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Abstract

We propose an abstraction refinement method for invariant check-

ing, which is based on the simultaneous analysis of all abstract

counter examples of shortest length in the current abstraction. The

algorithm is focused on an improved Ariadne’s Bundle 1 of SORs

(Synchronous Onion Rings) of the abstract model; the transitions

through these SORs contain all shortest ACEs (Abstract Counter

Examples) and no other ACEs. The SORs are exploited in two

distinct ways to provide global guidance to the abstraction refine-

ment process: (1) Refinement variable selection is based on the

entirety of transitions connecting the SORs, and (2) a SAT-based

concretization test is formulated to test all ACEs in the SORs at

once. We call this test multi-thread concretization. The scalabil-

ity of our refinement algorithm is ensured in the sense that all the

analysis and computation required in our refinement algorithm are

conducted on the abstract model.

The abstraction efficiency of a given abstraction refinement al-

gorithm measures how much of the concrete model is required to

make the decision. We include experimental comparisons of our

new method with recently published techniques [6, 4]. The results

show that our scalable method, based on global guidance from the

entire bundle of shortest ACEs, outperforms these other methods in

terms of both run time and abstraction efficiency.

1. Introduction
The primary obstacle to widespread use of formal verification

techniques, especially contemporary symbolic model checking pro-

grams, remains the continuing explosive growth in the complexity

of the model on which the verification property is specified. This is

partly due to Moore’s law—as the chips themselves grow in com-

plexity, the size of the circuit assigned to one designer or design

team grows commensurately. Another cause for explosive growth�
This work was supported in part by SRC contract 2002-TJ-920

and NSF grant CCR-99-71195.
1In the legend of Theseus, Ariadne’s bundle contained one ball of
thread to help Theseus navigate the labyrinth. In this paper we work
with multiple threads—hence the “improved.”

.

is increasing use of high level HDLs (Hardware Description Lan-

guages); models whose implementation requires thousands or tens

of thousands of binary state variables (e.g., registers) may yet look

modest when considering their HDL descriptions. Recent papers,

including this one, have shown that symbolic model checkers, ex-

tended to include an automated abstraction refinement paradigm,

still hold great promise in dealing with state explosion.

In such a paradigm, one seeks the simplest abstract model suffi-

cient to decide the property at hand. This corresponds to achieving

the maximium abstraction efficiency. However, the optimum ab-

straction problem is hard [5], and existing practical abstraction and

refinement techniques do not guarantee or even pursue global opti-

mality.

Automated abstraction technique was first introduced by Kur-

shan [16] in checking linear properties specified by ω-regular au-

tomata, where overapproximation suffice to prove a property true.

In COSPAN [11], the initial abstraction contains only the state

variables in the property and leaves the others unconstrained; the

counter example obtained from the abstract model was searched

for the variables appearing in it and mincut-maxflow eventually de-

termined which variables of the model comprised the refinement

step.

For logics like CTL [7] or the full µ-calculus [15], which ex-

press also existential and mixed properties, one has to resort to both

underapproximation and overapproximation [14, 20, 12]. If one

wants to prove a universal property false, one can try to concretize

the counter example as done in [16, 5], or use underapproximation

as in [17]. Concretization via satisfiability was introduced in [22]

(where an ATPG program was used) and improved in [6, 4].

However, in these existing methods, only a single abstract count-

er example is used for concretization test and for deriving the re-

finement; this single ACE is usually arbitrarily chosen. One can ar-

gue that a drawback of these methods is their “needle in a haystack”

approach, lacking global criteria or search strategies; we have ob-

served, on a real-world circuit, that the number of the shortest ACEs

can be larger than 1045. Focusing on a single ACE among such an

astronomically large number of ACEs makes it difficult to find a

set of refinement variables sufficient to kill all ACEs of the current

length L and thus might lead the refinement in the wrong direc-

tion; it might also be difficult to find a real counter example by the

concretization test.

In contrast, we propose a new refinement algorithm that works

on global guidance provided by the “improved Ariadne’s Bundle”

of all shortest ACEs. This bundle is represented by the set of SORs

(Synchronous Onion Rings) of the abstract model. Each onion ring

is the intersection of forward and backward reachable onion rings

at the same number of time step from (or to) the initial states. In

case all of the shortest ACEs are spurious, the refinement process
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tries to find the minimal set of refinement variables sufficient to kill

all the given ACEs (that is, sufficient to prove that all ACEs of the

current set of SORs are spurious).

The algorithm does not try to kill the entire bundle in one shot;

rather, it tries to identify local variables that are critical to the re-

finement according to a game theoretic approach to exploiting the

global guidance provided by the SORs. It may take a set of re-

finement steps, called a generation of refinements, before all the

shortest ACEs at a given length disappear. From our experience,

typically only a few such iterations are required.

Like [4], the new algorithm also employs a form of the refine-

ment minimization first introduced in [22]. However we make this

task more effective by a technique called generational refinement

minimization. This method performs minimization based on test-

ing the non-emptiness of the SORs, and is triggered only at the end

of each refinement generation. Note that at the point we have a set

of refinement variables, added in this generation, that are sufficient

to kill the entire ACEs in the SORs. We use a greedy approach

that first tries to drop some of these variables and then checks if

the SORs can still be killed, thus minimizing the set of refinement

variables in this generation.

Our SAT-based multi-thread concretization test decides with one

satisfiability check whether any ACE in the SORs can be con-

cretized. Data show that the time to conduct this test is surprisingly

close to the concretization test time for a single ACE, and usually

much less than the overall verification time.

