associated  to  the  results  of  the  fitness
landscape analysis through a machine learning-based approach,
so  that  the  behavior  of  the  optimization  algorithm  may  be
predicted  before  the  optimization  start  and  the  termination
iteration may be set accordingly. The proposed system has been
tested  on  a  real-world  transportation  network  optimization
problem and two randomly generated problems. The proposed
method has drastically reduced the computational times required
by the ACS in finding high quality solutions.

Keywords— Transportation Network Optimization, Ant Colony
Optimization,  Termination  Condition  Adaptation,  Hardness
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I. INTRODUCTION

In the past decade or so, meta-heuristics approaches have been
successfully applied to many NP-hard optimization problems.
These  approaches  are  popular  due  to  their  adaptability  and
application potential across differing problem domains. They
are known for the reduced effort involved in their application
and for their ability to find high-quality solutions to the most
complex  of  combinatorial  optimization  problems.  Equally,
they are also known for their high computational complexity.
In this work, we address  the task of improving the runtime
complexity of the Ant Colony System (ACS) when applied to
a real-world transportation network optimization problem. The
improvement  is  achieved  by  adopting  a  machine  learning
approach.  Given  an  unseen  problem  instance,  the  best
termination point for the optimization process is predicted by
analysing its behaviour on previously solved instances which
are the most similar to the current one.
This paper is structured as follow: in section II we explain the
motivations and analyse related work. In section III we present
the fitness landscape analysis used to gather information on

the optimizer behaviour. In section  IV we define the features
used to characterize different problem instances. Two differing
class definitions are presented in the section. Such definitions
are based on knowledge from the fitness landscape analysis
and  allow the setting of  a  termination criterion  for  a  given
problem instance. In section  V we present the results of the
optimization  experiments  carried  out  using  the  proposed
method. In section  VI we draw the conclusions and discuss
future research directions.

II. MOTIVATIONS AND RELATED WORK

According  to  Arisha  et  al.  [1] the  most  frequently  adopted
approaches  used  when  solving  supply  chain  optimization
problems  are  gradient-based  methods,  metamodel-based
methods,  statistical  methods  and  random  search  /
metaheuristics. Arisha et al.  [1] also discusses the limitations
of  traditional techniques such as linear programming, integer
programming and mixed-integer programming when handling
the inherent interdependencies found in the current generation
of supply chain networks. A review conducted by Ogunbanwo
et al.  [2] identified a trend towards the use of meta-heuristic
approaches  as  the  solution  basis  for  solving  transportation
networks  problems.  The  most  common  approaches  include
(Multi  Objective)  Genetic  Algorithm,  Ant  Colony
Optimization (ACO), and Swarm Particle Optimization. The
ACS is a variation of the ACO and is defined in Dorigo et al.
[3]. A successful application to the problem of transportation
network optimization may be found in Musa et al. [4].
In  the  context  of  Ant  Colony  System  and  Meta-heuristics
approaches, much work has been done in reducing the runtime
requirements  of  the  methods.  Typically,  the  most  common
approaches either employ methods to reduce the search steps
and arrive  more  quickly at  higher  quality  solutions  or  they
exploit  parallelization  /  hardware  acceleration  techniques.
Tseng et al.  [5] presented a novel method to generally speed
up  the  Ant  Colony  Optimization  (ACO)  for  the  Travelling
Salesman Problem (TSP), by reducing redundant steps in its
search.  Pedemonte  et  al.  [6] present  a  survey  of  recent
advances  in  the  parallel  implementation  of  Ant  Colony
Optimization.  In  this  work,  we  approached  the  problem of
runtime  reduction  by  focusing  on  the  optimal  setting  of
termination  criteria  to  minimize  the  runtime  required  for  a
given instance.



