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First published June 25, 2009; doi:10.1152/japplphysiol.00150.2009.—
Accelerometers are often used to quantify the acceleration of the body in
arbitrary units (counts) to measure physical activity (PA) and to estimate
energy expenditure. The present study investigated whether the identifi-
cation of types of PA with one accelerometer could improve the estima-
tion of energy expenditure compared with activity counts. Total energy
expenditure (TEE) of 15 subjects was measured with the use of double-
labeled water. The physical activity level (PAL) was derived by dividing
TEE by sleeping metabolic rate. Simultaneously, PA was measured with
one accelerometer. Accelerometer output was processed to calculate
activity counts per day (ACD) and to determine the daily duration of six
types of common activities identified with a classification tree model. A
daily metabolic value (METD) was calculated as mean of the MET
compendium value of each activity type weighed by the daily duration.
TEE was predicted by ACD and body weight and by ACD and fat-free
mass, with a standard error of estimate (SEE) of 1.47 MJ/day, and 1.2
MJ/day, respectively. The replacement in these models of ACD with
METD increased the explained variation in TEE by 9%, decreasing SEE
by 0.14 MJ/day and 0.18 MJ/day, respectively. The correlation between
PAL and METD (R2 � 51%) was higher than that between PAL and ACD

(R2 � 46%). We conclude that identification of activity types combined
with MET intensity values improves the assessment of energy expendi-
ture compared with activity counts. Future studies could develop models
to objectively assess activity type and intensity to further increase accu-
racy of the energy expenditure estimation.

double-labeled water; motion sensor; classification tree; activity rec-
ognition

IN MANY METABOLIC DISORDERS there is a need to measure daily
energy expenditure. The main determinants of energy expen-
diture are body size and physical activity (PA) (30). Although
body size can be easily determined, the assessment of PA
represents a challenge because of diversified individual behav-
iors and because of the complex nature of human activities.
Several methods have been proposed to objectively measure
PA (18). Ideally, PA should be measured in free-living condi-
tions, over a period of time representative for the habitual
activity level, and with minimal discomfort to the subject.
Accelerometers reasonably satisfy these requirements and,
therefore, have been used widely for the assessment of PA (16,
18). Traditionally, accelerometer output has been expressed as
activity counts to quantify PA. This measure of the accelera-
tion of the body is commonly defined as the area under the
rectified acceleration signal measured over a fixed time interval

like 1 min (4). Activity counts have been used to describe the
pattern of PA, i.e., the frequency, the duration, and the intensity
of PA. Furthermore, activity counts proved to be linearly
related to the total energy expenditure (TEE), to the activity-
related energy expenditure (AEE), and to the physical activity
level (PAL) as measured with the use of double-labeled water
(8, 14, 21). TEE is defined as the daily metabolic rate, while
AEE corresponds to the portion of TEE consumed for PA. PAL
is also commonly used to describe the amount of energy
consumed for PA as a fraction of the energy required to
maintain basal metabolic functions. Linear models have been
developed to predict TEE and AEE, using activity counts and
subject characteristics such as body weight as independent
variables (8, 20). In contrast, when indirect calorimetry was
used to assess the metabolic rate during specific activities, the
relationship between the intraindividual variability in AEE and
activity counts varied according to the type of activity (19).
Similar to TEE and AEE, PAL has been repeatedly predicted
by linear models based on activity counts. However, as shown
for AEE, the relationship between PAL and activity counts
depends on the type of activity (19). Thus prediction models
that account for the type of activity performed could result in
more accurate estimates of TEE, AEE, and PAL.

In recent years, accelerometers have been used in combina-
tion with classification models to identify types of PA by
evaluating information (features) derived from the acceleration
of the body (3, 9, 22, 28, 32). Classification trees (9), neural
networks (32), and hidden Markov models (22) are some of the
classification models used to identify activity type. Zhang et al.
(32) developed a neural network to identify up to 32 human
movements, recording the acceleration of the body with five
accelerometers. In more recent studies, the identification of
activity types was based on the acceleration features measured
with a single accelerometer (9, 12). However, the simplifica-
tion of the measurement system, using one accelerometer,
implied a decrease in the number of activities that could be
accurately identified by the classification model.