In summary, our method differs from previous counter example

driven abstraction refinement schemes [5, 22, 6, 4] in that: (1) It

handles all shortest ACEs, rather than a single shortest ACE; (2) at

each ACE level in the concretization test, a set of abstract states,

instead of just one abstract state, are used to constrain the bounded

unrolled concrete model at each time step; and (3) the refinement

is based on the analysis of all the spurious ACEs with a game theo-

retic approach. Since this refinement variable selection method op-

erates solely on the abstract model and its local support variables,

it is more scalable than those methods that involve computation on

the concrete model.

More recently, an automatic abstraction algorithm based on the

unsatisfiable BMC runs was proposed [18], and it also can elimi-

nate all the counter examples. However, our refinement algorithm

is BDD-based and is conducted solely on the abstract models, wh-

ereas theirs is based on computing the unsatisfiable proof for con-

crete BMC instances using SAT. Furthermore, our multi-thread con-

cretization test is also different from their plain BMC runs, for we

use the SORs to restrict the search space. In another recent paper

[9], multi-valued counter example was used to guide the refine-

ment. This multi-valued annotation collects information from mul-

tiple counter examples, but is still different from our SORs in the

sense that it does not capture all the shortest ACEs. (For example,

their concretization test does not check all the shortest ACEs.)

We present a thorough experimental comparison of our new al-

gorithm to the BDD-based invariant check algorithm in VIS [3],

VIS’s BMC (Bounded Model Checking), the SepSet algorithm of

[6] and the Conflict Analysis (CA) approach of [4]. For the pur-

pose of experimental comparision, we also implemented the algo-

rithms of [6, 4]. The experiments were conducted on circuits from

both public-domain and industry. Many of the models used were

kindly provided by the authors of [4]. After establishing notation,

we discuss how to compute and deploy Ariadne’s bundle in the

abstraction refinement process. This leads to a discussion of the

new algorithm, its comparison to our implementation of competing

methods, and indications for promising new avenues of research.

2. Preliminaries
In this section we establish the basic properties of the considered

abstractions, and then define and illustrate the SORs.

A model is given in terms of: (1) A set of present-state variables

x ✄✆☎ x1 ✝✟✞✠✞✡✞✠✝ xm ☛ ; (2) a set of input variables w ✄☞☎ w1 ✝✟✞✠✞✠✞✠✝ wn ☛ ; and

(3) a set of next-state variables y ✄✌☎ y1 ✝✟✞✠✞✡✞✠✝ ym ☛ . Thus, the model

M can be represented by the pair ✍ T ✝ I ✎ , where T ✏ x ✝ w ✝ y ✑ is the tran-

sition relation, and I ✏ x ✑ is the set of initial states. We assume that

the concrete model is the synchronous composition of a collection

of m elementary components, each of which contains exactly one

state variable. Let J ✄✒☎ 1 ✝✟✞✟✞✓✞✟✝ m ☛ ; then,

T ✏ x ✝ w ✝ y ✑✔✄✖✕
j ✗ J

Tj ✏ x ✝ w✝ y j ✑ ✝
where Tj ✏ x ✝ w✝ y j ✑ is the transition relation of the jth binary state

variable, and thus depends on one next-state variable. Tj ✏ x ✝ w✝ y j ✑ is

defined as ✘ y j ✙ δj ✏ x ✝ w ✑✛✚ , where δj ✏ x ✝ w ✑ is the transition function

of the jth state variable.

The abstract model consists of k ✜ m elementary components.

Let Ĵ ✄✢☎ 1 ✝✓✞✟✞✟✞✣✝ k ☛✥✤ J. Then,

T̂ ✏ x̂ ✝ ŵ ✝ ŷ ✑✦✄ ✕
j ✗ Ĵ

Tj ✏ x̂ ✝ ŵ ✝ ŷ j ✑ ✞
Here ŷ ✄✧☎ y j ★ j ✩ Ĵ ☛ is the subset of next-state variables in the ab-

stract model. Let x̂ denote the subset of present-state variables cor-

responding to ŷ, x can be bipartitioned into x̂ (state variables in

the abstract model) and x̌ ✄ x ✪ x̂ (state variables that are abstracted

away). During the symbolic model checking of the abstract model,

variables in x̌ are treated as inputs; ŵ ✄✢☎ x̌ ✝ w ☛ is now the entire set

of input variables for the abstract model. M̂ ✄✢✍ T̂ ✏ x̂ ✝ ŵ ✝ ŷ ✑ ✝ Î ✏ x̂ ✑✟✎ rep-

resents an over-approximation of the original model. Informally, Î

is an existential projection of I: An abstract state is called initial if

it contains a concrete initial state.

In the sequel, we will assume that the given property is an in-

variant ✫✭✬ p (that is, “p holds globally on all paths”). The states

satisfying the propositional property p are also abstracted by pro-

jection: If an abstract state contains a concrete state that is labeled

by p, then it too will be labeled by p. Thus the abstract model M̂

simulates the concrete model M, and, if the property passes on the

abstract model, it also passes on the concrete model. However, if

the property fails and an abstract counter example is generated from

an initial state to a ✮ p state, it may or may not be a CCE (concrete

counter example). A concretization test determines whether an ab-

stract counter example is real or spurious. In the published works

[6, 4], given an ACE s0s1 ✞✟✞✟✞ sL, such a concretization test builds

a length-L bounded concrete model (unrolling the model exactly

L time steps) and constrains it at each time step with the abstract

state si; a satisfiability check is then conducted on this constrained

bounded model, either by SAT-solvers or by ATPG engines. If the

ACE is concretizable (i.e., there exists a satisfiable assignment),

the property fails with a real counter example; otherwise, the result

is still inconclusive and we have to refine the abstract model, by

composing more elementary transition relations.