According to Dorigo et al. [7], for all meta-heuristics, there is
no general termination criterion. In practice, a number of rules
of thumb have been used: the maximum CPU time elapsed,
the maximum number of solutions generated, the percentage
deviation  from  an  optimum  lower/upper  bound,  and  the
maximum  number  of  iterations  without  improvement  in
solution quality are examples of such rules  [7]. Lv et al.  [8]
analysed  recent  reviews  of  Ant  Colony  Optimization
applications  with  a  view  to  answer  the  questions  “how  to
evaluate  improvement?”  and  “what  are  the  termination
conditions?”. However, their survey did not provide concrete
answers, they found that all termination criteria are described
with vague phrases, such as “no improvement is possible”, or
“termination conditions are met” [8]. More generally, Lv et al.
[8] considered some of the earlier fundamental work on meta-
heuristics  without  finding  a  consensus  about  termination
criteria.  More  recently,  Zhang  et  al.  [9] analysed  the
approximate  termination  condition  for  the  ACO  applied  to
TSP. They found that many of the termination condition are
only  used  in  experimentation  and  are  often  too  difficult  or
uneconomic for deployment in solving practical problem [9].
The approach taken in this work learns from the behaviour of
the  optimization  process  on  previous  problem  instances  in
setting the termination criteria. It was observed that in many
instances  the  optimization  algorithm finds  the  best  solution
early in its search and then stalls,  continuing the search for
many more iterations without finding a better solution. This
phenomenon is referred to as the stalling effect, Stomeo et al.
[10] state: “The problem of stalling effect in fitness functions
is related to the non-improvement of the fitness values during
the evolutionary process”.  Figure 1 shows an example of the
stalling  effect.  In  this  work  we  search  for  a  relationship
between the problem characteristics  and the performance of
the optimization process, with the intent of predicting how the
solver will perform on a given instance and set the termination
criteria to minimize the solver search time.
In  the  course  of  the  paper,  we will  show how this  method
answers the concerns raised by Lv et al.  [8] and Zhang et al.
[9].  We  will  provide  a  definite  procedure  to  evaluate
improvement  and  set  proper  termination  conditions.  Using
well-known machine  learning  algorithms for  prediction  and
existing and open source libraries for the implementation, the
difficulty  of  adoption  of  the  proposed  system  is  kept  low,
making it economic for deployment in real-world application.
Complexity wise, both the learning and prediction steps do not
significantly affect the performances: the learning step, which
is required to be performed only once, is expected to be fast
due to the small number of features involved, and including
the  prediction  step  into  the  optimization  process  will
significantly reduce the time requirements as the termination
criteria are dynamically set to the optimum of each instance.
Understanding  the  relationship  that  exists  between  the
problem instances and the optimization algorithm has led to
improvements in the optimization process. Smith-miles et al.
[11] used a knowledge discovery approach to seek insight into
the relationship between the Scheduling Problem structure and
the effectiveness of heuristics. Rules from a decision tree were

used to select the best heuristic from a portfolio. Similar work
has been undertaken in Smith-miles et al.  [12] for the Travel
Salesman  Problem.  We  present  a  similar  approach  where
instead  of  using the acquired knowledge to  select  the most
promising algorithm from a portfolio, we use it to improve the
performance of the current one.

III. FITNESS LANDSCAPE ANALYSIS

Fitness landscape analysis  [13] provides a vivid metaphor of
the search space as perceived by an optimization process [14].
Metaphors  of  a  landscape  are  commonly  used  to  aid  the
understanding  of  heuristic  search  methods  when  solving
combinatorial  optimization  problems.  Furthermore,  the
concept  has  been shown to be  useful  for  understanding the
behaviour of combinatorial optimization algorithms, and can
help in predicting their performance [15].

Figure  1 – The stalling effect  in  fitness  function analysis  refers  to the
phenomenon where the fitness values do not improve during most of the
optimization process. Source of the figure is Stomeo et al. [10].

