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Abstract. Many flexible methods for graph dissimilarity computation
are based on the concept of edit distance. A recently developed approx-
imation framework allows one to compute graph edit distances substan-
tially faster than traditional methods. Yet, this novel procedure considers
the local edge structure only during the primary optimization process.
Hence, the speed up is at the expense of an overestimation of the true
graph edit distances in general. The present paper introduces an exten-
sion of this approximation framework. Regarding the node assignment
from the original approximation as a starting point, we implement a
search procedure based on a genetic algorithm in order to improve the
approximation quality. In an experimental evaluation on three real world
data sets a substantial gain of distance accuracy is empirically verified.

1 Introduction

Graph matching refers to the process of evaluating the structural similarity of
graphs. A large number of methods for graph matching have been proposed in
recent years (see [1, 2] for exhaustive surveys). Due to its ability to cope with
arbitrarily structured graphs with unconstrained label alphabets for both nodes
and edges, the concept of graph edit distance [3] can be applied to virtually any
kind of graphs. Therefore, graph edit distance has been used in the context of
classification and clustering tasks in diverse applications [4–6].

Given two graphs, the source graph g1 and the target graph g2, the basic idea
of graph edit distance is to transform g1 into g2 using some distortion operations.
A standard set of distortion operations is given by insertions, deletions, and
substitutions of both nodes and edges. We denote the substitution of two nodes
u and v by (u → v), the deletion of node u by (u → ε), and the insertion of
node v by (ε → v)1. A sequence of edit operations e1, . . . , ek that transform g1
completely into g2 is called an edit path between g1 and g2.

1 For edges we use a similar notation.
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Let Υ (g1, g2) denote the set of all possible edit paths between two graphs g1
and g2. To find the most suitable edit path out of Υ (g1, g2), one introduces a cost
for each edit operation, measuring the strength of the corresponding operation.
The edit distance of two graphs is then defined by the minimum cost edit path
between two graphs.

The computation of exact graph edit distance is usually carried out by means
of a tree search algorithm which explores the space of all possible mappings of the
nodes and edges of the first graph to the nodes and edges of the second graph. A
widely used method is based on the A* algorithm [7] which is a best-first search
algorithm. The computational complexity of the exact edit distance algorithm,
whether or not heuristic functions are used to govern the tree traversal process, is
exponential in the number of nodes of the involved graphs. Consequently, exact
edit distance can be computed for graphs of a rather small size only.

In recent years, a number of methods addressing the high computational com-
plexity of graph edit distance computation have been proposed (e.g. [8–11]). The
authors of the present paper also introduced an algorithmic framework which al-
lows the approximate computation of graph edit distance in a substantially faster
way than traditional methods [12]. Yet, the substantial speed-up in computation
time is at the expense of an overestimation of the actual graph edit distance.
The reason for this overestimation is that the algorithm is able to consider only
local, rather than global, edge structure during the optimization process. The
main objective of the present paper is to significantly reduce the overestimation
of edit distances in our approximation framework. To this end, the distance ap-
proximation found by the procedure of [12] is systematically improved using a
search procedure based on genetic algorithms.

Genetic algorithms have been proposed in the context of error-tolerant graph
matching in various publications [13–15]. The basic idea of this approach is to
formalize matchings as states (chromosomes) with a corresponding performance
(fitness). An initial pool of these chromosomes, i.e. matchings, evolves iteratively
into other generations of matchings. To this end, different genetic operations are
applied to the current matchings. Though the search space is explored in a
random fashion, genetic algorithms can be designed so as to favour promising
chromosomes, i.e. well fitting matchings, and further improve them by specific
genetic operations.

The remainder of this paper is organized as follows. Next, in Sect. 2 the
original framework for graph edit distance approximation [12] is summarized. In
Sect. 3 the extension of this specific framework using a genetic search procedure
is introduced. An experimental evaluation on diverse data sets is carried out in
Sect. 4, and in Sect. 5 we draw some conclusions and outline some possible tasks
and extensions for future work.