Our new algorithm is based on the synchronous onion rings dis-

cussed below, which are obtained by forward and backward travers-

ing the state transition graph of the model.

The abstraction we call “Ariadne’s Bundle” is a subset of the

transitions of T̂ , as illustrated in Fig. 1. The state transition graph

of the abstract model M̂ is shown in Part (1). Abstract forward

reachability from Î gives the indicated sets of states called the for-

ward onion rings: F1 ✄✯☎ 3 ✝ 4 ✝ 5 ☛ , etc.. Note that ✮ p is first reached

at the 3rd step of the search. An analogous backward reachability
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Figure 1: Ariadne’s bundle of synchronous onion rings.

from the ✱ p state in the 3rd step would reach states ✲ 8 ✳ 9 ✴ at the 2nd

step, ✲ 5 ✴ at the 1st step, and the initial state 2. Both forward and

backward abstract onion rings induce subrelations of T̂ , and thus

can be used to restrict the search space on the concrete model [10].

Taking the intersection of the two sets of states at each step gives

the synchronous onion rings

S0 ✵ ✲ 2 ✴✶✳ S1 ✵ ✲ 5 ✴✷✳ S2 ✵ ✲ 8 ✳ 9 ✴✸✳ S3 ✵ ✲ 12 ✴✧✹
The term “Ariadne’s bundle” refers to the subrelation TB induced

by considering only the transitions of T̂ between a state at one step

to another state in the next step in the SORs. It comprises the bun-

dle of all shortest ACEs, and no other ACEs. In this simple case

there are two shortest ACEs, both of length 3. In practice, however,

the number of ACEs in the SORs is typically astronomically large.

Comparing the state transition graph of Ariadne’s bundle to the

original state transition graph, one can note substantial reduction in

the number of states and transitions. Thus while the abstraction T̂

can be much simpler than the concrete system T , Ariadne’s bundle

can be much simpler still.

3. Generational Refinement
We begin illustrating the generic process of the abstraction and

refinement, by treating the simple example in Fig. 2. The concrete

model M is the synchronous composition of three components: M1,

M2, and M3. That is,

M ✵ M1 ✺ M2 ✺ M3 ✹
Each component Mi has one state variable vi. In M1, the state vari-

able v1 can take 4 values and thus must be implemented by 2 binary

variables; the other two state variables (v2 ✳ v3) are binary variables.

The variable v4, which appears on the edges in M1, is a primary in-

put. The property of interest is AG ✻ v1 ✼✵ 3 ✽ , i.e., State 3 in M1 is not

reachable. The right part in Fig. 2 gives the state transition graph

of the concrete model M. It is not difficult to see that the property

fails on the concrete model, as shown by the bold edges, which ex-

hibits the length-4 CCE (Concrete Counter Example): (000, 111,

200, 211, 300).

Let the initial abstraction be M̂ ✵ M1, that is, only the state vari-

able appearing in the given property is preserved, and all the other

state variables are treated as inputs. Note that there is an abstract

counter-example of length 3: (0 , 1 , 2 , 3 ); this ACE is

spurious because it is not concretizable on M.

✰
v2 ✾ ✰ v3

v3✰
v3

M2 ✿ v2 ❀
0

1

M3 ✿ v3 ❀
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201001 110 310
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Figure 2: A simple example.
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Figure 3: The refinement process.

Although this example is extremely simple, it demonstrates an

important aspect of the abstraction/refinement process. Refine-

ment mechanisms like those in [5, 6], since they are actuated by a

single ACE, might pick only variable v2 for refinement. However,

after this refinement, an ACE of length 3 still exists; for example,

it could be (00 , 10 , 21 , 30 ). This shows that ✲ v2 ✴ is not a suf-

ficient refinement set to kill the ACE (0 , 1 , 2 , 3 ). This is

suggestive of the danger of placing too much refinement emphasis

on a single ACE. Of course, this is much more of a problem when

the SORs contain an extremely large number of shortest ACEs. In

this case choosing the refinement variables on the basis of a single

ACE could be ineffective.

We now discuss and illustrate the proposed framework of gener-

ational SOR-based refinement, using the above example. Note that

in building the SORs, self loops and back edges are pruned away

to focus on the shortest ACEs in the current abstract model. In the

initial abstract model M̂ ✵ M1, all the shortest ACEs are of length

3, and the SORs are just the 4 states of M1, connected by the 4

forward edges.

Because the first generation of shortest ACEs are of length 3,

we start our refinement process by dealing with all these length-3

SORs until all of them are killed. These initial SORs are shown in

Part (a) of Fig. 3. Note that in M1 only edges from state 2 to states

1, 2, and 3 are labeled. As discussed below in Section 5, these

labels cause our variable selection routine to pick variable v2 for the

first refinement. The refined abstract model will be M̂ ✵ M1 ✺ M2;

however, M̂ is not constructed in this naive way, but by a more

efficient two-step process.

First, we split the states according to the labels on their outgoing

edges, as shown in Part (b) of Fig. 3. Because of the label v2 ö
v4, the last abstract edge, (2 ,3 ), is split into 2, rather than 4

refined edges. State 20 is now backward unreachable from ✱ p,

so its two incoming edges, (10 ,20 ) and (11 ,20 ), are removed.

The outgoing edges from State 01 are removed because 01 is not

an initial state. States like 20 are called the deadend states. The
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Figure 4: The effect of the generational refinement, with the re-

finement minimization.

concept of deadend states is critically involved in the refinement

variable selection algorithm, as discussed below in Section 5. We

must stress that all these splits, which make the SORs change from

the one in Part (a) to the one in Part (b), are done before M2 is

brought in.