In this study PA was measured with a single accelerometer
during daily life in a population of healthy adults. Simulta-
neously, TEE was assessed with the gold standard technique of
double-labeled water. The aim was to investigate whether the
identification of activity type combined with a simple method-
ology to define activity type intensity could improve the
estimation of TEE, AEE, and PAL compared with daily activ-
ity counts.

METHODS

Subjects. Fifteen healthy, nonsmoking adults (9 men and 6 women)
were recruited by advertisement in local newspapers to participate in
the study. The study was approved by the Ethics Committee of the
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Maastricht University Medical Center, and written informed consent
was obtained from the participants.

Study design. Subjects reported to the laboratory on day 0 at 9:00
PM for an overnight stay in a respiration chamber. The study included
a 2-wk observation period for the measurements of energy expendi-
ture, from the morning of day 1 until the morning of day 15. PA was
monitored from the morning of day 1 until the morning of day 6.

Anthropometrics. Anthropometric measurements were taken in the
morning after an overnight fast. Body mass (BM) was measured on an
electronic scale (Mettler Toledo ID1 Plus, Giessen, Germany) to the
nearest 0.01 kg. Height was measured to the nearest 0.1 cm (SECA
Mod.220, Hamburg, Germany). Body volume was determined by
underwater weighing. During the underwater weighing, residual lung
volume was measured with the helium dilution technique (Volugraph
2000, Mijnhardt, Bunnik, The Netherlands). Total body water (TBW)
was determined with deuterium dilution, according to the Maastricht
protocol (31). Body composition was calculated from body mass,
body volume, and TBW with Siri’s three-compartment model (25).

Sleeping metabolic rate. Sleeping metabolic rate (SMR) was mea-
sured during an overnight stay in the respiration chamber. The room
measured 14 m3 and was equipped with bed, table, chair, freeze toilet,
washing bowl, radio, television, and computer (24). Energy expendi-
ture was calculated from O2 consumption and CO2 production ac-
cording to Weir’s formula (29). SMR was defined as the lowest
observed energy expenditure for three consecutive hours during the
night. Room temperature was held constant at 20 � 1°C.

Energy expenditure. TEE was measured with the use of double-
labeled water according to the Maastricht protocol (31). On the
evening of day 0, after the collection of a background urine sample,
subjects drank a weighed amount of 2H2

18O such that baseline levels
were increased by 100 ppm for 2H and 200 ppm for 18O. Additionally,
urine samples were collected in the morning (from second voiding) of
day 1, day 8, and day 15 and in the evening of day 1, day 7, and day
14. AEE was measured as (0.9 � TEE) � SMR, assuming the
diet-induced thermogenesis to be 10% of TEE. The mean PAL was
calculated as TEE/SMR (20).

Physical activity monitoring. The motion sensor used was a modified
version of the previously validated Tracmor (Philips Research, Eind-
hoven, The Netherlands) (4, 20). The device was equipped with a triaxial
piezo-capacitive [micro-electro-mechanical system (MEMS)] accelera-
tion sensor and recorded acceleration samples 20 times per second.
The accelerometer measured 8 � 3.5 � 1 cm and weighed 34.8 g,
including the battery, and was placed at the lower back with an elastic
belt. The x-, y-, and z-axes of the accelerometer were oriented along
the vertical, medio-lateral, and antero-posterior directions of the body,
respectively. PA was monitored for 5 consecutive days (2 weekend
days and 3 weekdays). Subjects were instructed to wear the acceler-
ometer during waking hours, except during showering and water
activities. A diary was used to report periods in which the subject was
not wearing the accelerometer during the day.

The raw acceleration signal was downloaded to a personal com-
puter and processed for two purposes. The first purpose was to
determine the number of activity counts scored daily. The total
activity counts accumulated during the monitoring period was divided
by the number of days to determine the average activity counts per
day (ACD). Second, the raw acceleration signal was processed to
identify types of PA performed during the day. The acceleration signal
was segmented in nonoverlapping intervals of 6.4 s. This segment
length was selected because the accuracy of classification models used
to identify activity types could decrease when the acceleration signal
is analyzed in portions of shorter time length (3). In each segment of
the acceleration and for each sensing axis, the following acceleration
features were determined: average, standard deviation, peak-to-peak
distance, and dominant frequency in the power spectral density.
Because of the high accuracy in identifying activity types (3, 9), a
classification tree algorithm was employed to evaluate the features
and to classify the acceleration in one of six activity classes: “lie,”

sitting or standing (Sit-Stand), active standing (AS), “walk,” “run,”
and “cycle.” The AS class was defined to represent dynamic activities
not related to ambulation performed in the standing position. The
outcome of the classification tree allowed the definition of the dura-
tion of the six activity types during the monitoring period. The
average daily duration (ADD) of each activity type was calculated as
the total duration of each activity divided by the number of monitoring
days. The ADD of lying was determined by integrating the sleeping
time, as reported with the diary, to the time spent lying during waking
hours.