2 Bipartite Graph Edit Distance Approximation

In the framework presented in [12], for matching two graphs g1 and g2 with
nodes V1 = {u1, . . . , un} and V2 = {v1, . . . , vm}, respectively, a cost matrix C is
first established as follows:



Improving Approximate Graph Edit Distance Using Genetic Algorithms 65
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Entry cij thereby denotes the cost of a node substitution ui → vj , ciε denotes
the cost of a node deletion ui → ε, and cεj denotes the cost of a node insertion
ε → vj .

Obviously, the left upper corner of the cost matrix represents the costs of all
possible node substitutions, the diagonal of the right upper corner the costs of
all possible node deletions, and the diagonal of the bottom left corner the costs
of all possible node insertions. Note that each node can be deleted or inserted at
most once. Therefore any non-diagonal element of the right-upper and left-lower
part is set to ∞. The bottom right corner of the cost matrix is set to zero since
substitutions of the form (ε → ε) should not cause any costs. In the definition of
cost matrix C, to each entry cij , i.e. to each cost of a node edit operation, the
minimum sum of edge edit operation costs, implied by the corresponding node
operation, is added (i.e. the matching cost arising from the local edge structure
is encoded in the individual entries of C).

On the basis of the square cost matrix C a bipartite assignment algorithm is
executed (first step). The result returned by this bipartite optimization proce-
dure corresponds to the minimum cost mapping m of the nodes and their local
edge structure of g1 to the nodes and their local edge structure of g2. Mapping
m can be seen as partial edit path π = e1, . . . , el, where each edit operation
ei ∈ π reflects an operation on nodes from V1 and/or V2 (deletions, insertions
or substitutions). In a second step the edit path π between g1 and g2 is com-
pleted according to mapping m. Note that edit operations on edges are implied
by edit operations on their adjacent nodes, i.e. whether an edge is substituted,
deleted, or inserted, depends on the edit operations performed on its adjacent
nodes. Hence, given the set of node operations e1, . . . , el, the global edge struc-
tures from g1 and g2 can be edited accordingly. The cost of the complete edit
path π is finally returned as an approximate graph edit distance. We denote the
approximated edit distance between graphs g1 and g2 according to mapping m
with d(g1, g2,m).

Note that the edit path corresponding to d(g1, g2,m) considers the edge struc-
ture of g1 and g2 in a global and consistent way while the optimal node mapping
m from step 1 is able to consider the structural information in an isolated way
only (single nodes and their adjacent edges). This is due to the fact that during
the optimization process no information about neighboring node mappings is
available. Hence, in comparison with optimal search methods for graph edit dis-
tance, our novel algorithmic framework might cause additional edge operations
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in the second step, which would not be necessary in a globally optimal graph
matching. Hence, the distances found by this specific framework are – in the
optimal case – equal to, or – in a suboptimal case – larger than the exact graph
edit distance.

For the remainder of this paper we denote this graph edit distance approxi-
mation algorithm with BP (Bipartite).

3 Improving Graph Edit Distance Approximations Using
Genetic Algorithms

In several experimental evaluations we observed that the suboptimality of BP is
very often due to a few incorrectly assigned nodes in m. That is, only few node
assignments from the first step are responsible for the additional edge operations
in the second step (and the resulting overestimation of the true edit distance).
Our novel procedure ties in at this observation. Rather than returning the ap-
proximate edit distance directly, a genetic search procedure based on mapping
m is started.

The chromosomes in our genetic search procedure are mappings related to our
original node assignment m. In order to build an initial population P (0) contain-

ing chromosomes (mappings), we computeN random variations {m(0)
1 , . . . ,m

(0)
N }

of m. A single variation m
(0)
i ∈ P (0) of m is computed as follows. Every node as-

signment ui → vj in m is possibly omitted with a certain probability p (referred
to as mutation probability). That is, in an alternative mapping we enforce nodes
ui and vj to be assigned to other nodes than vj and ui, respectively. This is
ensured by means of an update of the cost matrix C such that entry ci,j (corre-
sponding to the assignment ui → vj) is set to ∞. Given the updated cost matrix
(with ∞-entries at certain positions) an optimal node assignment is computed

using our former procedure. This results in a new mapping m
(0)
i which does not

contain (ui → vj) any more. Note that m
(0)
i corresponds to an optimal node

assignment based on the altered cost matrix. Hence, m
(0)
i is consistent, i.e. every

node of g1 is assigned to a single node of g2 (or deleted) and every node of g2 is
assigned to a single node of g1 (or inserted).