The second step of refinement is to actually take the composition

of M2 with the remaining edges of the SORs (i.e., those edges in

Part (b)). This kills the edges (11 ,21 ) and (21 ,31 ), and leads to

the reduced SORs in Part (c).

After the above refinement step, we are still at the length-3 gen-

eration; the number of length-3 spurious ACEs is decreased, but

we have not killed them all. At this point, v3 will be selected as the

next refinement variable. We then proceed to again take the first

part of the two-step refinement process, as illustrated in Part (d).

The result is a disconnection of I and ÷ p, since after this reduction

there is no outgoing edge from the sole remaining initial state.

At this point, we have proven that there is no CCE of length 3, so

this generation of refinements is complete. Note that during these

two refinement steps (i.e., adding v2 and adding v3), the SORs are

updated incrementally, that is, inside the existing SORs. The BDD

don’t cares associated with this incremental process lend critical

efficiency to the SORs refinement process.

Next, we rebuild the SORs from scratch, which now are of length

4, as is shown in Part (e). This final set of SORs contains a single

ACE, which is concretizable, as discussed above in reference to

Fig. 2. So we know the given property fails.

The effect of the generational refinements is illustrated in Fig. 4,

which is obtained from a real-world circuit on which the given

property is true. The upper curve is the number of state variables in

the abstract model at different refinement steps, and the lower curve

is the shortest ACE lengths at different refinement steps. A gener-

ation consists of a number of consecutive refinement steps, all with

SORs of the same length. Note that every time the shortest ACE

length changes, the number of abstract variables may decrease; this

is due to the greedy refinement minimization procedure that tries

to keep the abstraction as small as possible. Our experience shows

that this is critical in achieving a high abstraction efficiency.

4. The Algorithms
Let ø S0 ù S1 ù✟ú✟ú✓ú✟ù SL û be the length-L synchronized onion rings,

where S0 is the set of initial states, SL consists of states satisfying÷ p, and the S j (0 ü j ü L) is the set of abstract states on the shortest

abstract paths from S0 to SL.

GRAB ý M þ Φ ÿ✁�
1 M̂ ✂ INITIALABSTRACTION ý M þ Φ ÿ
2 while (1) � //Loop over SORs with different length

3 ✄ Sl ☎ = COMPUTESORS ý M̂ þ Φ ÿ
4 if ( ✄ Sl ☎ is empty )
5 return TRUE

6 CCE = MULTITHREADCONCRETIZATION ý M þ Φ þ✆✄ Sl ☎ ÿ
7 if (CCE not empty)
8 return (FALSE, CCE)

9 ✄ Sl
R
☎ ✂✝✄ Sl ☎

10 while (1) � //Loop over refinements for current length

11 M̂ = REFINEABSTRACTION ý M̂ þ✆✄ Sl
R
☎ ÿ

12 ✄ Sl
R
☎ = REDUCESORS ý M̂ þ✆✄ Sl

R
☎ þ Φ ÿ

13 if ( ✄ Sl
R
☎ is empty)

14 break
15 ✞
16 M̂ = REFINEMENTMINIMIZATION ý M̂ þ✆✄ Sl ☎ ÿ✞✟✞
REFINEABSTRACTION ý M̂ þ✆✄ Sl ☎ ÿ✠�
17 wS ✂✝✄ ☎ , wE ✂ ŵ

18 while ( ✡wS ✡☞☛ threshold) �
19 v ✂ PICKBESTVAR ý M̂ þ✆✄ Sl ☎ ÿ
20 wS ✂ wS ✌ ✄ v ☎ , wE ✂ wE ✍ ✄ v ☎
21 ✞
22 return COMPUTEABSTRACTION ý M̂ þ wS ÿ✠✞

Figure 5: Abstraction-Refinement algorithm GRAB.

4.1 The Overall Algorithm of GRAB

The pseudo code of our abstraction and refinement algorithm is

given in Fig. 5. We call the algorithm GRAB, for Generational

Refinement of Ariadne’s Bundle. GRAB accepts as inputs the con-

crete model M and the property Φ (in this paper, Φ ✎✑✏✓✒ p, where

p is a propositional formula over the state variables.)

First, an initial abstract model M̂ is created, with only those state

variables that appear in the local support of the property. The outer

loop is over the length, L, of the current generation of refined SORs.

As the abstract model is gradually refined, L is guaranteed to grow

monotonically in the outer loop.

The action starts in Line 3, where BDD-based forward reacha-

bility analysis is used to compute the forward onion rings from the

initial states to ÷ p states. If ÷ p cannot be reached on M̂, it cannot

be reached in M either. In this case of early termination, GRAB

returns TRUE. Otherwise, we compute the first set of SORs of the

current length L.

A SAT-based concretization test of the current the SORs is then

conducted on the concrete model. Here, we simultaneously try to

concretize all the ACEs present in the SORs by one SAT instance.

If any ACE of the current length can be concretized, we have the

second case of early termination (Line 8). Thus the property Φ is

proved FALSE, and the CCE (Concrete Counter Example) is re-

turned.

Otherwise, we start the inner loop over the refinements for this

generation. The length of the SORs (Sl
R stands for the “reduced

SORs”) does not change in the inner loop, but the number of ACEs

in it decreases monotonically. Note that there is no concretization

test in the inner loop, for all the ACEs in Sl
R have been proved

spurious.

Each time the abstract model is refined (Line 11), the SORs are

reduced (Line 12) until all the spurious ACEs in them are removed.