The ADD of the identified activity types was used for the assess-
ment of PA by defining a daily metabolic equivalent value (METD).
The METD was calculated as the mean of the standard metabolic
equivalent value (MET) of each activity type weighed by the ADD, as
shown in the equation below:

METD �
1

k �i�1

6

METi � ADD
i

where i is an index that corresponds to each of the six activity types
considered, METi is the standard MET value for activity i, AD D

i is
the average daily duration for activity i (min/day), and k represents the
number of monitoring minutes during the day. According to the
diaries, the nonwearing time during waking hours was removed from
the data set. This operation was analogous to considering the METD

of the nonwearing time equal to the average METD of the wearing
time. The standard MET for each activity type was obtained from a
published compendium of PA (1). Since the MET of walking, run-
ning, and cycling depends on movement speed, the speed of these
activities was estimated by employing recently developed prediction
models based on acceleration features (3). The speed of each walking,
running, and cycling bout was measured and averaged over the
monitoring period and over each subject to have an indication of
which MET value would be more suitable to describe the average
intensity of the walking, running, and cycling activities.

Classification tree. A classification tree is a model in which the
classification process is defined by a sequence of logical conditions
based on the features of the object being classified. The development
of a classification tree comprises the selection of the features that are
most useful for the classification and the definition of logical condi-
tions to steer the classification. The classification tree used in the
present investigation was developed with data collected during a
supervised test conducted in a separate study with a population
characterized by a broad range of weight, height, and age: 20 men and
20 women, weight 82 � 23 (48–182) kg [mean � SD (min–max)],
height 1.71 � 0.09 (1.49–1.97) m, age 41 � 16 (23–70) yr, and body
mass index (BMI) 28.1 � 7.1 (18.6–53.9) kg/m2. The supervised test
included activities such as lying, sitting, standing still, walking,
running, cycling, washing dishes, and sweeping the floor. The accel-
eration collected during the dishwashing and floor sweeping activities
was used to define the AS category. The acceleration collected during
sitting and standing still activities was used to define the Sit-Stand
category. These two activities have been grouped together to form a
single category because the use of one accelerometer to measure PA
did not allow accurate distinction of the sitting and standing still
postures (3). Figure 1 shows the structure of the developed classifi-
cation tree and the features selected for the identification of activity
type. Table 1 shows the performance of the classification tree as tested
on five subjects not included in the population used to develop the
model (26). The development of the classification tree was conducted
with the Weka machine learning toolkit (University of Waikato,
Hamilton, New Zealand) (10). The processing scripts used for the
feature calculations and for the validation of the decision tree were
developed with Matlab (MathWorks, Natick, MA).

Statistical analysis. Simple linear regression was used to develop
prediction models for PAL using ACD or METD as independent
variable. The Bland-Altman plot was used to determine the agreement
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between measured and predicted PAL (2). Stepwise multiple linear
regression analysis was used to select the best independent variables
to predict TEE and AEE. Three different sets of independent variables
were considered to account for the differences in body size: SMR,
basic body characteristics (BM, height, age, and sex), and advanced
body characteristics [fat mass, fat-free mass (FFM), age, sex]. The
independent variable used to describe differences in PA was ACD or

METD. The independent variables considered in the regression anal-
ysis of AEE were the same as in the regression analysis of TEE with
the exception of SMR. The correlation between two variables was
evaluated by measuring Pearson’s correlation coefficient (R). Mea-
sured parameters are presented as means � SD. The statistical
software SigmaStat (Systat software, San Jose, CA) was used for
statistical analysis. The significance level was set to P � 0.05.