This mutation procedure is repeated N times to mapping m in order to get N

different mappings P (0) = {m(0)
1 , . . . ,m

(0)
N } and thusN different approximations

of the true graph edit distance2. Note that all of these approximate edit distance
values are still equal to, or larger than, the exact distance values. Hence, without

knowing the exact graph edit distance, the fitness of every assignment m
(0)
i can

be rated according to its specific distance value d(g1, g2,m
(0)
i ), viz. the lower

d(g1, g2,m
(0)
i ) the better the fitness of m

(0)
i .

Given the initial population P (0) the following iterative procedure is carried
out next. A new population P (t+1) of mappings is built upon a subset E of P (t),

2 Note that the original mapping m is initially added to P (0) such that the approxi-
mation found by our extension is guaranteed to be at least as accurate as the original
approximation d(g1, g2,m).
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often referred to as parents. In order to select the parents from a given population
P (t), the (f ·N) best approximations, i.e. the approximations in P (t) with lowest
distance values, are selected (f ∈]0, 1]). In our framework, all approximations
from E are added without any modifications to the next population P (t + 1).
This ensures that the best solution found so far will not be lost during the search
procedure (known as survival of the fittest).

In order to derive the remaining mappings of the new population P (t + 1),
the following procedure is repeated (N − |E|)-times. Two mappings m′ and m′′

from the pool of parents E are randomly selected and eventually combined to one
mapping m. To this end, the cost matrices C′ = c′i,j and C′′ = c′′i,j corresponding
to mappings m′ and m′′, respectively, are merged by means of

Cm = max{c′i,j , c′′i,j}
Based on Cm an optimal mapping m is computed and eventually added to
P (t + 1). Due to the definition of Cm the node mappings omitted in at least
one of the mappings m′ and m′′ will also be prevented in the merged mapping
m. The detour via optimal assignment computation on a cost matrix Cm again
ensures that the merged mapping m is consistent with the underlying graphs
(nodes of both graphs are uniquely assigned to nodes of the other graph or
deleted/inserted).

The two main steps of the genetic algorithm (selection of parents E ⊆ P (t)
and computation of a new generation of mappings P (t + 1) based on E) are
repeated until the best distance approximation has not been improved during the
last τ iterations. It is well known that genetic algorithms are not deterministic.
Therefore, we repeat the complete search procedure s times from the scratch
and return the overall best approximation found in these s runs (which makes
the algorithmic procedure more stable and reduces the risk of finding a poor
approximation due to a poor random initialization).

Given that the genetic search procedure stops after t iterations on average, the
two main steps of our former approximation framework, namely the computation
of an optimal mapping m based on a cost matrix and the derivation of the
corresponding edit distance, have to be carried out (s · t ·N)-times. Hence, one
can expect that our extended framework increases the run time by the magnitude
of (s · t ·N) compared to our original framework.

The complete algorithmic procedure is given in Alg. 1. Note that the first
three lines of Alg. 1 correspond to the original framework BP, while line 4 to
18 describe the proposed extension, denoted by BPGA from now on.