Typically a few passes through the inner loop produce the break-

out, which implies the current generation of refinement constitutes

a sufficient set that kills the entire length-L SORs.
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The details of the subprocedure calls at Lines 6 and 16 will be

discussed✔ in the following two subsections. We reserve the treat-

ment of REFINEABSTRACTION (Line 11) and the game theoretic

heuristic PICKBESTVAR for Section 5.

Prior art in abstraction/refinement algorithms [5, 6, 4] can be de-

scribed with a similar framework of pseudocode. However, these

algorithms are all based on the analysis of a single abstract counter-

example. We note that even an optimum refinement based on a

single ACE could not necessarily guarantee a good overall refine-

ment, although our experimental results show that sometimes good

results can be obtained. We will compare GRAB to these alternative

methods in the experimental results section.

4.2 MultiThread Concretization Test

The multi-thread concretization test is formulated as a satisfi-

ability problem, which can be solved by the state-of-the-art SAT

solvers. For this purpose, the concrete transition relations are un-

rolled to length L and constrained at each time step by the corre-

sponding SOR. To achieve this, we translate theses SORs into the

CNF (Conjunctive Normal Form) format. Let the CNF formula

Ψ ✕ ΨM ✖ ΨS, where ΨM represents the bounded concrete model,

and ΨS represets the constraints from the abstract SORs.

ΨM ✕ I ✗ X0 ✘✚✙
0 ✛ l ✜ L T ✗ X l ✢ W l ✢ X l ✣ 1 ✘✤✢

ΨS ✕ ✙
0 ✛ l ✛ L Sl ✗ X l ✘✥✢

where X l and W l are the state variables and inputs at the lth time

step. (ΨM is constructed by unrolling the concrete model exactly L

time steps, and representing the new bounded model with only and

gates and inverters. The and-inverter graph is then translated into

the CNF format.) Note that this is similar to building a length-L

instance in Bounded Model Checking (BMC) [2].

In the BDD-based model checker, each Sl of the SORs is a BDD

representation of a set of states at the lth time step. In order to build

the CNF formula for Sl ✗ X l ✘ , an and-inverter graph must be built

for that BDD; in our implementation, this is done by converting

each BDD node into a 2-input multiplexer (which in turn can be

represented by 3 nand gates) [10]. Once the and-inverter graphs

are built, encoding them into CNF is straightforward.

Ψ is satisfiable iff there exists a concrete counter example inside

the abstract SORs. If satisfiable, the assignment returned by the

SAT solver represents a CCE from an initial state to a ✦ p state.

4.3 Refinement Minimization

Given a sufficient set of refinement variables, and the spurious

ACE(s), the refinement minimization problem can be defined as

finding the minimal subset of refinement variables that can kill the

spurious ACE(s). Refinement minimization was first proposed in

[22] and then used in [4], where a single ACE was used; the re-

finement minimization was triggered every time a single ACE was

killed.

In our method, however, we do not try to achieve such a local

minimality; we conduct the minimization only at the end of each

generation, when all the length-L ACEs have been killed. The re-

sult is a potentially more global mimimality – the minimal set of

refinement variables is with respect to the bundle of ACEs.

Our refinement minimization also uses the SAT solvers, and the

satisfiability checks in it is similar to the multi-thread concretiza-

tion test. For each variable in the sufficient set, we first try to re-

move it from the set, the SAT solver is then used to check whether

the killed ACEs come back. If they do not come back, that vari-

able is proved to be redundant, otherwise, it must be added back.

Unlike the multi-thread concretization test, the satisfiability checks

here are conducted on the abstract models, so they can be much

easier to solve.

5. GameTheoretic Refinement
In this section we explain the algorithm used in REFINEABS-

TRACTION, and we do this by first formalizing the refinement prob-

lem as a game. The set of invisible variables, x̌, are the free vari-

ables (i.e., inputs) in M̂. Let x̌ be partitioned into two sets (x̌ ✕
wE ✧ wS): wE are the variables controlled by a hostile environment

to force the abstract system M̂ through the spurious ACEs; the re-

maining variables wS are controlled by the abstract system M̂ to

play against the hostile environment.

Given M̂, the two sets wE , wS and a target predicate ✦ p, the

model checking of ★✓✩ p on M̂ can be viewed as a two-player con-

current reachability game [8][13]. The positions of the game corre-

spond to the states of M̂; the two players are the hostile environment

and the abstract system. From one position X̂ (X̂ is a valuation of

x̂; similarly let capital values of other vector names stand for their

valuations), the environment (player) chooses values for the vari-

ables in wE and simultaneously the system (player) chooses values

for variables in wS. The new position is computed as the unique Ŷ

satisfying T ✗ X̂ ✢ X̌ ✢ Ŷ ✘ . The goal of the hostile environment is to go

through spurious paths and reach a state labeled ✦ p in spite of the

abstract system’s opposition.

A (memoryless) strategy for the environment is a function that

maps each state of M̂ to one valuation of the variables in wE . Like-

wise, a strategy for the system is a function that maps each state of

M̂ to one valuation of the variables in wS. A position X̂ is a winning

position for the environment if there exists an environment strategy

such that, for all system strategies, ✦ p is eventually satisfied. If

wE ✕ x̌ (the hostile environment controls all the invisible variables)

and M̂ is deterministic, the environment can force the system along

any spurious ACEs. Note that this is exactly the case in M̂ before

the refinement.

The refinement problem can be stated as follows: Among all the

possible partitions of x̌ ✕ wE ✧ wS, we choose the one that gives

the environment the least number of winning positions. Note that

in a “MinMax” game without a “win-win strategy”, the partition

that favors the hostile environment the least also favors the abstract

system most. Then we refine with the variables in wS by adding

their transition bit-relation into the abstract model; this makes them

not free variables any more (in the game, they will be controlled by

the abstract system).