Given a vector of variables  x∈Rn  and a vector of cost

coefficients c∈ Rn , a combinatorial optimization problem
may be defined as:

v¿
=min {cT x|Ax=b∧ x≥0 }, (0)



where A∈Rm×n  is a matrix of coefficients,  b∈Rm

is  a  vector  of  coefficients  and  v¿∈Rn  is  a  vector  of

assignments for the variables x  such that the value of the

objective function  cT x  is  minimum. The matrix  A
and the vector  b  define the constraints over the decision
variables  x  and  define  the  problem  search  space.
Therefore,  an  optimization  problem is  defined  by  the  tuple
lp≔(c , A ,b) .

The fitness landscape of an optimization problem lp  is the
tuple  fl≔(S , f , d) ,  where

S (A ,b)= {v∈ Rn|Av=b }  is  the  set  of  all  possible

solutions,  f :Rn⟶R  is the fitness function defined as

f : v↦ cT v  and  d :Rn× Rn⟶ R  is  the  distance
between two feasible solutions. In Evolutionary Computation,
for binary coded problems, the distance measure is usually the
Hamming  distance  between  bit  strings  [15].  For  problems
where the solution is a vector of real number, the Euclidean
distance may be applied.
Usually,  the  fitness  landscape  is  interpreted  as  a  graph
G={V , E }  with  vertex  set  V=S  and  edge  set

E={(v , v ' )∈S×S∨d (s , s ' )=dmin}  with  dmin

denoting  the  minimum  distance  between  two  points  in  the
search  space  [15].  Such  interpretation  allows  for  effective
analysis and visualization of the search space. However, for
the purpose of this work, we are interested in analysing how
the search for the optimal solution evolves over time and in
predicting  the  best  termination  point  based  on  instance
features.  Let  us  define  the  search  process  or  walk on  a
landscape  [16] as the  t -tuple  Γ=(v0, v1 ,…,v t−1)
being  the  sequence  of  visited  solutions  during  the
search/optimization  process.  The  fitness  landscape  analysis
adopted  in  this  work  is,  therefore,  the  sequence  of  fitness
function evaluations at each iteration:

Φα=( f (v0 ) , f (v1 ) ,…, f (v t−1 ))
.

(0)

The performance of the search process may be measured as
the number of iterations required to find the optimal solution. 
Let  us  define  the  speed  of  the  search  process  and  its
acceleration,  respectively  as  the  improvement  of  the  best
known solution over the first one and the rate of change in the
speed.  Given  the  iteration i∈(0, t) ,  the  speed  of  the
optimization process for the tuple Φ  is:

+¿→R
s :Z¿ ,

i↦ (Φ (i )−Φ(0))/ i ,

(0)

and the acceleration is:
+¿→R
a:Z¿ ,

i↦ ( sΦ ( i )−sΦ ( 0 ) )/ i .

(0)

Such definitions of speed and acceleration describe the rate of
improvement of the best known solution at any given iteration.
Figure 2 shows an example of the result of this analysis.
As a variation, the fitness landscape analysis can be modified
to include the topology of the search space by considering the
mean  pair-wise  distance  of  visited  solutions  at  any  given
iteration. The updated definition of fitness landscape analysis
would be as follow:

Φβ=(p (0 ) , p (1 ) ,…, p (t−1 ) )
.

(0)

where let  p be the function that measure the mean pair-
wise distance of the visited solutions:

+¿→R
p :Z¿ ,

i↦
∑

k∈ [0, i ]
∑
j∈¿

d (vk , v j )

i∗(i−1 )/2
,

(0)

and  consequently  the  standard  deviation  on  the  pair-wise
distance is:

+¿→R
psd :Z

¿ ,

i↦ √ ∑
k∈[0,i]

∑
j∈¿

(d (vk , v j )−p (vk ))
2

i∗(i−1 )/2
,

(0)

Figure 3 shows an example of the modified fitness landscape
analysis.

Figure 2 - Example of fitness landscape analysis as defined in Eq. (0) with
speed  and  acceleration  improvement.  The  definition  of  speed  and
acceleration is respectively in Eq. (0) and (0).