4 Experimental Evaluation

For experimental evaluations, three data sets from the IAM graph database
repository3 for graph based pattern recognition and machine learning are used
[16]. The first graph data set involves graphs that represent molecular com-
pounds (AIDS). We construct graphs from the AIDS Antiviral Screen Database

3 www.iam.unibe.ch/fki/databases/iam-graph-database



68 K. Riesen, A. Fischer, and H. Bunke

Algorithm 1. BPGA(g1, g2) (Meta Parameters: N, p, τ, f, s)

1: Build cost matrix C according to the input graphs g1 and g2
2: Compute optimal node assignment m on C
3: Derive edit path and approximate edit distance based on m
4: for i = 1, . . . , s do

5: build initial population P (0) of mappings {m(0)
1 , . . . ,m

(0)
N } based on m using mutation

probability p

6: dbest = mini=1,...,N{d(g1, g2,m(0)
i )}

7: t = 0; l = 0
8: while t − l < τ do
9: select a subset E ⊆ P (t) of parents (|E| = f · N)

10: build a new population P (t + 1) = {m(t+1)
1 , . . . ,m

(t+1)
N } from E

11: d = mini=1,...,N{d(g1, g2,m(t+1)
i )}

12: t = t + 1
13: if d < dbest then
14: dbest = d; l = t
15: end if
16: end while
17: end for

18: return dbest

of Active Compounds [17]. This data set consists of two classes (active, inac-
tive), which represent molecules with activity against HIV or not. The molecules
are converted into graphs in a straightforward manner by representing atoms as
nodes and the covalent bonds as edges. Nodes are labeled with the number of
the corresponding chemical symbol and edges by the valence of the linkage.

The second graph data set consists of graphs representing fingerprint im-
ages (FP) [18]. In order to obtain graphs from fingerprint images, the relevant
regions are binarized and a noise removal and thinning procedure is applied. This
results in a skeletonized representation of the extracted regions. Ending points
and bifurcation points of the skeletonized regions are represented by nodes. Ad-
ditional nodes are inserted in regular intervals between ending points and bi-
furcation points. Finally, undirected edges are inserted to link nodes that are
directly connected through a ridge in the skeleton. Each node is labeled with
a two-dimensional attribute giving its position. The edges are attributed with
an angle denoting the orientation of the edge with respect to the horizontal
direction.

The third data set consists of graphs representing symbols from architectural
and electronic drawings (GREC) [19]. The images occur at five different distor-
tion levels. Depending on the distortion level, either erosion, dilation, or other
morphological operations are applied. The result is thinned to obtain lines of
one pixel width. Finally, graphs are extracted from the resulting denoised im-
ages by tracing the lines from end to end and detecting intersections as well
as corners. Ending points, corners, intersections and circles are represented by
nodes and labeled with a two-dimensional attribute giving their position. The
nodes are connected by undirected edges which are labeled as line or arc. An
additional attribute specifies the angle with respect to the horizontal direction
or the diameter in case of arcs.
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Our procedure BPGA has five meta parameters to be defined by the user
(see Table 1 for a survey). In the following evaluations only two of them are
altered in order to evaluate their impact on the approximation quality, viz. the
population size N as well as the mutation probability p. The three remaining
parameters (τ, f, s) are freezed to constants. In fact, in preliminary experimental
evaluations it turns out that these parameters – given that they do not fall below
a certain threshold – do nearly not affect the resulting approximations.We choose
minimum values for τ, f, s such that stable and reasonable results on all of the
three data sets can be observed. In the Table 1 the meta parameters and their
respective values are summarized.

Table 1. Meta Parameters of BPGA

Parameter Meaning Value

N Population Size {50, 100}
p Mutation probability that a given node mapping in m is

prevented (needed to build P (0))
{0.1, 0.3, 0.5, 0.7}

τ Termination when best solution has not been improved
during the last τ iterations

6

f Percentage of chromosomes selected from P (t) as parents
to build P (t + 1)

0.25

s Number of runs 3

In Table 2 the achieved results are shown. On each data set and for each graph
edit distance algorithm two characteristic numbers are computed, viz. the mean
relative overestimation of the exact graph edit distance (�o) and the mean run
time to carry out one graph matching (�t). The algorithms employed are A*
and BP (reference systems) and eight differently parametrized versions of our
novel procedure BPGA (N ∈ {50, 100}; p ∈ {0.1, 0.3, 0.5, 0.7}).