Given a partition ✪ wE
✢ wS ✫ of the x̌ variables, and the abstract

SORs ✪ S j ✫ , the environment’s winning positions inside S j can be

represented symbolically as✬
wE ✭ ✮ wS ✭ ✬ ŷ ✭✰✯ S j ✗ x̂ ✘ ✖ T̂ ✗ x̂ ✢ x̌ ✢ ŷ ✘ ✖ S j ✣ 1 ✗ ŷ ✘✲✱

which is the set of states from which the hostile environment can

force the abstract system to S j ✣ 1 despite its opposition. Note that

although universal abstraction is not the same operation as compo-

sition, they both reduce the number of enabled edges. Further, it

can be shown that when an edge label has a variable which factors

out of its label (all the edges in Fig. 6 except the edge from state 5 to

state 7), then composing that variable with the abstract model splits

the abstract edge into 2 edges (instead of 4). For such edges, a split

is created, in which one of the two split nodes has no fanout—that

is, it is a deadend split.

Let us consider the abstract model in Fig. 6 as an example. Sup-

pose I ✕✳✪ 1 ✢ 2 ✢ 5 ✢ 6 ✫ . Then, S0 ✕ I ✕✴✪ 1 ✢ 2 ✢ 5 ✢ 6 ✫ , S1 ✕✳✪ 3 ✢ 4 ✫ , x̌ ✕
✪ g ✢ f ✫ . When the partition is such that wE ✕✵✪ g ✫ and wS ✕✑✪ f ✫ , the

winning position for the environment is ✪ 1 ✢ 2 ✫ . State 1 is a winning

position for the environment because, when the hostile environment
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Figure 6: Illustration of the winning position.

chooses the valuation g ❚ 1, the abstract system will be forced to a❯ p state (either 3 or 4) no matter what its strategy (the value of f )

is .

Given the partition ❱ wE ❲ wS ❳ , the normalized number of winning

positions for the environment inside abstract states S j can be com-

puted as

N ❨ wE ❩ wS ❬
j ❚

❭ ❪
wE ❫ ❴ wS ❫ ❪ ŷ ❫✰❵ S j ❛ x̂ ❜❞❝ T̂ ❛ x̂ ❲ x̌ ❲ ŷ ❜❞❝ S j ❡ 1 ❛ ŷ ❜✲❢ ❭❭

S j ❛ x̂ ❜ ❭
Here

❭ ❫ ❭ stands for the cardinality (or number of states). For the

purpose of refinement, we seek such a partition that, when adding

the wS variables into the abstract model, removes the largest num-

ber of spurious edges. Nj, the estimated number of spurious edges

that might be killed, is a good indicator of the impact of refining

with respect to the wS variables. Thus we prefer the partition that

gives N j the lowest value.

According to the definition of Nj and the given example in Fig. 6,

N ❨❣❨ g ❩ f ❬☞❩ ❨ ❬❣❬0 ❚ 1 ❫ 0 ❲
N ❨❣❨ g ❬☞❩ ❨ f ❬❣❬

0 ❚ 0 ❫ 5 ❲
N ❨❣❨ f ❬☞❩ ❨ g ❬❣❬0 ❚ 0 ❫ 25 ❲
N ❨❣❨ ❬☞❩ ❨ g ❩ f ❬❣❬0 ❚ 0 ❫ 0 ❫

This indicates that g is a better candidate than f for the refinement,

because putting g alone in wS gives the hostile environment one

winning position, while putting f alone in wS gives it two winning

positions.

Our refinement goal is to select a small set of invisible variables

into wS such that the partition ❱ wE ❲ wS ❳ minimizes the

∑
0 ❤ j ❤ l

N ❨ wE ❩wS ❬
j ❲✐❴ ❱ wE ❲ wS ❳ ❫

This is greedily approximated inside REFINEABSTRACTION: The

one variable that minimizes the above number is repeatedly picked

(Line 19 in Fig. 5). In any case, those wS variables, together with

their transition bit-relation, will be put into our refined model.

The computation of
❪

wE ❫ ❴ wS ❫ ❪ ŷ ❫✰❵ S j ❛ x̂ ❜❥❝ T̂ ❛ x̂ ❲ x̌ ❲ ŷ ❜❥❝ S j ❡ 1 ❛ ŷ ❜✲❢ can

be made more efficient by pulling S j out of the quantifications, and

by sharing the common intermediate result
❪

ŷ ❫❦❵ T̂ ❛ x̂ ❲ x̌ ❲ ŷ ❜❥❝ S j ❡ 1 ❛ ŷ ❜✲❢ .
We also point out that, the subset ❱ wE ❲ wS ❳ contains only invisible

variables that are in the local support of the current abstract model.

6. Experiments
We have implemented the GRAB algorithm and two compet-

ing refinement algorithms in VIS-2.0 [3, 21]. We use CUDD for

the BDD-based computation, and Chaff [19] as the back-end SAT

solver. The experiments were run under Linux on an IBM IntelliS-

tation with a 1.7 GHz Intel Pentium 4 CPU, 2 GB of RAM. CPU

times are in seconds and are all-inclusive.

Table 1 compares two variants of the GRAB algorithm against

the BDD-based invariant checking algorithm in VIS (CI), Bounded

Model Checking (BMC), the SepSet algorithm [6], a variant of

SepSet called SepSet+, and the conflict analysis algorithm of [4].

The CI experiments consist of forward reachability analysis with

early termination. For BMC, only the times for failing properties

are reported. (BMC in VIS checks for inductive invariants, but

none of our invariants is inductive.) The variant of GRAB denoted

by GRAB– does not perform refinement minimization. The variant

SepSet+ differs from SepSet because it minimizes the number of

variables in the separation set, instead of the size of the separation

tree.