Figure 3 – Example of fitness landscape analysis as defined in Eq. (0). The
solid line is the mean pair-wise distance of the visited solutions as defined
in Eq. (0) and the dash-dot lines are the standard deviation on such mean
as in Eq. (0).

IV. FEATURES OF A TRANSPORTATION NETWORK

OPTIMIZATION PROBLEM

The  optimization  of  transportation  networks  commonly
consists of finding the best route to send products from a set of
suppliers to a set of customers/dealers. As a generic problem,
transportation  network  optimization  is  defined  by  a  set  of
suppliers,  a  set  of  dealers  and  a  distribution network.  Each
supplier  is  associated  with  a  production  capacity  and  cost,
each dealer has a product demand which may vary over time
and  the  distribution  network  is  defined  in  terms  of
transportation  times  and  costs  between  network  nodes.
Solutions  to  such  problem  are  usually  sought  by  the
application  of  mathematical  programming  and  artificial
intelligence techniques. A minimal model for the problem is as
follow:

min∑
i=1

p

∑
j=1

q

w ij yij
(0)

s .t .:∑
j=1

q

yij ≤Si  
+¿∧ i≤ p
∀ i∈Z¿

(0)

∑
i=1

p

y ij=D j  
+¿∧ j≤q
∀ j∈Z¿  

(0)

y ij≥0 +¿
+¿∧∀ j∈Z¿

∀ i∈Z¿

(0)

where 
+¿

p∈Z¿  is the number of manufacturers, 
+¿

q∈Z¿

is  the  number  of  dealers  with  demand,  S i∈Z¿
 is  the

production  capacity  at  manufacturer  i , D j∈Z¿
 is  the

demand from dealer j ,  y ij∈Z¿
is the number of units

transported  from  manufacturer  i  to  dealer  j ,
w ij∈R  is  the cost  of  sending product  from the source

i  to  the  dealer  j .  Equations  (0) and  (0) represent
respectively the constraints about capacity and demand.
The optimization algorithm implemented in this work is the
Ant Colony System [3], the Vogel’s Approximation Method of
Allocation as described by Samuel et al. in [17] has been used
to establish the starting solution. The parameters used for the
test cases are as reported in Table 1.

Parameter Value
Number of Ants 20

Maximum N °  of Iterations 1,000

Pheromone Evaporation Rate ( ρ ) 0.1

Weight on Pheromone Information ( α ) 1

Weight on Heuristic Information ( β ) 20

Exploitation to Exploration Ratio ( Q 0 ) 0.9

Table  1 -  Ant  Colony System set  of  parameters for all  tested problem
instances. These parameters are from the original definition of the Ant
Colony System in Dorigo M. et al. [18].

The following sections, IV.A and IV.B, characterize features of
the  problem  instances  and  propose  two  class  definitions
related  to  the  solver  behaviour.  The  purpose  of  the  class
definitions is to provide an understanding of the complexity of
a  given  instance  by  considering  the  behaviour  of  the
optimization  algorithm.  These  class  definitions  allow  the
termination condition to be set according to the difficulty level
of  the  instance.  These  are  mostly  related  to  the  maximum
number  of  iterations  or  to  the maximum number  of  visited
solutions.  As  described  above,  this  work  focuses  on
termination condition since we are interested in addressing the
stalling effect problem and improving the time complexity of
the  optimization  process  over  a  given  set  of  instances.
However, it is reasonable to assume the same principle may
very well be adopted to set others parameters. Arguably, for
example  a  more  difficult  instance  might  require  a  higher
number of ants or a lower exploitation to exploration ratio.



Figure 4 – Centroids result of the clustering of the fitness function analysis based on the definition in Eq. (0). The fitness function values are normalized
for visualization purposes. The speed and acceleration of the resulting centroids is also measured according to Eq. (0) and (0).