First we focus on the degree of overestimations and regard the results of
BPGA with N = 50 only. The original framework (BP) overestimates the graph
distance by 12.68% in average on the AIDS data. On the Fingerprint and GREC
data the overestimations amount to 6.38% and 2.98%, respectively. These values
can be substantially reduced with our extended framework. For instance on the
AIDS data, the mean relative overestimation can be reduced to 2.01% in the best
case (p = 0.5). That is, the mean relative overestimation of our novel framework
is approximately six times smaller than the one of the original approximation
framework. On the GREC data set the mean relative overestimation is reduced
from 2.98% to 0.83% in the best case (p = 0.3) and on the Fingerprint data the
overestimation can be heavily reduced from 6.38% to 0.13% (p = 0.3 or p = 0.5).
We observe that a mutation probability between 0.3 and 0.5 works well on all
three data sets.

Comparing the mean run time of our novel procedure with the original frame-
work on the AIDS data, we observe that our extension takes approximately 300
times longer for one matching in average with N = 50 (approx. 167- and 200-
times longer matching times in average on the Fingerprint and GREC data,
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Table 2. The mean relative overestimation of the exact graph edit distance (�o) and
the mean run time for one matching (�t) using a specific graph edit distance algorithm

Algorithm

Data Set

AIDS FP GREC

� o � t � o � t � o � t

A* (Exact) - 5.63 - 5.00 - 3.10

BP 12.68 0.0004 6.38 0.0006 2.98 0.0004

BPGA(50, 0.1) 2.96 0.12 0.20 0.10 1.00 0.08

BPGA(50, 0.3) 2.18 0.11 0.13 0.10 0.83 0.08

BPGA(50, 0.5) 2.01 0.12 0.14 0.10 0.83 0.08

BPGA(50, 0.7) 2.12 0.11 0.15 0.10 0.89 0.08

BPGA(100, 0.1) 2.33 0.23 0.14 0.20 0.82 0.16

BPGA(100, 0.3) 1.53 0.22 0.09 0.21 0.66 0.17

BPGA(100, 0.5) 1.42 0.23 0.09 0.20 0.68 0.17

BPGA(100, 0.7) 1.54 0.23 0.11 0.20 0.74 0.16

(a) BP (b) BPGA(100, 0.3)

Fig. 1. Exact (x-axis) vs. approximate (y-axis) graph edit distance

respectively). The observed run time increase perfectly lies within the expected
multiplication of the average run time by (s · t ·N). However, compared to the
exact algorithm our extension is still very fast (approximately 40 to 50 times
faster on all data sets with N = 50).

Increasing the population size N to 100 allows us to further decrease the
overestimation. Yet, the reduction is at the prize of approximately doubling the
mean runtime when compared to N = 50 on all data sets. Also with N = 100
a mutation probability between 0.3 and 0.5 seems to be the best choice on all
data sets.

The substantial improvement of the approximation accuracy can also be ob-
served in the scatter plots in Fig. 1. These scatter plots give us a visual represen-
tation of the accuracy of the suboptimal methods on the Fingerprint data set4.
We plot for each pair of graphs their exact (horizontal axis) and approximate

4 On the other data sets similar results can be observed.
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(vertical axis) distance value. The reduction of the overestimation using our pro-
posed extension is clearly observable and illustrates the power of our extended
framework.

5 Conclusion and Future Work

In the present paper we propose an extension of our previous graph edit dis-
tance approximation algorithm (BP). The major idea of our work is to use the
suboptimal graph edit distance and the underlying node assignment in a genetic
search procedure to improve the approximation accuracy. With several experi-
mental results we show that this extension leads to a substantial reduction of
the overestimations typical for BP. Though the run times are increased when
compared to our former framework (as expected), they are still far below the
run times of the exact algorithm.

We see three important lines of research for future work. First, we want to im-
plement other search methods than genetic algorithms (e.g. floating search [20]).
Second, there seems to be room for developing other merging methods to build
a new assignment based on two given assignments (without the need to compute
optimal assignments based on C). Finally, the experimental evaluation will be
extended (more data sets, more exhaustive evaluations of the meta parameters,
etc.).
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