RESULTS

Descriptive results. Physical characteristics of the subjects
are presented in Table 2. Subjects wore the accelerometer on
average 15.7 � 0.4 h/day, which was 93 � 5% of their waking
hours. Sedentary activities like lying, sitting, and standing
occupied on average �75% of the day (Table 3). The average
walking, running and cycling speeds of the population were
4.2 � 0.4, 10.6 � 7.1, and 20.3 � 6.0 km/h, respectively. The
MET values selected for each activity type are presented in
Table 3. According to a published compendium of physical
activities (1), the intensity of lying was considered equal to the
MET value of lying quietly. The intensity of sitting or standing
was considered equal to the average MET value of sitting
quietly, standing quietly, and sitting doing deskwork. The
intensity of AS was considered equal to the MET value of
multiple household tasks. The intensity of walking and running
was considered equal to the MET value of walking at 2.5
mile/h (mph) (4.0 km/h) and of running at 6.7 mph (10.8
km/h), respectively. The intensity of cycling was considered
equal to the weighted on speed average of MET for cycling
between 10 and 11.9 mph (16.1 and 19.1 km/h) and for cycling

Fig. 1. Classification tree developed to identify types of physical activity. In
the circles are noted the features used to identify activity types [lie, sit or stand
(Sit-Stand), active standing (AS), walk, run, cycle]. The features selected for
the classification were the standard deviation of the acceleration in the vertical
and medio-lateral directions of the body (�X, �Y), the average acceleration in
the vertical direction of the body (	X); the peak-to-peak distance of the
acceleration measured in the medio-lateral and antero-posterior directions of
the body (aY

pp, aZ
pp), and the frequency peak of the power spectral density of the

acceleration measured in the vertical direction of the body (fX).

Table 1. Performance of the model used to identify types of
physical activity

Classification Categories

Lie Sit-Stand AS Walk Run Cycle

True categories
Lie 100 0 0 0 0 0
Sit-Stand 2 95 3 0 0 0
AS 0 22 69 3 0 6
Walk 0 0 0 99 0 1
Run 0 0 0 0 100 0
Cycle 0 1 5 7 0 87

Sensitivity, % 100 95 69 99 100 87
Specificity, % 99 98 98 98 100 99
F-score, % 100 96 81 99 100 93

Numbers represent % of objects belonging to the true category that are
classified as each classification category. Sensitivity was calculated to describe
the ability to avoid false negative classifications for each activity type.
Specificity was calculated to define the ability to generate true positive
classifications for each activity type. F-score was calculated as the harmonic
mean between sensitivity and positive predictive values to evaluate the overall
performance of the model in classifying each activity type (26). AS, active
standing; Sit-Stand, sitting or standing.

Table 2. Subject characteristics

Parameter Mean � SD Range

n (men/women) 15 (9/6)
Age, yr 41�11 26–59
BM, kg 76.6�11.4 62.1–103.4
Height, m 1.77�0.08 1.66–1.89
BMI, kg/m2 24.4�3.0 19.6–29.5
FM, kg 20.2�6.1 8.4–33.2
FFM, kg 56.4�7.6 44.1–70.2
SMR, MJ/day 7.1�0.8 5.7–8.3
TEE, MJ/day 12.5�1.9 9.7–15.5
AEE, MJ/day 4.1�1.2 2.1–6.4
PAL 1.75�0.17 1.43–2.06
ACD, kcounts/day 228�60 116–341
METD 1.72�0.14 1.48–1.98

BM, body mass; BMI, body mass index; FM, fat mass; FFM, fat free mass;
SMR, sleeping metabolic rate; TEE, total daily energy expenditure; AEE,
activity-related energy expenditure; PAL, physical activity level; ACD, daily
activity counts; METD, daily metabolic equivalent value.

Table 3. Types of activity performed during the day

Activity Type MET

Minutes per Day

Mean � SD Range

Lie 1 513�67 382–683
Sit-Stand 1.3 560�111 370–683
AS 3.5 128�45 55–231
Walk 3 187�55 85–291
Run 11 3�4 0–14
Cycle 6.7 28�14 8–54

MET, metabolic equivalent (1).
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between 12 and 13.9 mph (19.3 and 22.4 km/h). METD and
ACD were linearly related (R � 0.90, P � 0.001).