Figure 5 – Centroids result of the clustering of the fitness landscape analysis based on the definition in Eq. (0), (0), and (0). The speed and acceleration of
the resulting centroids is also measured.

A. Problem Features

Supply  chain  optimization  problems  usually  differ  in  the
demand,  the  production  capacity  and  some  details  of  the
distribution network.
The  features  we  have  adopted  to  summarize  variations  in
demand and production capacities are:

 Percentage  of  active  dealers.  The  total  number  of
dealers  is  known  from  the  definition  of  the  full
distribution  network.  Instances  with  more  active

dealers typically will be more difficult to solve and
probably require more iterations.

 Mean and standard deviation of  the demand.  Such
statistics  briefly  summarize  the  distribution  of  the
demand through the network.

 Mean and standard deviation of the capacity. As with
the demand, this feature describes the distribution of
the capacity throughout the network.

 Mean  and  standard  deviation  of  the  capacity  per
demand. The purpose here is to measure how much



capacity is available on average to satisfy the demand
of a given dealer.

 Ratio of  total  demand to total  production capacity.
This feature is a generalization of the previous one.

The features to describe the distribution network are:
 The  ratio  of  production  sources  to  dealers.  This

highlights how many production sources are available
to satisfy a given dealer’s demand.

 The total number of connections between production
sources  and  dealers.  This  describes  the  level  of
connectivity in the underlying network.

 Mean  and  standard deviation  of  the  values  in  the
heuristic  information  matrix.  In  this  context,  the
heuristic information refers to the information held on
the routes in the network which guide the solver in
building the distribution plan. For instance, if the goal
is to maximizing the profit of a distribution plan, then
the  heuristic  information  is  likely  to  be  the
transportation  cost  on  the  routes.  Such  a  feature
should  distinguish  between  instances  with  different
variations  in  transportation  costs.  Instances  with
uniformly distributed costs are likely to be easier to
solve as small variations in the distribution plan will
not fundamentally affect the overall profit.

B. Class Definition

As the intent of this work is to reduce the task of finding the
best  termination  condition  to  a  classification  problem,  the
following class definitions need to be discrete and preferably
of nominal type. A discretization of the class features has been
achieved by applying a simple clustering on their values using
instances  of  the  training  set.  Three  obvious  class  values
{easy ,medium ,hard }  may  be  produced  from  the

application of K-means [19] with 3 clusters.

1) Fitness Function Values Through Iterations
The  first  class  definition  is  based  on  the  fitness
landscape  analysis  as  define  in  Eq.  (0).  A  smaller
sample  containing  a  sequence  of  fitness  values  is
considered for each problem instance. The number of
samples is 10% of the total number of iterations and the
sampling rate is quadratic so that more iterations at the
beginning  of  the  search  process  are  considered  and
hence  more  details  are  collected  prior  to  the  best
solution being found. These sequences are the input to
the  clustering  step  and  the  output  centroid  are
themselves sequences of fitness values. The speed and
acceleration of the centroid sequences are measured as
in Eq. (0) and (0). Figure 4 shows an example depicting
the result of clustering the sequences of fitness function
values. The termination condition is the average value
of the following criteria:

 The  first  iteration  when  the  best  solution  is

found, (argmax i∈ [0, t )
Φα (i ) )0 .

 The  highest  iteration  when  the  speed  of
change  falls  below  the  average  speed.  Let
I  be the set of iteration indexes where the

speed  is  closer  to  the  average  value

I=argma x i∈ [0, t )(sΦα
(i )≅( ∑

j∈ [0. t )

sΦα
( j ))/ t )

. The iteration of termination is I|I| .
 The  highest  iteration  when  the  acceleration

falls  below  to  the  average  acceleration.
Similarly  to  the  step  above  the  set  I  is

defined  as  

aΦα
( j )

∑
j∈¿

¿

¿
(¿/ t ¿)
aΦα

(i )≅¿
I=argma x i∈ [0,t ) ¿

 and  the

iteration of termination I|I| .