Each model checking run was limited to 8 hours. Dynamic vari-

able reordering was enabled (with method sift) for all BDD opera-

tions. The comparison was conducted on 14 models, coming from

both industry and the VIS verification benchmarks [21].

In Table 1, the second column lists the number of binary vari-

ables in the cone of influence (COI) of the property. The third col-

umn shows the length of the counter example, or of the last ACE

encountered by GRAB if the property holds (indicated by a T).

For each of the abstraction refinement methods compared, iter

is the number of refinement iterations; regs is the number of state

variables in the proof or disproof. If an experiment ran out of time,

the number of iterations performed up to that point and the number

of state variables in the last abstract model are given in parentheses.

For GRAB we also report sat, the time spent in the SAT solver

during ACE concretization. Note that in GRAB iter can be larger

than regs because of refinement minimization.

Note that both variants of the GRAB algorithm significantly out-

perform CI, SepSet, and CA in terms of CPU time. BMC has the

best times for several failing properties, but fails to complete for the

hardest problems and for the passing properties. Regarding the size

of the BDDs, GRAB is much more efficient than CI; SepSet and CA

have even fewer BDD nodes, because they use the SAT solver (in-

stead of BDDs) to compute the refinement; unlike GRAB, they do

not need backward reachability analysis. BMC uses no BDDs.

In the I12-p1 instance, the sat time for GRAB is markedly higher

than elsewhere. This is because I12-p1 is a model inheriantly hard

for BMC/SAT; it is a failing property, and BMC can not solve it

within 8 hours.

Table 2 compares the final abstractions of GRAB and CA. In the

table, g is the final set of state variables produced by GRAB, while

c is the final set of state variables produced by CA. The first three

columns are repeated from Table 1.

Table 2 shows that in general there is very good correlation be-

tween the final abstractions produced by CA and GRAB. In the

23 experiments that both methods completed, GRAB and CA pro-

duced the same final abstraction in four cases. In another 10 cases,

the abstraction produced by GRAB is strictly better than the one of

CA. Conversely, in two cases, CA produces an abstraction that is

strictly better than the one of GRAB. These differences are in part a

consequence of applying refinement minimization once every outer

iteration in GRAB, instead of once every inner iteration. The other

sources of difference are the order in which variables are selected

for refinement (this is what happens in D24-p2) and the order in

which they are considered by the greedy minimization procedure.

Though we exercised diligence in implementing the algorithms

of [6, 4], there remain differences between the originals and our

rewritings. For instance, our current implementation, considers the

bit relation of one state variable as an atom: When a variable be-

comes part of the abstract model, all the state variables in its sup-

port become inputs to the model. This is not the case of the original

methods of [6, 4], and will in some cases impede the search for a
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Table 1: Performance comparison for invariant checking algorithms.
circuit COI cex CI BMC SepSet SepSet+ CA GRAB– GRAB

regs len time time time iter regs time iter regs time iter regs time iter regs time iter regs sat

D1-p1❧ 101 9 45 1 48 11 38 74 9 21 98 15 26 9 18 21 9 18 21 1

D23-p1 85 5 7 1 8 2 21 17 2 21 11 1 21 29 5 23 20 5 21 1

D24-p1 147 9 ♠ 8 h 27 1 0 4 1 0 4 1 0 4 1 0 4 1 0 4 1

D24-p2 147 T(9) ♠ 8 h - 6982 2 8 7087 2 8 2153 34 77 1 3 8 3 3 8 1

D1-p2 101 13 1947 2 1774 27 45 962 23 38 423 28 44 27 25 28 51 37 23 1

D22-p1 140 10 58 2 615 3 133 1005 5 135 728 3 133 537 3 134 720 3 132 1

D1-p3 101 15 1157 3 623 22 36 446 19 32 636 25 39 39 23 27 56 34 25 2

D24-p5 147 T(2) ♠ 8 h - 310 4 7 944 3 7 36 4 11 4 4 6 3 4 5 1

D12-p1 48 16 5 5 106 22 32 124 20 35 64 12 28 6 17 24 14 25 23 1

D2-p1 94 14 166 6 147 5 48 280 5 48 239 7 50 124 5 53 180 10 48 1

D16-p1 531 8 837 10 ♠ 8 h (35) (41) ♠ 8 h (36) (41) 890 3 16 282 9 14 92 9 14 5

D24-p3 147 T(3) ♠ 8 h - ♠ 8 h (1) (4) ♠ 8 h (2) (4) 62 5 11 37 6 8 20 6 8 1

D5-p1 319 31 513 58 43 4 13 148 4 13 82 3 13 26 9 18 31 9 18 12

D24-p4 147 T(3) ♠ 8 h - 545 4 7 711 4 7 70 5 11 29 6 8 43 6 8 1

D21-p1 92 26 63 3787 3790 39 88 2402 36 85 1922 28 79 1010 11 76 2817 26 66 3

B-p1 124 T(18) 7453 - 4359 14 27 4360 14 27 284 5 19 88 19 24 173 19 18 6

B-p2 124 17 12988 150 110 2 7 115 2 7 108 2 7 220 8 13 93 8 7 11

M0-p1 221 T(3) ♠ 8 h - ♠ 8 h (0) (3) ♠ 8 h (0) (3) 1182 9 19 219 14 17 136 14 16 20

B-p3 124 T(4) 12466 - ♠ 8 h (74) (80) ♠ 8 h (95) (101) 167 6 42 144 35 52 223 35 43 2