PAL regression models. The model based on ACD explained
46% of the variation in PAL (R � 0.68, P � 0.05), with a
standard error of estimate (SEE) of 0.13 or 7.4% of the mean
measured PAL (Fig. 2A). The limits of agreement between
predicted and measured PAL were from �0.243 to 
0.245
(Fig. 2B). The model based on METD explained 51% of the
variation in PAL (R � 0.71, P � 0.05) with a SEE of 0.12 or
6.8% (Fig. 2C). The limits of agreement between predicted and
measured PAL were from �0.233 to 0.235 (Fig. 2D). None of
the physical characteristics of the population was correlated to
the residual of these prediction models.

TEE regression models. The model based on SMR and ACD

explained 85% (R � 0.92) of the variation in TEE, with a SEE
of 0.8 MJ/day or 6.4%. The model based on SMR and METD

explained 87% (R � 0.93) of the variation in TEE, with a SEE
of 0.75 MJ/day or 6%. When basic body characteristics and
ACD were used in the stepwise regression analysis, only BM
and ACD were included in the prediction model, and the
explained variation in TEE was 51% (R � 0.71), with a SEE
of 1.47 MJ/day or 11.7%. The model based on BM and METD

explained 60% (R � 0.77) of the variation in TEE, with a SEE
of 1.33 MJ/day or 10.6%. Considering advanced body charac-
teristics and ACD, the stepwise regression analysis selected
FFM and ACD in the prediction model of TEE. The explained
variation in TEE of this model was 67% (R � 0.82), with a
SEE of 1.2 MJ/day or 9.6%. When advanced body character-
istics and METD were used in the stepwise regression analysis,
FFM and METD were included in the prediction model. The
explained variation in TEE of this model was 76% (R � 0.87),
with a SEE of 1.02 MJ/day or 8.2%. None of the physical
characteristics of the population was correlated to the residual
of the prediction models. Coefficients, significance level, and
partial correlations of all models are summarized in Table 4.

AEE regression models. When subject characteristics and
ACD were entered as independent variables in a stepwise
regression analysis, BM and ACD significantly contributed to
the explained variation in AEE. The model explained 47%
(R � 0.68) of the variation in AEE, with a SEE of 0.98 MJ/day
or 21.7%. Moreover, BM and METD were selected as signif-
icant predictors of AEE. The explained variation in AEE of this
model was 60% (R � 0.77), with a SEE of 0.85 MJ/day or
20.7%. When advanced body characteristics and ACD were
used in the stepwise regression analysis, FFM and ACD were
included in the prediction model. The explained variation in
AEE was 60% (R � 0.77), with a SEE of 0.85 MJ/day or
20.7%. Furthermore, FFM and METD were selected as signif-
icant predictors of AEE. This model explained 73% (R � 0.85)
of the variation in AEE, with a SEE of 0.70 MJ/day or 17%.
None of the physical characteristics of the population was
correlated to the residual of the prediction models. Coeffi-
cients, significance level, and partial correlations of all models
are summarized in Table 5.

DISCUSSION

This study showed that the identification of types of PA,
such as lying, sitting or standing, active standing, walking,
running, and cycling, performed during the day combined with
a simple methodology to define activity type intensity im-
proved the estimation of TEE, AEE, and PAL compared with
activity counts. The METD value was calculated to assess the
metabolic cost of PA with the duration and the standard MET
compendium value, as presented in the literature, of six com-
mon types of activity, identified with a newly developed
classification tree model. METD improved the explained vari-
ation in PAL by 5% compared with ACD. Furthermore, de-
pending on which independent variables were considered to
represent differences in body size, the models based on METD

Fig. 2. Accuracy of the prediction models of
the physical activity level (PAL). A and
C: regression plots of the PAL prediction mod-
els based on activity counts per day (ACD; A)
and based on metabolic equivalent per day
(METD; C). R, Pearson correlation coefficient
of the models. B and D: Bland-Altman plot of
the models used to predict PAL based on ACD

(B) and based on METD (D). P, significance
level of the association between the residual
PAL and the mean PAL; CI, confidence inter-
val.
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improved the explained variation in TEE from 2% to 9% and
improved the explained variation in AEE by 13%, compared
with the models based on ACD.