2) Pair-wise Distance Between Visited Solutions
The  definition  of  the  second  class  is  based  on  the
fitness  landscape  analysis  as  defined  in  Eq.  (0).  The
purpose of this definition is to avoid visiting solutions
that are the same or very close to each other. In almost
all  practical  applications,  the  optimization  process  is
stop  after  a  finite  number  of  search  operations,
regardless  of  whether  the  optimal  solution  has  been
found or not. An approximation to the optimal solution
is  generally  acceptable  provided  the  quality  is
reasonably high. Arguably, if one of the main concerns
is reducing the computational  time, then one may be
willing  to  accept  lower  quality  solutions.  This
definition  attempts  to  terminate  the  optimization
process  as  soon  as  the  difference  between  visited
solutions  does not significantly improve the quality of
the found solution; that is the tested solutions are not
very different from each other and those perturbations
do not lead to an improvement in the solution. As for
the  previous  class  definition,  for  each  instance,  the
sequence  of  fitness  function  values  is  sampled
according to a quadratic rate. These sequences are the
input to the clustering step and an example of centroids
is shown in Figure 5. Again, the termination condition
is the average value of the following criteria:

 The first iteration when the pair-wise distance
between  the  visited  solutions  is  the  highest,

(argmax i∈ [0, t )
Φβ ( i ) )0 .

 The  highest  iteration  when  the  speed  of
change  falls  below  the  average  speed.  The
iteration of  termination is  I|I|  where  the



set  I  is  defined  as

sΦβ
( j )

∑
j∈¿

¿

¿
(¿/ t ¿)
sΦβ

(i )≅¿
I=argma xi∈ [0, t ) ¿

.

 The  highest  iteration  when  the  acceleration
falls  below  to  the  average  acceleration.
Similarly  to  the  step  above,  the  termination
iteration  is  I|I|  where  the  set  I  is
defined  as

I=argma x i∈ [0,t )(aΦβ
(i )≅( ∑

j∈ [0.t )

aΦβ
( j )) /t )

.

V. NUMERICAL EXPERIMENTS

The two class definitions described in  IV.B have been tested
on a real-world transportation network optimization problem.
The details of the problem can be found in Veluscek et al. [20].
The  profit  maximization  problem  has  been  extended  to
consider  inventory  policy  and  stochastic  variability  in
transportation  costs  (see  [21] for  examples  of  models  that
consider  inventory  policy  and  stochastic  variability).  As  in
[20],  the  data  sets  were  provided  by  a  real-world
manufacturing company with a worldwide dealership network
and an interest in logistic optimization. The company provided
the transportation network map, demand data for 432 dealers
in the period from January 2010 to December 2011, and data
relating to the manufacturing costs, production capacities and
regional  sale  prices.  The  problem  complexity  is  quite
significant due to the fact  that  the underlying transportation
network  is  made  up  of  8  production  facilities,  432  dealer
locations and 48 shipping ports. The network representation is
a four layer graph where:

1. The production  facilities  are  connected  both to  the
outbound shipping ports and the dealer locations.

2. At the outbound shipping ports it is possible to send
product to the set of inbound shipping ports.

3. And the inbound shipping ports are connected to the
dealer locations.

This  network  design  resulted  in  almost  8  million  potential
routes  between production facilities and dealer  locations.  In
the  24  months  (from January  2010 to  December  2011)  the
dealer demands have been split into two independent problem
instances and used as training and test sets. We adopted the
data  mining  framework  Weka  [22] to  implement  and  test
several classification systems. The implemented classification
systems  are  0R,  1R,  Naïve  Bayes,  Bayes  Network,  J48,
Random Forest and SMO with a polynomial kernel of degree
3,  all  of  which  have  been  used  to  build  a  classification