D21-p2 92 28 152 10515 4146 36 85 2930 37 86 2962 30 83 2079 19 89 4635 41 70 6

B-p4 124 T(5) 7089 - 9255 49 67 10360 54 68 228 8 43 157 36 54 393 47 42 3

B-p0 124 T(17) 7467 - ♠ 8 h (54) (61) ♠ 8 h (39) (47) 2644 7 49 330 28 29 1256 32 24 10

rcu-p1 2453 T(2) ♠ 8 h - 375 7 11 375 7 11 ♠ 8 h 5 (9) 197 9 12 195 9 10 0

D4-p2 230 T(19) 765 - ♠ 8 h (5) (16) ♠ 8 h (10) (22) ♠ 8 h (3) (171) 682 38 69 1103 69 38 6

I12-p1 119 370 ♠ 8 h ♠ 8 h 6202 26 31 6062 26 31 ♠ 8 h (3) (61) 3025 15 20 2503 30 16 1382

good abstraction. However, the drawback is shared by all methods

we implemented, and therefore should not have a major impact on

the comparison we present.

Further evidence for the importance of global guidance is pro-

vided by an analysis of abstraction efficiency for 80 mid-size test

cases from the VIS Benchmarks. Each test case has a passing prop-

erty and a non-trivial abstract model. (It requires at least one refine-

ment iteration.) The abstraction efficiency is 0 (100%) if the final

model contains all (no) state variables. Fig. 7 shows scatterplots of

the abstraction efficiency of SepSet, CA, and GRAB. SepSet+ be-

haves like SepSet. Each point below the diagonal represents a win

for GRAB.

Table 2: The correlation between the final proofs (GRAB vs. CA).
circuit COI cex ♥ g ♥ ♥ c ♥ ♥ g ♦ c ♥ ♥ g ♣ c ♥ ♥ g q c ♥ ♥ c q g ♥ subset?

D1-p1 101 9 21 26 27 20 1 6 no

D23-p1 85 5 21 21 21 21 0 0 yes

D24-p1 147 9 4 4 4 4 0 0 yes

D24-p2 147 T(9) 8 77 77 8 0 69 strict

D1-p2 101 13 23 44 44 23 0 21 strict

D22-p1 140 10 132 133 133 132 0 1 strict

D1-p3 101 15 25 39 40 24 1 15 no

D24-p5 147 T(2) 5 11 11 5 0 6 strict

D12-p1 48 16 23 28 28 23 0 5 strict

D2-p1 94 14 48 50 50 48 0 2 strict

D16-p1 531 8 14 16 16 14 0 2 strict

D24-p3 147 T(3) 8 11 13 6 2 5 no

D5-p1 319 31 18 13 18 13 5 0 strict

D24-p4 147 T(3) 8 11 13 6 2 5 no

D21-p1 92 26 66 79 81 64 2 15 no

B-p1 124 T(18) 18 19 19 18 0 1 strict

B-p2 124 17 7 7 7 7 0 0 yes

M0-p1 221 T(3) 16 19 21 14 2 5 no

B-p3 124 T(4) 43 42 43 42 1 0 strict

D21-p2 92 28 70 83 85 68 2 15 no

B-p4 124 T(5) 42 43 43 42 0 1 strict

B-p0 124 T(17) 24 49 49 24 0 25 strict

rcu-p1 2453 T(3) 10 (9) ? ? ? ? strict

D4-p2 230 T(19) 38 (171) ? ? ? ? ?

I12-p1 119 370 16 (61) ? ? ? ? ?
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Figure 7: Comparison of the abstraction efficiency: (1) GRAB vs.

SepSet; (2) GRAB vs. CA.

Scatterplots for the other pairs of methods (not shown for lack of

space) show no clear winner.

Refinement minimization, though essential for good performance

of CA, does not always improve CPU time when applied to our

refinement scheme: The time spent checking the variables for re-

dundancy and the additional iterations are not always offset by the

reduction in the size of the abstraction. Nonetheless, we argue that

as we progress toward larger models, refinement minimization adds

to the robustness of the method.

7. Conclusions
Recent abstraction refinement research and advances in SAT sol-

vers have led to model checking algorithms that exhibit much in-

creased robustness on problems with hundreds of state variables,

and are beginning to foray into the thousands of variables. The

combination of decision procedures that characterizes those meth-

ods raises the issue of global versus local guidance in the search for

counter examples.

In this paper we have shown that significant performance im-
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provements can be achieved by emphasizing global guidance. For

a givent invariant, our approach analyzes all counter examples of the

shortest length at once. This leads to higher abstraction efficiency

relative to methods that base the refinement on the analysis of one

counter example only. Our approach to refinement is scalable in the

sense that the computation of the refinement only requires the ex-

amination of the abstract model. We still need the concrete model

to check whether abstract counter examples are spurious, but in our

experiments the cost of concretizing multiple paths was usually less

than the cost of SAT-based refinement procedures. A practical less-

ening of the concretization check problem may also come from an

incremental approach like the one of [1].

Our current work aims at exploring further mechanisms for global

guidance, in particular with regard to the trade-off between cost and

predictive power, and the bias between trying to prove or disprove a

property. The granularity of the refinement has also great impact on

performance, and our efforts are directed at providing more control

over this parameter.

Future work includes widening the locality scope of the set of

refinement candidates, which is currently limited to the immediate

support of the current abstraction. We have noted cases in which

variables that are in the support of the local support give a better

refinement due to increased deadend split production. We are also

considering making the definition of abstraction efficiency more

precise, to distinguish between truly successful refinement algo-

rithms, and algorithms that repeatedly pick many poor variables,

and then rely on refinement minimization. In some cases we have

studied, the SAT-based conflict analysis method falls into this latter

category.
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