Only a small number of accelerometers have been validated
against the gold standard technique of double-labeled water.
Those that were validated often showed poor correlations with
energy expenditure or the main contribution to the explained
variation in TEE, or AEE was determined by subjects’ physical
characteristics (21). Very few studies reported a higher accu-
racy in predicting TEE, AEE, and PAL than that of the models
obtained in the present study (5, 20, 21). Plasqui et al. (20)
developed a prediction model of TEE using SMR and ACD as
independent variables. The explained variation of the model
was 90%. In our model based on the same independent vari-
ables, the explained variation in TEE was 85%. Carter et al. (5)
developed a model to predict TEE using body height and ACD

in a population of young male adults as independent variables.
The explained variation of the model was 73%, and ACD

accounted for 27% of the explained variation in TEE. Plasqui
et al. (20) developed a model to predict TEE in a population of
young adults using age, BM, height, and ACD as independent
variables. The explained variation of the model was 83%, and
ACD accounted for 19% to the explained variation in TEE. In
our study, TEE was predicted by BM and ACD. This model
explained 51% of the variation in TEE, while ACD accounted
for 9% of the explained variation in TEE. Although comparing
these prediction models is difficult because of the different
independent variables included in the regression, it appeared
that those developed in the present study showed a lower
explained variance in TEE. Additionally, the contribution of
ACD to explain the variation in TEE was lower. This was also
observed in the models to predict AEE and PAL compared

with the study of Plasqui et al. (20). A limitation of this study
was the fact that the habitual PA was determined during a
monitoring period of 5 days, while the TEE was assessed over
a period of 2 wk, according to the double-labeled water
protocol. This could have determined a decrease in the contri-
bution of ACD to the explained variation in TEE, AEE, and
PAL, because of a reduced ability of ACD to describe PA.
However, some studies have shown that as little as 3–4 days of
monitoring was sufficient to achieve a reliability of �80% in
measurements of PA with accelerometers (15, 17). In the study
of Plasqui et al. (20) the activity monitor was equipped with a
piezo-electric acceleration sensor, while in the present study
the Tracmor was equipped with a piezo-capacitive sensor that
allowed the identification of postures by detecting static accel-
erations. Additional research is required to understand whether
the use of piezo-capacitive acceleration sensors determined a
decrease in the ability of ACD to account for the explained
variance in TEE, AEE, and PAL compared with the ACD

measured with activity monitors equipped with piezo-electric
sensors. Furthermore, different data processing of the acceler-
ation signal should be also carefully considered as a confound-
ing factor when comparing the ability of piezo-electric and
piezo-capacitive sensors in measuring PA.

The METD value provided a more accurate assessment of
PA compared with ACD, since the developed model to
predict TEE, AEE, and PAL showed a higher accuracy. The
calculation of METD was based on the use of a newly
developed classification algorithm for the identification of
types of physical activity performed during the day. The
assessment of PA by identifying activity types was hypoth-
esized to improve the estimation of energy expenditure. This
assumption was based on the evidence that the relation

Table 4. Prediction models of TEE

Dependent Independent Coefficient P pR2 Dependent Independent Coefficient P pR2

TEE INT �9.3 TEE INT 19.1
SMR 2.5 �0.001 0.59 SMR 2.5 �0.001 0.59
ACD 1.8 � 10�5 �0.001 0.26 METD 8.4 �0.001 0.28

Model 0.85 Model 0.87
TEE INT 0.8 TEE INT �8.9

BM 0.1 �0.05 0.42 BM 0.1 �0.05 0.42
ACD 1 � 10�5 �0.05 0.09 METD 6.5 �0.05 0.18

Model 0.51 Model 0.60
TEE INT �2.4 TEE INT �13.1

FFM 0.2 �0.001 0.54 FFM 0.2 �0.001 0.54
ACD 1.2 � 10�5 �0.05 0.13 METD 7.3 �0.05 0.22

Model 0.67 Model 0.76

P, significance level; pR2, partial correlation; Model, R2 of the prediction model; INT, intercept.