committee. Witten et al [23] in their book describe the theory
and  implementation  details  of  all  these  algorithms.  The
algorithm 0R is often used to set a baseline for classification
accuracy, as  its  predicted  class  is  simply  the  most  frequent
one. As the amount of data available for training and testing is
limited,  the  performance  of  each  single  model  has  been
assessed through a 10-fold cross validation scheme. In Table 2,
the classification accuracy of the single models is shown.
The method presented in this paper also has been tested on
two  randomly  generated  problems.  In  both  instances,  the
number of dealers, production facilities and shipping ports is
the same as  in  the original  problem; it  is  only the demand
figures, the production capacities, the transportation times and
costs and the sale prices that have been randomly generated. In
the first problem, the figures have been generated according to
a  normal  distribution  with  the  same  mean  and  standard
deviation as in the original data set (e.g. the demand figures
have the same mean and standard deviation as those found in
the original problem). The figures for the second problem are
randomly generated  in  an  interval  between 0  and  an  upper
limit which is a random increase over the maximum value in
the  original  data,  according  to  a  negative  exponential
distribution. Table 3 shows the accuracy measures for the first
generated  problem,  whereas  Table  4 shows  them  for  the
second.

Class
definition

0R
(baseline) 1R

Naïve
Bayes

Bayes
Net J48

Random
Forest

SMO
Poly3 Average (STD)

IV.B.1 45.8 83.3 79.2 83.3 91.7 75.0 83.3 82.6 (5.06)

IV.B.2 41.7 83.3 75.0 95.8 87.5 87.5 79.2 84.7 (6.66)
Table 2 – Classification accuracy for 1000 iterations and K-means with 3
clusters to define  the class.  The 0R system provides a baseline  for the
classification problem. The average and standard deviation do not include
0R. 0R stands for ZeroR, the baseline classifier, 1R  [24] for OneR and
SMO  [25] for  sequential  minimum  optimization,  the  algorithm  for
training support vector machine.

Class
definition

0R
(baseline) 1R

Naïve
Bayes

Bayes
Net J48

Random
Forest

SMO
Poly3

Average
(STD)

IV.B.1 37.5 100.0 95.8 95.8 87.5 100.0 87.5 94.4 (5.2)

IV.B.2 37.5 100.0 95.8 95.8 87.5 100.0 87.5 94.4 (5.2)
Table 3 - Classification accuracy for 1000 iterations and K-means with 3
clusters to define the class. The problem is randomly generated according
to  a  normal  distribution  with  mean  and  standard  deviation  as  in  the
original data set. The average and standard deviation do not include 0R.
0R stands for ZeroR, the baseline classifier, 1R [24] for OneR and SMO
[25] for  sequential  minimum  optimization,  the  algorithm  for  training
support vector machine.

Class
definition

0R
(baseline) 1R

Naïve
Bayes

Bayes
Net J48

Random
Forest

SMO
Poly3

Average
(STD)

IV.B.1 62.5 83.3 75.0 100.0 87.5 87.5 83.3 86.1 (7.4)

IV.B.2 70.8 87.5 87.5 95.8 92.0 92.0 92.0 91.0 (2.9)

Table 4 - Classification accuracy for 1000 iterations and K-means with 3
clusters to define the class. The problem is randomly generated where the
figures are an interval between 0 and an upper limit which is a random
increase  over the  maximum value in  the original  data,  according to a
negative exponential distribution. The average and standard deviation do
not include 0R. 0R stands for ZeroR, the baseline classifier, 1R  [24] for



OneR and SMO [25] for sequential minimum optimization, the algorithm
for training support vector machine.