Table 5. Prediction models of AEE

Dependent Independent Coefficient P pR2 Dependent Independent Coefficient P pR2

AEE INT �3.0 AEE INT �12.4
BM 0.05 �0.05 0.26 BM 0.07 �0.05 0.35
ACD 1.2 � 10�5 �0.05 0.21 METD 6.7 �0.001 0.25

Model 0.47 Model 0.60
AEE INT �4.9 AEE INT �14.7

FFM 0.1 �0.05 0.21 FFM 0.12 �0.001 0.48
ACD 1.3 � 10�5 �0.05 0.38 METD 7.1 �0.001 0.25

Model 0.60 Model 0.73

P, significance level; pR2, partial correlation; Model, R2 of the prediction model; INT, intercept.
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between energy expenditure and accelerometer output de-
pends on the type of activity performed. A few studies (19,
27) have shown that different linear equations could be
developed to estimate the MET of activities such as sitting,
standing, walking, and housework, using activity counts.
Furthermore, a unique linear relationship between activity
counts and activity intensity is not suitable for both running
and cycling activities. In fact, these two activities generate
a diverse amount of activity counts even at a similar level of
METs. In this study, the METD value accounted for the
different contribution of six activity types to TEE, AEE, and
PAL. This was possible because the assessment of activity
intensity was independent from activity counts. The inten-
sity of lying, sitting or standing, and AS was assumed to be
equal to a specific MET value as obtained from a published
compendium of PA (1). The intensity of each walking,
running, and cycling activity was assumed to be equal to the
MET value of walking at 2.5 mph, running at 6.7 mph, and
cycling between 10 and 13.9 mph, because these MET
values were representative of the activity intensity at the
average speed measured during the monitoring period. The
only independent variable determining METD was the daily
duration of the six activity types, since activity intensity was
considered constant. This might allow the applicability of
the prediction models based on METD to any method able to
accurately detect the daily duration of the types of activity
identified in this study. However, a methodology that allows
the detection of activity intensity for each activity type and
for each activity bout could be considered to further im-
prove the estimation accuracy of TEE, AEE, and PAL. The
challenge would be represented mainly by the determination
of intensity for sedentary and unspecified dynamic activi-
ties, such as Sit-Stand or AS, which occupy a large part of
the daytime and could importantly contribute to the defini-
tion of the metabolic cost of PA (27).

In the literature, some attempts have been made to improve
accelerometer-based estimation of energy expenditure by de-
fining a specific regression equation to relate the metabolic cost
of PA to activity counts for specific groups of activities such as
locomotive and lifestyle activities (7) or sedentary, locomotive,
or housework activities (19, 27). Additionally, nonlinear mod-
els such as artificial neural networks have been applied to the
raw acceleration of the body to improve the prediction accu-
racy of energy expenditure (6, 23). However, none of these
computationally sophisticated techniques has been validated
yet in free-living conditions by using, as a reference measure of
energy expenditure, double-labeled water. In this study, PA
was assessed by a METD parameter that accounted for the
different contribution to the metabolic cost of PA of each
identified type of activity. This approach was similar to that
implemented in the ActiReg activity monitor to estimate TEE
(11). The ActiReg includes two accelerometers. They are
positioned on the chest and on the thigh to determine body
posture and to categorize PA in three classes of intensity.
Depending on the posture and on the activity intensity, a MET
value is used to describe the energy cost of PA. Thus the
definition of energy expenditure was derived from information
on posture (lying, sitting, and standing) and the intensity of PA.
The ActiReg has been validated against double-labeled water,
and a standard error of 1.24 MJ/day was obtained in the
estimation of TEE (11). Therefore, the prediction accuracy was

poorer than that achieved by the models developed using
METD.

In this study, PAL and AEE were calculated from mea-
surements of TEE and SMR. In the literature, TEE is often
corrected by resting metabolic rate (RMR) to determine
PAL and AEE. The choice of using SMR instead of RMR
derived from the fact that measurements of SMR showed a
high reproducibility. Indeed, the intraindividual coefficient
of variation of SMR measured in a respiration chamber has
been estimated to be below 2% (24). Considering that SMR
is �5% lower than RMR (13), the mean values of PAL and
AEE measured in this study were systematically higher than
those derived from TEE and RMR. However, the variability
in PAL and AEE was not significantly affected by the use of
SMR instead of RMR. Thus the estimation accuracy of the
models to predict PAL and AEE was not influenced by the
selection of SMR as correction factor for TEE.

In conclusion, identification of activity types combined
with standard MET compendium values improved the as-
sessment of energy expenditure compared with activity
counts. Future studies could focus on the development of
models to objectively measure the intensity of common
types of PA to further increase the accuracy of the energy
expenditure estimation.
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