A. Performance Improvements

In this section, we compare the performance of the original
optimization process with the one developed in this paper and
deploy it to predict the best stopping iteration for each given
instance.  The metrics  for  the  experiment  are  the  profit  and
computation time required to find the distribution plan.  Table
5 shows  the  performance  improvements  when  the
classification system is adopted to  predict  the best  stopping
iteration for each given instance. As before, the first random
problem is generated according to a normal distribution with
mean and standard deviation as in the original data set. The
figures  for  the second random problem are generated  in  an
interval  between  0  and  an  upper  limit  which  is  a  random
increase  over  the  maximum  value  in  the  original  data,
according to a negative exponential distribution. As shown in
Table  5,  the  application  of  the  class  definition from  IV.B.1
consistently reduced runtime of about a third, while the found
solutions  have  no  meaningful  difference  in  profit.  The
application  of  the  class  from  IV.B.2 decreased  the  runtime
furthermore with, however, a more significant loss in profit.

Profit Δ
profit

Time (s) Δ
time

Original problem

Regular optimization 3,297,976,866 - 1231.13 -

Class IV.B.1 3,297,480,246 0.015% 366.69 70.215%

Class IV.B.2 3,292,985,613 0.151% 23.65 98.079%

Random problem 1

Regular optimization 2,751,544,955 - 3959.05 -

Class IV.B.1 2,751,606,950 0.002% 1196.28 69.784%

Class IV.B.2 2,751,328,020 0.008% 839.25 78.802%

Random problem 2

Regular optimization 173,440,895,200 - 7355.24 -

Class IV.B.1 173,418,451,300 0.013% 1703.66 76.837%

Class IV.B.2 173,355,955,800 0.049% 442.7 93.981%

Table  5 -  Performance improvements when the classification system is
adopted to predict the best stopping iteration for each given instance. The
first  random problem is  generated according  to  a  normal  distribution
with mean and standard deviation as in the original data set. The figures
of the second random problem are generated in an interval between 0 and
an upper limit which is a random increase over the maximum value in the
original data, according to a negative exponential distribution.

VI. CONCLUSION

The  aim  of  this  work  was  to  make  improvements  in  the
practical  time complexity for  the Ant  Colony System when
applied  to  a  real-world  transportation  network  optimization
problem. The starting observation was that in many instances
the optimization algorithm finds the best solution early in its
search and then stalls, effectively searching over many more
iterations without finding a better solution. We referred to this

phenomenon  as  the  stalling  effect.  We postulate  that  if  the
onset  of the stalling effect  could be predicted, then for that
given instance the search can be terminated with the ensuing
benefit that the overall optimization process might very well
require  less  time to find a solution of  equal  or  comparable
quality.
The approach we presented learns from the behaviour of the
optimization  process  itself  on  past  instances  in  setting  the
termination  criteria.  A  relationship  between  specific
characteristics  of  the  problem  and  the  performance  of  the
optimization  process  is  sought.  The  relationship  is  used  to
predict how the solver will perform on a given instance and to
set  the  termination  criteria  such  that  the  time  spent  by  the
solver in its search is minimized.
A fitness landscape analysis has been performed to understand
the  behaviour  of  the  optimization  process.  Two  class
definitions have been proposed to capture the behaviour of the
process,  classify the problem instances  and  predict  the  best
termination iteration. Features not related to the optimization
process  have  been  used  to  characterize  different  problem
instances.  Several  classical  machine  learning  classification
algorithms  have  been  employed  to  learn  the  relationship
between problem instances and termination classes.
The  proposed  algorithm  has  been  tested  on  a  real-world
transportation network, plus two random generated problems.
The runtime of the Ant Colony System in all the experiments
has been significantly reduced while the overall difference in
the quality of the solutions was deemed acceptable.
As future work, we will be investigating more features of the
problem in order to gain a better understanding of the factors
that  mate  the  greatest  contribution  the  performance  of  the
optimization  process.  Moreover,  we  would  like  to  improve
either  the class  definitions or  the classification system such
that  the  found  solutions  for  all  intent  and  purposes  are  no
difference  to  the  original  ones.  Finally,  as  anticipated,  we
believe a variation of this approach could be employed to set
other parameters to their appropriate ‘best’ value. Future work
will investigate the effectiveness of the method in setting other
parameters  and  determining the  impact  of  their  relationship
with the problem features.
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